
EG UK Theory and Practice of Computer Graphics (2010)
John Collomosse, Ian Grimstead (Editors)

ID-Based Rendering of Silhouettes on GPU

Engin Deniz Diktas1,2 and Ali Vahit Sahiner2

1Adeko Technologies, ULUTEK Technology Development Region, Uludag University, Bursa, Turkey
2Computer Engineering Department, Bogazici University, Istanbul, Turkey

Abstract
When rendering object-silhouettes preprocessing is generally done primarily on the CPU. To this end primi-
tive normals must be made consistent and the silhouette-edges need to be extracted every time the view-point is
changed. In this paper we propose a pure image-based GPU-method where IDs of triangles are rendered to a tex-
ture and silhouettes are extracted based on the information stored in that texture. With this method the geometry
does not need to be preprocessed or reprocessed when the view-point or the geometry is changed. Another impor-
tant advantage of the proposed method over any Z-buffer based method is that it does not require any threshold
value to compare against the difference between depth-values of the neighboring pixels which is difficult to adjust
in perspective projection.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.3]: Line and Curve
Generation—

1. Introduction

Silhouette extraction and rendering is used in shadow
volume construction, visibility tests as well as in non-
photorealistic rendering as a tool to emphasize the outlines
of objects in the absence of shading. Before silhouette ex-
traction can be performed the geometry needs to be pre-
processed in order to meet some specific mesh criteria. In
the following discussion we restrict ourselves to triangle-
meshes.

In order to extract the silhouettes from a mesh we need
to determine the visibility of each triangle. After this we
need to find out all edges whose one of its incident trian-
gles is visible while the other one is not. In other words
we need to trace the boundary between visible and invisi-
ble triangles. Since the silhouette boundary depends on the
visibilities of all triangles, the visibility-tests as well as the
silhouette-detection process must be repeated every time the
view-point is changed. In order to correctly determine the
silhouette, the normals of all triangles need to be consistent.
That is all neighboring triangles must have the same wind-
ing. If even two triangles fail to meet this criterion, the visi-
bility computation will not produce correct results. Another
important property is that the mesh must have a connectiv-
ity information among the triangles over their edges: when
visiting every edge we have to be able to check the triangles

sharing that common edge: when all adjacent triangles are
invisible or visible, then that edge is not a silhouette-edge,
otherwise it is on the silhouette.

In the present paper we propose a method that does not
rely on conventional cpu-based preprocessing and silhou-
ette extraction methods. Our method is an online ID-based
method which does not require any threshold values com-
pared depth-based online silhouette rendering methods for
which it is difficult to set the appropriate threshold Z-value,
especially in perspective projection. In section 2 we review
the corresponding literature. In section 3 we look at the con-
ventional silhouette methods on CPU which require a pre-
processing step every time the object topology changes (sec-
tion 3.1) and silhouette extraction methods (section 3.2). In
section 4 we propose our method by first discussing two pos-
sible candidates: ID-list-storage versus vertex-storage both
using textures containing ID-outputs. We emphasize the dif-
ficulties with list-storage method and advantages of vertex-
storage method which we choose of our implementation. Fi-
nally in section 5 we give test results.

2. Related work

Since our method is an image-based method, we will review
the literature related to image-based silhouette extraction

c© The Eurographics Association 2010.

DOI: 10.2312/LocalChapterEvents/TPCG/TPCG10/017-024

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/LocalChapterEvents/TPCG/TPCG10/017-024

E.D. Diktas & A.V. Sahiner / ID-Based Rendering of Silhouettes on GPU

methods. A broader review of silhouette edge rendering can
be found in [IFH∗03]. The common point of all image-based
silhouette edge rendering algorithms is that they operate en-
tirely on data stored in buffers obtained in a pre-rendering
pass, and does not modify or know about the geometry in
the scene. These methods have the advantage that they do
not require any preprocessing step for rendering.

In [ST90] Saito and Takahashi first introduced the concept
of a G-buffer, where information related to geometric prop-
erties of a scene (like depth, normals) are stored on a per-
pixel basis. These buffers can also be used for deferred shad-
ing. Decaudin [Dec96] used G-buffers for toon-rendering. In
these works the basic idea is to apply image processing tech-
niques on various buffers of information in order to extract
the silhouette boundaries. By looking for discontinuities in
neighboring Z-buffer and/or normal values, most silhouette
edge locations can be found.

Rendering the scene in ambient colors can also be used
to detect edges which could be missed by the previous two
techniques. Card and Mitchell [CM02] perform these im-
age processing operations in real time by first using vertex-
shaders to render the world space normals and z-depths of
a scene to a texture. The normals are written as a normal
map to the color channels and the most significant byte of
Z-depths as the alpha channel. Once this image is created,
the next step is to find the silhouette, boundary, and crease
edges. The idea is to render a screen-filling quadrilateral
with the normal map and the Z-depth map (in the alpha chan-
nel) and detect edge discontinuities. The idea is to sample
the same texture six times in a single pass and implement a
Sobel edge detection filter. The texture is sampled six times
by sending six pairs of texture coordinates down with the
quadrilateral. This filter is actually applied twice to the tex-
ture, once along each axis, and the two resulting images are
composited. One other feature is that the thickness of the
edges generated can be expanded or eroded by using further
image processing techniques. This algorithm has a number
of advantages: Since the method is image-based, meshes do
not have to be connected or even consistent. CPU is not in-
volved in creating and traversing edge lists. There are rela-
tively few flaws with the technique: for nearly edge-on sur-
faces, the Z-depth comparison filter can falsely detect a sil-
houette edge pixel across the surface. Another problem with
z-depth comparison is that if the differences are minimal,
then the silhouette edge can be missed. For example, a sheet
of paper on a desk will usually have its edges missed. Simi-
larly, the normal map filter will miss the edges of this piece
of paper, since the normals are identical [AMHH08]. One
way to avoid problems related to methods using z-buffer and
normal-buffer is to use ID-rendering. In [Dec96] such cases
are detected by adding a filter on an ambient or object ID
color rendering of the scene. This is still not foolproof: for
example, a piece of paper folded onto itself will still create
undetectable edges where the edges overlap [Her99].

3. Conventional silhouette extraction on CPU

In general, the triangular mesh does not come in a favor-
able format, where all normals are consistent and the neces-
sary mesh structure is built. In our framework, the triangles
are allowed to be loaded in a format called triangle soup,
with no connectivity information and no guarantee of nor-
mal consistency. In addition to that vertices may be repeated
for all triangles sharing them, so they need to be welded.
Therefore we need to perform a preprocessing step where
the mesh connectivity and normal-consistency properties of
the triangle-soup are established. After these preprocessing
steps a number of methods can be used to extract the silhou-
ettes.

3.1. Preprocessing steps

The preprocessing step includes the following steps

1 Vertex Welding
2 Establishing triangle-connectivity via edges
3 Making all normals consistent in every connected compo-

nent

Vertex welding is a necessary step, since otherwise we
cannot find out which triangle-pairs share edges. So this is
a necessary step for the second step, where all edges are as-
signed a unique pointer for each of their adjacent triangles.

For 2-manifold and closed (water-tight) meshes of arbi-
trary genus each edge will have exactly 2 adjacent triangles.
If the object is 2-manifold but not closed, some edges will
have not have two neighboring triangles: so they will always
be on the silhouette. For general meshes, an edge may have
an arbitrary number of adjacent triangles, so we chose to
keep a list of pointers for fast access to neighboring trian-
gles.

After the edge-structures are defined, we need to estab-
lish normal-consistency: for this we need to select a seed tri-
angle and assume its winding is correct. Then starting with
this seed-triangle we have to visit all of its neighbors via its
edges and make their winding the same as the seed-triangle.
During this visiting process we need to make sure that a pre-
viously processed triangle is not re-processed again or the
iterations won’t stop: this can be done by storing a flag for
every triangle. When this breadth-first visiting is stopped,
there may be other triangles not processed yet. This is the
case if the mesh consists of more than one connected com-
ponent. So we need an outer loop for checking if all triangles
are processed or not. Every time the breadth-first normal-
consistency recursion is finished, a new seed triangle needs
to be selected from the remaining connected component(s)
for the next recursion.

A note on deformable objects should be made at this
point. As long as the deformation does not change the topol-
ogy of the mesh, the preprocessed mesh structure can be re-
used in every extraction step. However, if the topology of the

c© The Eurographics Association 2010.

18

E.D. Diktas & A.V. Sahiner / ID-Based Rendering of Silhouettes on GPU

object changes (e.g. due to rapture, fracture, splitting, genus-
change etc), the preprocessing step needs to be updated for
those parts of the objects where the topology changes occur.
But since the mesh connectivity has been established prior
to this topology modification, the updating procedure can be
accelerated by keeping track of the topology-changing fac-
tors. These factors can be monitored directly from within the
animation itself or from other methods that feed this topol-
ogy modification information (e.g. an incremental surface
reconstruction from time-varying 3D CT-data or other scalar
field data). The important fact is that this preprocessing steps
need to be continually checked and applied for the desired
mesh properties in case of objects whose topology changes
over time. In our framework we do not have any mechanism
for incremental topology monitoring, we just rebuild whole
data structures from scratch in every animation step.

3.2. Silhouette extraction

After pre-processing stage, the mesh is ready for silhouette-
extraction: in this step the most straight-forward method is
to find out visibility of every triangle and then loop on ev-
ery edge and mark those with opposite visibility results.
For non-time-critical applications this method is acceptable.
However for complex scenes this process needs to be per-
formed more rapidly. To this end there are some methods:
In [SGG∗00] a framework for efficiently clipping the render-
ing of coarse geometry to the exact silhouette of the original
mesh model is described. A coarse mesh is obtained using
progressive hulls that has the nesting property required for
proper clipping. Given a perspective view, silhouettes are ef-
ficiently extracted from the original mesh using a precom-
puted search tree where hierarchical culling is achieved us-
ing pairs of anchored cones.

In [JC01] a hierarchical bounding volume hierarchy
(sphere-tree) augmented with normal cone information is
used to quickly determine the front-facing and back-facing
triangle sets. Each node in the spatialized normal cone tree
bounds both the enclosed geometry and the normals of the
faces of that enclosed geometry, such that a hierarchy both
in Euclidean space and normal space is constructed. Since
many front and back-facing triangles are grouped together
with the proper normal information, a single dot-product will
be sufficient to eliminate all of the triangles and their shared
edges contained therein, instead of performing as many dot-
products as there are triangles in the bounding sphere of the
corresponding normal cone.

Although these methods in the literature are quite fast
when extracting silhouettes, their primary drawback is that
they require expensive preprocessing steps, not just the ones
we described before but also constructing certain hierarchial
representations of the objects. For deformable objects and/or
objects changing their topology, these construction phases
must be repeated, which will inevitably degrade the overall
rendering performance.

4. Proposed Method

As can be seen from the above discussions, CPU-based
silhouette-extraction methods are quite involved, especially
in cases where the topology of the triangle-mesh changes
and performance is an issue. In order to avoid complex sil-
houette extraction methods and preprocessing steps, we de-
cided to develop a method that will perform the silhouette
drawing directly on the GPU and just with the triangle-soup
information.

In order to render the silhouette of an object we need to
be able to get some adjacency information for every pixel we
render. This adjacency information can be obtained by look-
ing at the neighboring pixels. Since we need to perform a
neighboring pixel lookup, we have to generate this informa-
tion in a pre-render pass. So we have to store this per-pixel
information in a separate offscreen texture to be read in the
final rendering pass.

In the second step, we have to think about what kind of
information we need to store in the pixels of the offscreen
texture: the cheapest way to encode the information about a
triangle is to store its ID at every pixel location. Once we get
the ID of a single triangle we can perform another look-up
what kind of information is associated with that triangle.

Rendering the triangles’ IDs is simple: we can pass this
information as a vertex attribute at all vertices of the trian-
gle. This attribute for every vertex needs to be passed as a
FLAT varying variable to the fragment-shader. Finally the
sole purpose of the fragment-shader is to output this ID-
value (passed as flat varying variable to the fragment shader)
to the texture for each pixel of the corresponding triangle.
The FLAT requirement is necessary since we want to guar-
antee that the varying variable is never interpolated by the
rasterization stage. This way we guarantee no approxima-
tion errors are introduced. The output of this first pass is a
texture that holds the IDs of triangles at its pixels.

The second pass will be the rendering pass and we will
render the silhouette based on information stored in this off-
screen ID-texture. For this we render a full-screen quad and
bind the silhouette-extraction shader. At every pixel we look
at the current pixel coordinate and its 4 neighboring pixels.
If all of the pixels have the same ID, then this means that
all neighboring pixels belong to the same triangle and we do
not need to check for any silhouette-pixel.

However if even one of the pixels have an ID different
than the triangle-ID at the current location, then we need to
check if the current pixel is on the silhouette. To this end we
need to check if all triangles neighboring the current pixels
are adjacent to the current triangle. For this we have two
options: either this adjacency information can be encoded
from a preprocessing step or we can deduce this information
directly at fragment-shader. Both methods have advantages
and disadvantages.

c© The Eurographics Association 2010.

19

E.D. Diktas & A.V. Sahiner / ID-Based Rendering of Silhouettes on GPU

4.1. ID-List storage method

If the scene topology is static we can perform the previously-
described preprocessing steps for once and construct a list
of triangles adjacent to each triangle. This adjacency infor-
mation can be encoded as ID-information. The advantage
of this method is that the ID-information is very convenient
and compact. For water-tight (closed 2-manifold) objects
each triangle will have at most 3 neighbors. This ID-based
adjacency information can be extracted with a single texture
access, if the data is stored in a RGB-texture. The clear dis-
advantage is the preprocessing stage because for objects that
may change topology we have to perform this preprocessing
stage at every frame.

In addition to that vertices pose another problem, since
they can be shared by many triangles, even by those which
are not in the adjacency list of the triangle they belong to.
This is shown in Figure 1: triangles adjacent to the triangle
are numbered starting from 1 to 9. Triangles 1,5 and 7 shared
the same edges as the center triangle, but all of the 9 trian-
gles are adjacent to the center triangle at the vertices. Imag-
ine taking samples at a position close to the top vertex: If the
sampling strategy sees only the value 4 and 8, that pixel will
be marked as a silhouette edge, since 4 and 8 are not in the
adjacency list {1,5,7} of the center triangle. A low-sampling
rate could easily miss the adjacent triangles and thus cause
point-like artifacts. We have to increase the sampling rate
close to the vertices to ensure that no such point-like arti-
facts occur. Since we do not know in advance how many
triangles would be sharing this vertex we have to increase
the sampling rate adaptively which would further complicate
this strategy: a vertex with 8 adjacent triangles would require
a sampling region consisting of 3x3=9 pixels while another
vertex with 24 adjacent triangles would require a sampling
region consisting of 5x5=25 pixels etc.

Figure 1: Close to vertices there are more adjacent triangles

Yet another problem with this method (based on ID-list
storage of adjacent triangles) is related to general meshes,

where a triangle may be adjacent to more than 3 triangles:
such cases can occur when an edge is shared among more
than 2 triangles, so triangles may have an arbitrary num-
ber of adjacent triangles and the adjacency information of
each triangle needs to be laid out accordingly. Consider the
case depicted in Figure 2. The center axis of the a cylinder is
shared by many triangles. Each of the side triangles will have
all the other side triangles as neighbors but they need to be
tested along the edge only. For many pixels inside the trian-
gle such tests will reduce the overall performance if done in
a single pass. One way to increase the performance is to skip
the edges in a first pass and then perform the edge-checks
in a separate pass, but this will increase the complexity of
implementation and still may not increase the performance.

Figure 2: Top-view of a cylinder with its center axis shared
as an edge among many triangles: the red spot is the projec-
tion of the center-axis onto the top-view-plane. This axis is
shared by all side triangles. As the number of side triangles
increase, adjacency list of each side triangle will grow, caus-
ing severe degradation in performance in GPU silhouette
detection algorithm based on ID-list storage. However, the
performance of the GPU-method based on vertex-storage
will remain the same.

4.2. Vertex-storage method

Another possibility is to look for triangle-adjacency by
checking the vertices of every triangle directly in the
fragment-shader itself. This has the advantage of not having
to perform a preprocessing step at the expense of repeated
multiple vertex checks. To this end we need to get the 3-
vertices for every triangle and check if one of the vertices
of the current triangle is the same as one of the vertices of
the adjacent triangles. As soon as we identify a triangle that
does not share even a single vertex with the current triangle,
we can safely state that the pixel is on the silhouette.

This method seems to be an inefficient method, since in
the worst case we need to check 4 different neighboring tri-
angles, which can all be neighbors to the current triangle:
that is we will have 4× 3 = 12 vertices and these need to

c© The Eurographics Association 2010.

20

E.D. Diktas & A.V. Sahiner / ID-Based Rendering of Silhouettes on GPU

be checked against 3 vertices of the current triangle result-
ing 12×3 = 36 vertex-vertex comparisons which are vector-
difference and dot product operations essentially. To extract
all the necessary information we need to perform 5×3 = 15
texture access operations to extract 3 vertices for all 5 trian-
gles. So this method seems to be inefficient. But remember:
these worst cases tend to occur along the edges of the model.
If the object consists of very big but small number of trian-
gles, this method will probably work faster. But at this point
we have to keep in mind that if one thread in the fragment
shader takes a lengthy execution branch then the others will
take that lengthy path as well, even if they do not satisfy
the conditions for that branch. The clear advantages of this
method are

• No preprocessing steps of any are required
• No special care needs to be taken for vertices
• All types of meshes are supported with no variance in per-

formance
• Data size and thus its layout is fixed: animations on GPU

can directly output their results on GPU (this will be ex-
plained in the next section)

Due to the advantages listed above we chose to imple-
ment this method. Below is the pseudo-code of the fragment
shader to accomplish the silhouette rendering. vTriangleID
is the ID of the fragment of the current triangle being ras-
terized, while fCoord is the coordinates of the fragment.
The array triangles holds the IDs of the adjacent triangles.
GetTriInd reads the triangle-IDs at the offset locations from
the ID-texture while GetVertices reads the 3 vertices of the
triangle whose ID is given from the vertex-data texture.

int numTriangles=0, triangles[4];
for(int i=0; i<4; i++) {

index = GetTriInd(fCoord + offsets[i]);
if(index != vTriangleID)
triangles[numTriangles++] = index;

}

GetVertices(vTriangleID, rv);
for(int i=0; i<numTriangles; i++) {
bool isNeighbor=false;
GetVertices(triangles[i], cv);
for(int j=0; !isNeighbor && j<3; j++)
for(int k=0; !isNeighbor && k<3; k++)
if(rv[j] == cv[k]) isNeighbor = true;

if(!isNeighbor) {
gl_FragColor = RED; // is silhouette
return;
}

} gl_FragColor = WHITE; // not a silhouette

4.3. Loading the triangle information to the GPU

Information related to triangles is one of the following

1 List of adjacent triangles to every vertex (ID-list storage)
2 Vertex-coordinates of every triangle (vertex-storage)

Choice for packing the second type information is easier
compared to the first one since for each triangle we have 3
vertices and we do not have to worry about cases where a
triangle is adjacent to more than 3 triangles, so that number
of data per triangle to be stored is fixed. Each of the vertices
can be packed as a single pixel having three single-precision
floating components (RGB). In such a case each triangle
needs 3 pixels to hold coordinates of its 3 vertices. These
vertices can be laid out in an arbitrarily in column-major or
row-major order. We decided to load them in column-major
order. This choice should have a minor impact on the overall
performance.

Choice for packing the first type information is more cum-
bersome: since in case of general meshes a triangle could
be adjacent to an arbitrary number of triangles, packing this
data is a little bit more involved. We could partition a whole
texture and place the adjacency information in places cor-
responding slots. In such a case the size of each slot would
depend on the maximum number of triangles shared by the
corresponding vertex. But this would be very inefficient if
one triangle has say 100 adjacent triangles (Fig 2) and all
the remaining ones have say 3 triangles. In such a case the
slot size for every vertex would consist of 100 locations, but
all the other slots would waste a lot of space. So the data
would become sparse, memory consumption would be high
and texture caching would be ineffective since lots of the
cached spaces would not contain any useful data at all. To
avoid this we can encode the adjacency data in two separate
textures: one containing all lists appended successively, and
another texture holding pointer-table specifying the start-
location and length of every list in the densely packed data-
texture. In other words we use a pointer indirection for ev-
ery triangle. Thus at the expense of giving up the array-like
random access vertex-data read, we can pack the vertex ad-
jacency data much more compactly using two separate tex-
tures: one for holding the data, and one for pointer indirec-
tion. In addition to the preprocessing stage, this has the obvi-
ous disadvantage that we have to pack the data densely and
construct a pointer table at the same time: this is difficult to
implement on the GPU using shader programming model,
since it does not allow controlled scatter operations, nor does
it allow a read/write access to a global variable for keeping
track of the current position of the data written to the global
array holding the densely packed data (the global variable
is used for constructing the pointer table when packing the
adjacency data).

4.4. Deformable Objects

For deformable objects with constant topology, the vertex
coordinates have to be updated at every animation step and
vertex-data in the GPU needs to be updated. This update can
be done depending on where the animation is performed. If
the animation is performed on the CPU, then the new vertex
locations need to be reloaded to the GPU at every step. This

c© The Eurographics Association 2010.

21

E.D. Diktas & A.V. Sahiner / ID-Based Rendering of Silhouettes on GPU

can reduce the performance considerably if animation rate
is high and amount of data to be transferred to the GPU is
high. An alternative would be to perform the animation on
the GPU and render the new vertex-locations directly to the
texture. This rendering processes is simple for the texture
storing the 3 vertex-coordinates for each triangle, because
we know all vertex location in advance. For the textures stor-
ing the adjacency information, we do not need to do anything
since the topology is fixed.

For ID-list storage method: if topology of the deforming
object changes then updating the adjacency information on
the GPU would be very difficult because the adjacency-list
of every vertex would change and rendering this changing
information would require a controlled scattering operation.
This scattering operation could be performed via geometry-
shaders. But the limited number of primitives of the geom-
etry shader step combined with the difficulties of coordinat-
ing the outputs of different geometry-shader threads running
in parallel makes this a hard problem. However, NVIDIA’s
CUDA could be a solution to this problem, but how this can
be done is outside the scope of our work.

In case only vertex-coordinates are stored (second type of
texture), then topology change won’t be any problem as long
as the number of triangles remains fixed. However, if the
number of triangles changes, the vertex-coordinate render-
ing problem becomes a little bit more involved but can still
be solved since we do not perform any dense data packing
which involves appending individual lists of varying length.
The scattering operation can be still be encoded in geome-
try shader and is independent of the parallel threads because
we do not have to combine lists of varying lengths into a
single global list. All locations where the coordinates of the
vertices are to be written can be predefined since they are
compact and fixed.

The two methods clearly show the difference between per-
formance and ease of implementation for both cases. Fol-
lowing the discussions above, it is easy to see that the sec-
ond method, where only the 3 vertex locations of each tri-
angle is stored seems to be most flexible and easy way to
encode the information for rendering the silhouettes. That is
why we chose this method over the other method to render
the silhouettes.

5. Tests and Results

We implemented our algorithm in GLSL using OpenGL. As
an example we performed a simple test, where an object
is assumed to be deformable and all of the preprocessing
steps are performed on the CPU and the extracted silhouette
is drawn as lines. This method is compared to our method,
where we loaded the triangle data to the GPU at every frame
and compared the performance of both methods. The simu-
lations are performed on a dual-core computer with 3 GHz
processor (single-core implementation) and NVidia GTX-
295 GPU.

For the teapot model with 6K, 25K and 61K triangles and
Stanford Dragon models (up to and including 200K trian-
gles) our method rendered at an average rate of about 21 FPS
at 1400× 900 resolution although there is a huge amount
data transferred from CPU to the GPU. The same frame rate
observed with different number of triangles can be explained
with many texture-accesses and texture-caching, hence the
method is bound by GPU memory access speed. For the
dragon model with 870K triangles it dropped to 6 FPS. A
snapshot of the silhouettes extracted from a teapot model
(61K triangles) using our method is given in Fig. 3

Figure 3: Teapot model (61K).

Figure 4: Bunny model (70K).

We also implemented the conventional CPU-based
method where the objects are assumed to be deformable and
topology-changing (worst-case), so at every rendering step
the whole object is reprocessed by performing (1) vertex-
welding, (2) making its normals consistent and (3) extracting
the silhouette with the brute-force method. We did not im-
plement a hierarchy-based method for silhouette-extraction
since the hierarchy construction step itself would be more
expensive than the brute-force method. The CPU-results are
summarized in Table 1.

c© The Eurographics Association 2010.

22

E.D. Diktas & A.V. Sahiner / ID-Based Rendering of Silhouettes on GPU

Figure 5: Dragon model (200K).

Model GPU-FPS CPU-FPS CPU-Preprocess
Bunny-70K 22 1.9 474.7 ms
City-19K 29 4.8 182.8 ms
Dragon-200K 23 0.7 1454.0 ms
Kitchen-72K 22 2.0 434.8 ms
Teapot-6K 21 8.6 108.5 ms
Teapot-25K 21 4.8 189.2 ms
Teapot-61K 21 2.6 345.0 ms

Table 1: Performance of extracting silhouettes with repro-
cessing at every rendering step on CPU.

6. Conclusion and Future Work

The proposed method is a pure GPU-based silhouette-
rendering method: it does not require any pre-processing
steps and does not need any accelerated extraction step every
time view-point or geometry is changed. For static scenes
and deformable objects with non-varying topology a vari-
ation of this method can be used to accelerate the effec-
tiveness of this GPU-based silhouette-rendering method. But
care must be taken to encode triangle-adjacency information.
For this we used two textures: one for pointer-indirection and
the other for storing the adjacency data in a dense format.
For deformable objects with varying topology, the method
using the texture storing the vertex-coordinates for every tri-
angle is more appropriate since no complex appending for
dense data packing needs to be done. In case animation is
performed on the GPU, it is more feasible to output the new
vertex locations directly to the texture due to bandwidth lim-
itations between GPU and CPU.

Comparing the performance of the CPU-based method we
can see the effectiveness of the proposed method. The advan-
tage of this method over any Z-buffer based method is that it

does not require any threshold value to compare against the
difference between depth-values of the neighboring pixels
which is difficult to adjust in perspective projection. There-
fore our method is robust compared to Z-buffer methods.

As part of our future work we plan to optimize this method
for special cases (constant topology and/or geometry) as
well as use CUDA to construct the complementary data
structures.

Acknowledgements

This work is developed at and supported by Adeko Tech-
nologies and also by Turkish State Planning Org. (DPT)
TAM Project no. 2007K120610.

References
[AMHH08] AKENINE-MÖLLER T., HAINES E., HOFFMAN N.:

Real-Time Rendering 3rd Edition. A. K. Peters, Ltd., Natick,
MA, USA, 2008. 2

[CM02] CARD D., MITCHELL J. L.: Non-photorealistic render-
ing with pixel and vertex shaders. In In Direct3D ShaderX, Word-
ware (2002), Wordware Publishing, Inc, pp. 319–333. 2

[Dec96] DECAUDIN P.: Cartoon-Looking Rendering of 3D-
Scenes. Tech. Rep. 2919, INRIA Rocquencourt, June 1996. 2

[Her99] HERTZMANN A.: Introduction to 3d non-photorealistic
rendering: Silhouettes and outlines. In Non-Photorealistic Ren-
dering, SIGGRAPH Course Notes (1999). 2

[IFH∗03] ISENBERG T., FREUDENBERG B., HALPER N.,
SCHLECHTWEG S., STROTHOTTE T.: A developer’s guide to
silhouette algorithms for polygonal models. IEEE Computer
Graphics and Applications 23 (2003), 28–37. 2

[JC01] JOHNSON D. E., COHEN E.: Spatialized normal come
hierarchies. In I3D ’01: Proceedings of the 2001 symposium
on Interactive 3D graphics (New York, NY, USA, 2001), ACM,
pp. 129–134. 3

[SGG∗00] SANDER P. V., GU X., GORTLER S. J., HOPPE H.,
SNYDER J.: Silhouette clipping. In Siggraph 2000, Computer
Graphics Proceedings (2000), Akeley K., (Ed.), ACM Press /
ACM SIGGRAPH / Addison Wesley Longman, pp. 327–334. 3

[ST90] SAITO T., TAKAHASHI T.: Comprehensible rendering of
3-d shapes. SIGGRAPH Comput. Graph. 24, 4 (1990), 197–206.
2

c© The Eurographics Association 2010.

23

E.D. Diktas & A.V. Sahiner / ID-Based Rendering of Silhouettes on GPU

Figure 6: City model (19K).

Figure 7: Kitchen model (72K).

c© The Eurographics Association 2010.

24

