
EG UK Theory and Practice of Computer Graphics (2009)
Wen Tang, John Collomosse (Editors)

An Edge-based Approach to Adaptively Refining a Mesh for
Cloth Deformation

T. J. R. Simnett S. D. Laycock A. M. Day

School of Computing Sciences, University of East Anglia
Norwich, NR4 7TJ, UK

{t.simnett|s.laycock|a.day}@uea.ac.uk

delivered by

EUROGRAPHICSEUROGRAPHICS

D LIGITAL IBRARYD LIGITAL IBRARY
www.eg.org diglib.eg.org

Abstract
Simulating cloth in real-time is a challenging endeavour due to the number of triangles necessary to depict the
potentially frequent changes in curvature, in combination with the physics calculations which model the deforma-
tions. To alleviate the costs, adaptive methods are often employed to refine the mesh in areas of high curvature,
however, they do not often consider a decimation or coarsening of areas which were refined previously. In addition
to this, the triangulation and consistency checks required to maintain a continuous mesh can be prohibitively time
consuming when attempting to simulate larger pieces of cloth. In this paper we present an efficient edge-based
approach to adaptively refine and coarsen a dynamic mesh, with the aim to exploit the varied nature of cloth
by trading the level of detail in flat parts for increased detail in the curved regions of the cloth. An edge-based
approach enables fast incremental refinement and coarsening, whereby only two triangles need updating on each
split or join of an edge. The criteria for refinement includes curvature, edge length and edge collisions. Simple
collision detection is performed allowing interactions between the cloth and the other objects in the environment.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling

1. Introduction

The role of cloth in computer graphics has increased in the
last decade, especially with character animation for films
and games. Many methods have been used to simulate cloth
and clothing, often focusing on the visual appearance and
the physical properties. A high degree of fidelity has already
been achieved for off-line applications, however, simulating
realistic cloth remains an expensive endeavour, even when
considering recent advances in computer hardware. One can
sacrifice detail to achieve an interactive cloth simulation with
a coarse mesh relatively easily, but to simulate detailed cloth
interactively or even just to accelerate off-line computations
additional techniques must be employed.

Interactions between the cloth and other surfaces in the
environment complicates its shape, typically resulting in a
multitude of curves, ripples and planar sections. Regions of
high curvature require more points and polygons to ensure
a reasonably accurate approximation which increases the
computation time. Conversely, largely planar regions require

less detail and can be simulated relatively cheaply. Adap-
tive meshes aim to exploit the varied nature of cloth by trad-
ing the level of detail in flat parts for increased detail in the
curved regions of the cloth, where it is required. The mesh is
refined typically by subdividing the cloth surface comprising
of triangles or quads.

In this paper, we present an edge-based adaptive refine-
ment approach applied to a triangular mesh where the sub-
division is the result of splitting the edges in the mesh.
The criteria for edge splitting are important and depend on
the application. However, curvature, edge length and edge
collisions are suitable criteria for cloth modelling. Trian-
gle subdivision schemes such as bisection, 1-to-4 splits and√

3-refinement have been used previously [VL03] [LV05].
A common difficulty concerning triangle subdivision is
that one must frequently either build a conforming mesh
that bridges successive layers or deal with the resulting T-
junctions that occur in the mesh. The proposed edge-based
strategy ensures the mesh is always conforming and that it

c© The Eurographics Association 2009.

DOI: 10.2312/LocalChapterEvents/TPCG/TPCG09/077-084

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/LocalChapterEvents/TPCG/TPCG09/077-084

Simnett et al. / Edge-based Deformable Cloth

can be used directly. The triangles present in the mesh are
subdivided into two, three or four further triangles based on
the status of its three edges. Internally each triangle can be
in one of eight states, these states do not allow T-junctions
to form. The refinement is recursively defined whereby each
edge has two child edges; triangles serve as containers to in-
ternal edges and triangles on the next level. In order to pre-
serve the regularity of triangulation, we only allow further
subdivision of edges and therefore subdivision of internal tri-
angles when the complete 1-to-4 split has taken place. Edges
function as length preserving springs but are also very useful
for facilitating cross-springs for bending forces. A split edge
does not contribute any force to the connected particles, it
becomes inactive and its child edges automatically take over
the work of calculating edge length and cross spring forces.

The paper is organised as follows: Section 2 discusses pre-
vious work, focusing on adaptive simulations. Section 3 de-
tails our contribution, Section 4 showcases the results and
Section 5 concludes the paper.

2. Previous Work

Cloth simulation has been researched for both real-time and
offline applications with many different methods developed
for refining a mesh which strive for a more computation-
ally efficient implementation. An interesting generic method
for incremental mesh adaptation which supports any triangle
refinement rule such as 1-to-4 split or

√
3-refinement was

presented in [VL03]. Their method was based on a hierar-
chy of semi-regular meshes, requiring a conforming mesh
to be constructed that bridges different layers of the mesh
using triangles from the highest available resolution. Direct
updates to the conforming mesh alleviated the need to re-
build it. It was used in three applications, a physically based
cloth simulation, real-time terrain visualisation and proce-
dural modelling. View dependent criteria for refinement,
which includes distance, are important for terrain visualisa-
tion, where subdivision should only occur for the area of the
mesh in view. However, with cloth simulations the shape is
of most importance and therefore we will also employ curva-
ture, as in other adaptive cloth simulations [VB05] [LV05].

Thomaszewski et al. presented a method to model consis-
tent bending using co-rotational subdivision finite elements
in order to correctly simulate the folding and buckling be-
haviour of cloth [TWS06]. They compared the compression
of a real fabric cylinder with simulated ones. Their method
produced a very good likeness to the real one. In compar-
ision using a standard simple bending model, the fold pat-
terns were different to the real sample, also the patterns com-
pletely changed using a finer mesh with the simple model.
Their method is not suitable for real-time simulations but
achieves excellent realism. Volkov and Li found that fine
wrinkles observed in the non-adaptive simulation were miss-
ing from their adaptive one, these fine wrinkles were at-
tributed to buckling behaviour which cannot be detected by

the curvature based criterion [VL03]. Mujahid et al. mention
the possible use of stretching as a refinement criteria, though
they did not link this to its use with buckling [MKM∗04]. We
propose to simulate buckling by an additional edge splitting
criterion, this is detailed in Section 3.5.

The use of adaptive methods to simulate cloth introduces
problems which are particularly prevalent when the mesh de-
forms. Care is needed to preserve the cloth’s physical prop-
erties to avoid visually distracting artefacts around the sub-
division seams. Villard and Borouchaki presented an adap-
tive method to allow the mechanical system to behave with-
out any constraint related to a uniform mesh. New points
are added to the mesh based on local curvature at that point.
Four elements are subdivided into sixteen around the point
creating eight new active nodes and eight virtual nodes. This
becomes more complicated at successive refinements, some
virtual nodes become active and the number of new nodes
varies in order to preserve the warp/weft structure. The adap-
tive simulation and uniform simulation over a sphere pro-
duce almost identical results as shown by a superimposed
image of the two final meshes together, nonetheless the sim-
ulation time is improved by as much as six times [VB05].
However, a major limitation of the approach is that the re-
finement could not be reversed.

Etzmuß et al. presented a particle system that adaptively
generates new particles whenever they are necessary in or-
der for collisions to be correctly handled. This allowed them
to perform fast and accurate simulations with coarse meshes.
Virtual points applied forces to the mesh by springs but were
not integrated fully into the simulation as their position was
calculated from edge collision and was only valid for one
time step [EEHS00]. Previously, non-active points had been
used for correct collision handling [HH98]; savings were re-
alised by not having to simulate those points. The non-active
points are inserted half way along edges in a quad mesh and
also in the centre of each quad. The constraint that a uniform
mesh can only bend along predefined lines was effectively
removed and the cloth could bend as required. The mesh
was able to drape over edges of objects accurately although
there is noticeable stretching as a result of the non-active
points being moved to resolve collisions. They concluded
that either edge rest lengths must be adapted or the non-
active points must influence the simulation to overcome the
stretching; however, they did not resolve this. Sifakis et al.
presented a hybrid simulation of deformable solids, which
did not suffer from the above problems although it was not
accomplished in real-time. Their framework allowed embed-
ding arbitrary sample points into a mesh for handling colli-
sions, plasticity and fracture without the need for complex
remeshing. Hard bindings constrain a particle to the barycen-
tric coordinates of their location, having no degrees of free-
dom they redistribute forces applied to their parents and are
used to deal with T-junctions. A soft binding connects a sim-
ulated particle to a hard binding target location enabling two-

c© The Eurographics Association 2009.

78

Simnett et al. / Edge-based Deformable Cloth

way interaction between the particle-based system and the
mesh-based framework [SSIF07].

Hardware has moved towards the increased use of multi-
core processors where data sharing becomes complicated,
since simultaneous data writes must not be allowed. Mu-
jahid et al. effectively used OpenMP to implement a cloth
simulation with adaptive refinement and coarsening in par-
allel. Load balancing was an important feature to this and
it improved simulation times by up to 32% when run-
ning on 8 cores even without considering cache coherency
[MKM∗04]. Their simulation is slower for early iterations,
where a higher density mesh is used and is then coarsened
in flat areas as the simulation progresses. It would be advan-
tageous to simulation times if a coarse mesh could be used
from the onset, this strengthens the case for using collisions
as a refinement criteria.

Zhang and Yuen presented a fast cloth draping simulation
using multilevel meshes, by dividing the process into sev-
eral phases. The whole mesh is subdivided after each phase,
thereby increasing the detail of the mesh. After each phase
the mesh is closer to its final position [ZY01]. This is only
suitable for speeding up cloth in draping situations where
the cloth has a final resting position. The time chosen to
enter the next phase is crucial; once the coarser mesh has
reached its balanced position, the final shape cannot be im-
proved noticeably by further subdivision. Advancing phases
too quickly will cause the performance gains of this method
to be lost, so a balance must be struck between quality versus
speed.

Figure 1: Various subdivision Schemes, Left: Bisection,
Middle: 1-4 Split, Right:

√
3-refinement.

The
√

3-refinement rule is where vertices are inserted into
triangle face centres; this results in up to six child triangles
with each child having two parents. Figure 1 shows this and
two more refinement rules, child triangles are coloured blue.
Li and Volkov applied it to clothes on an animated charac-
ter [LV05]. A conforming mesh was extracted from a hierar-
chy, with adaptation taking 87ms and the simulation taking
1.2 seconds on average per step for 12k triangle adaptive
meshes. Their adaptive simulation used more triangles than
the non-adaptive one but was of higher quality.

An interesting alternative to adaptive simulations, but
highly related, are subdivision surfaces where the surface
of a mesh is subdivided, typically to increase the detail for
rendering and lighting without imposing significant costs on

storage and animation for large meshes. This can therefore
be applied to coarse cloth simulations to improve the vi-
sual quality without increasing the cost of the simulation.
Curved PN-triangles are a good example of a generic method
that can be performed in hardware and is applied to tri-
angles [VPBM01]. Three sided cubic Bézier patches form
each curved PN-triangle, coefficients are calculated such that
neighbouring patches match together perfectly without the
need for adjacency information. Each patch is specified by
only the triangle’s three vertices and their normals. Lorenz
and Döllner presented a dynamic refinement strategy using
geometry shaders on the GPU with an incremental multi-
pass scheme [BS05]. Subdivision surfaces may be of lim-
ited use for cloth which is not often considered by itself.
Typically, the simulation involves complex interactions with
other objects which occur as a result of collisions. There-
fore, one possible difficulty is that the rendered surface may
intersect the object even if the coarse cloth mesh does not.

Large adaptive meshes can present additional challenges
to remain efficient. The memory architecture of the com-
puter must be taken into account where out-of-core storage
is needed. Large terrain models in [VL03] exploited the sub-
division connectivity of the adaptive mesh by storing related
data in each data block, their hierarchical storage layout out
performed linear storage by more than an order of magni-
tude. Typically only each 100th data request resulted in disk
access.

3. Method

In this section we first present a brief overview of our cloth
simulation followed by our main contributions. We explain
the steps and processes that enable edge refinement and
coarsening. We explore the critera used to trigger adaption
and finish by detailing our state based retriangulation ap-
proach.

3.1. Cloth Simulation

To simulate the deformations of the cloth as forces are ex-
certed upon it a mass-spring system is employed. The cloth
is constructed from vertices, defined by point masses, which
are connected by springs. Mass-spring systems are popular
for their ease of implementation and for real-time perfor-
mance [DB99]. However, they can suffer from stability and
accuracy problems. Parameters must be carefully tailored to
the situation and often by trial and error. Provot was the first
to explore the use of mass systems for Cloth, in particular
dealing with the unrealistic behaviour which resulted from
over stretching of springs. To overcome this, Provot utilised
a dynamic inverse procedure to correct the lengths of super-
elongated springs [Pro95], we perform one iteration of this
at each simulation step. We use Verlet integration to numer-
ically integrate Newton’s equations of motion for the cloth
vertices (masses), where velocity is derived from the current

c© The Eurographics Association 2009.

79

Simnett et al. / Edge-based Deformable Cloth

and previous positions. Forces are internal to the cloth, gen-
erated by Hooke’s law type linear springs.

The following list details the steps of the simulation com-
bining the cloth simulation, collision detection and adaptive
mesh effectively together. These steps must be performed at
run-time:

1. Spring Force Calculation and Accumulation
2. Numerical Integration
3. Edge Length Constraining and Refinement
4. Point-Object Collision
5. Edge-Object Collision and Refinement
6. Surface Normal Calculation
7. Curvature Based Edge Refinement
8. Re-triangulation

3.2. Edge Refinement

Figure 2: Edges (grey), Vertices (blue) and Triangles (yel-
low) for lowest detail level constructed from a small base
mesh. Notice that there is exactly three times the number of
edges than triangles, two opposite edges between two adja-
cent triangles form edge pairs.

A Base Mesh of triangles is loaded and used to construct
the Vertices, Edges and Triangles that make up the Adaptive
Mesh. Memory for successive levels of the adaptive mesh
can be preallocated before the simulation begins, when this
memory is exceeded dynamic allocation occurs at runtime if
required for further refinement. Dynamic allocation imposes
only a singularly occuring time penalty for each new ver-
tex, edge or triangle as the memory is not released until the
simulation has ended. Edges are defined in an anti-clockwise
order around each triangle where there is exactly three times
the number of edges as triangles. Our approach relies on a
large amount of connectivity information for the mesh, it is
the key to the ease of refinement and coarsening. The con-
nectively information is built into the new edges and trian-
gles as the mesh is adapted. This permits a very efficient al-
gorithm for refining and coarsening which overshadows the
expense of maintaining the connectivity.

Pairs of edges are connected together between two adja-
cent triangles with references to each other, they share two
vertices and have opposite directions. Figure 2 illustrates the
topology for a small mesh of six triangles, eighteen edges
and seven vertices. For each of the edge pairs only a single
reference to one of them needs to be stored. Operations such
as splitting or joining a stored edge are automatically mir-
rored in the other edge. Edges also store references to the
adjacent triangle on their ’left’, as viewed from above, to aid
in triangulation and a reference to the third vertex on that tri-
angle to be used for cross-springs. Cross-springs are defined
over each pair of edges using the 3rd vertex references, see
Figure 3. Edges that lie on the boundary of the mesh do not
have any connected oppositely directed edge, therefore there
is no pair to form a cross-spring and splitting or joining only
requires one triangle to be retriangulated. Both edges and
cross-springs are linear springs; they apply forces to vertices
that try to restore their lengths. The rest lengths are stored as
part of the edges, they are calculated from material coordi-
nates which ensures correct responses as the cloth deforms.

New vertices are added to the centre of edges as they are
split with each vertex being assigned the average position,
previous position and material coordinates of the two adja-
cent vertices. An approach which incorporates multiple re-
finement criteria is prone to excessive work due to poten-
tially rapid changes in refinement and coarsening caused
by conflicting criteria. For example, an edge collision could
cause an edge to split but the curvature criteria could poten-
tially immediately rejoin the edges, this could also happen
with the edge length criteria. To overcome this, a time limit
is imposed which starts after a split such that a rejoin event
is prevented for a number of simulation steps after the split
event.

Figure 3: Left: An edge pair (blue) and its cross-spring
(red), Right: Cross-springs shown for the centre triangle’s
three edges.

3.3. Edge Coarsening

In a dynamic simulation of cloth, it is important to be able
to reverse the refinement in the mesh in regions where the
detail is no longer required. We perform coarsening as the
opposite to edge refinement, two child edges are rejoined
together such that they and the centre vertex become inac-
tive and their parent edge becomes active once again. In our

c© The Eurographics Association 2009.

80

Simnett et al. / Edge-based Deformable Cloth

incremental approach, a split edge is prevented from being
rejoined if its child edges are themselves refined.

3.4. Curvature Driven Refinement and Coarsening

Figure 4: a) Normals for two vertices shown for the high-
tlighted edge on part of a mesh. b) Curvature is defined lo-
cally as the angle between the two normals, calculated by
the dot product.

We define curvature locally to each edge by the angle be-
tween the two surface normals of the two vertices at the end
of each, this is shown in Figure 4. When the angle is greater
than an adjustable amount, the edge is split; conversely when
it is less than another amount the edge can be rejoined.
Smooth normals are calculated for each vertex from the av-
erage of normals to adjoining triangles, each vertex stores a
small list of adjacent triangles for this purpose. The vertex
normals are also used for rendering using OpenGL’s smooth
shading model.

3.5. Length Driven Refinement

Figure 5: Buckling behaviour simulated by Edge Compres-
sion triggering local refinement, the new centre vertex of the
split edge is free to move and it generates wrinkles in the
cloth.

As previously mentioned, we aim to simulate buckling
behaviour in the cloth by using edge length as a criterion
for refinement. We constrain edge lengths to overcome the
cloth stretching unrealistically, but when it is compressed
real cloth will tend to wrinkle and fold. A coarse mesh can-
not do this easily, therefore refinement is needed to allow the

adaptive mesh to buckle. When two vertices are pushed to-
gether by stronger forces than the edge spring can oppose,
the edge becomes in compression. We define a minimum
percentage of length, any edge with less than this length is
split, see Figure 5. Now that the edge is replaced by two
child edges, the cloth can start to buckle enabling more vi-
sually pleasing folds to be generated.

3.6. Collision Driven Refinement

Figure 6: Collision between an edge and object (sphere)
triggering local refinement, the new centre vertex is pro-
jected onto the object’s surface.

We perform simple collision detection between the cloth
and objects such as spheres and cylinders, we do not con-
sider self-collision. Point-object collision detection and re-
sponse when combined with a coarse mesh and a relatively
small object will result in the cloth falling through the object
or the object sticking out of the cloth in places. A solution
to this is to perform full polygon-polygon collision detection
and response but this is much more computationally expen-
sive. If the fast point-object detection is to be used, the mesh
must have enough vertices required to resolve the collision
correctly. We therefore want to cause refinement in the adap-
tive mesh around the area of the collision, even if the cur-
vature is not sufficient to cause edge splitting. Firstly, Point-
Object collision is performed between the Mesh and objects,
anticipating that many polygon-object collisions will be re-
solved by this step. Vertices in collision are projected out
onto the object’s surface and can smoothly slide over it. Col-
lision detection between the edges of the mesh and the ob-
jects is performed. The edges deemed in collision are split;
the new centre vertex is then projected out of the surface as
before, see Figure 6. At first glance this method appears to
suffer from stretching, the sum of two child edges lengths
will be greater than their parent’s length. However, as the
new vertex is fully integrated into the cloth simulation suc-
cessive iterations will quickly restore the edge lengths and
the effect is not noticeable.

3.7. State Based Re-triangulation

A triangle’s internal configuration is represented by its state,
there are eight main states as shown in Figure 7. State 0 rep-

c© The Eurographics Association 2009.

81

Simnett et al. / Edge-based Deformable Cloth

Figure 7: Triangle states showing allowed internal config-
urations. Edge splits cause retriangulation based on state
transitions.

resents a triangle with no subdivision whilst State 7 repre-
sents a triangle that has completed a full 1-to-4 split and may
have many internal triangles at higher levels. Retriangulation
of a triangle involves calculating a state transition, given a
triangle’s current state and the status of its three edges, its
new state can be determined quickly. The triangle is then re-
configured into that state and update tags are reset to false
(previously set by the edge splits and joins). Retriangulation
is a costly operation, it is not ideal to immediately perform
it on the two adjacent triangles when an edge is refined or
coarsened, this will lead to situations where triangles are re-
triangulated up to three times instead of once. Therefore, the
retriangulation is delayed until the final simulation step, at a
point where all edges are up to date and no furthur changes
are known to be required before rendering. Another consid-
eration is that the regularity of the mesh must be preserved
as it is subdivided. To support this, before an edge is refined
it must be validated to ensure that the split is permitted. To
enable this, child triangles are assigned to State -1, this is of
identical configuration to State 0 but further subdivision is
prevented. Once a complete 1-to-4 split occurs and the tri-
angle has reached State 7, all four child triangles have their
states set from State -1 to State 0 allowing for subsequent re-
finement. Our approach is fast and incremental, a mininum
number of vertices and triangles are used to refine the mesh
at each step.

4. Results

The approach was implemented in C++ and OpenGL. The
results presented here were performed on a 2.66 Ghz In-

Level Tri. Vert. Simulation Render
0 32 25 0.0109 ms 0.0033 ms
1 128 81 0.0547 ms 0.0132 ms
2 512 193 0.3131 ms 0.0545 ms
3 2048 417 1.3895 ms 0.2326 ms
4 8192 865 5.6428 ms 1.0036 ms
5 32768 1761 24.0329 ms 3.9151 ms
6 131072 3553 91.0788 ms 13.5329 ms

Figure 8: Maximum triangle and vertex counts for the spec-
ified mesh level, corresponding simulation and rendering
times are given.

Mesh Transition Increase Level Decrease Level
Level 0 - 1 0.0164 ms 0.0096 ms
Level 1 - 2 0.0745 ms 0.0452 ms
Level 2 - 3 0.3396 ms 0.2044 ms
Level 3 - 4 1.3720 ms 0.7932 ms
Level 4 - 5 6.7124 ms 4.5453 ms
Level 5 - 6 27.0744 ms 16.7605 ms
Level: 0 - 5 8.5149 ms 5.5977 ms

Figure 9: Refinement and coarsening times for a whole
mesh for the specified level transitions.

tel Core i7 920 processor (only 1 core was used). The tim-
ings in the figures are for the whole mesh at specified lev-
els, these represent the absolute worst case for our adaptive
mesh, since in practice only parts of the mesh will refine to
a particular level during a simulation step. Figure 8 shows
the Simulation and Rendering time of a base mesh consist-
ing of thirty two triangles and the subsequent levels leading
to a refined mesh of over 131K triangles. Our results prior
to level 5 are very fast, enabling interactive frame rates. The
simulation part is the most computationally expensive, how-
ever, this could be approximated exploiting coherence be-
tween time steps to achieve interactive rates on meshes ca-
pable of refining to higher levels. Our Edge-based approach
was designed for local incremental change; nevertheless re-
finement for the whole mesh is fast, refining the mesh from
level 0 (32 triangles) to level 5 (32k triangles) required ap-
proximately 8.5ms. See Figure 9 for other transition times.

Performance of the adaptive mesh is directly related to
the objects it collides with, in particular the relative size
of the object compared to the size of the triangles in the
cloth. A high level of detail is required in the mesh to lay
on a small sphere, conversely the coarse base mesh may be
enough to lay upon a large sphere. The three criteria for edge
splitting allows the detail to automatically change to match
with the object that it is in collision with. This is illustrated
in Figure 10, the cloth is shaded using a colour scale cor-
responding to the subdivision level of each triangle. Also
the insert shows that our approach generates similar defor-

c© The Eurographics Association 2009.

82

Simnett et al. / Edge-based Deformable Cloth

Figure 10: Cloth after falling onto a cylindrical beam. The
image is rendered to show the subdivision levels, darker
colours represent the higher detail levels. Bottom-Right In-
sert: Uniform mesh shown for comparision.

mations compared to a uniform mesh. Our adaptive mesh
performs particularly well in that situation, where regions
in contact with the beam are heavily refined. As the cloth
slides off the beam, the mesh can then coarsen once again.
Figure 11 shows the time per simulation step, for 7 sec-
onds of the simulation with the maximum level set to four.
Initially the time per step is very fast, increasing as rapid
refinement is triggered by the collision. The time per step
does not exceed two milliseconds while the cloth is sliding
over the beam and then it gradually recovers as the cloth
becomes relatively flat again. The draping of the cloth on
a sphere can been seen in Figure 12. The results are il-
lustrated in the accompanying video at the following url:
http://www.urbanmodellinggroup.co.uk/ClothSim.wmv

Figure 11: Time Per Step for an adaptive simulation of
the Cloth falling onto and sliding off of a cylindrical beam,
aproximately 70 simulation steps are performed per second
in real-time. These times exclude collision detection.

5. Conclusion

In this paper, we have presented a fast edge-based adap-
tive mesh for cloth simulations which allows refinement and
coarsening dynamically based on edge length, curvature and

Figure 12: Cloth after falling onto a sphere, rendered with
smooth lighting.

collisions. The method is suitable for most situations where
a dynamic mesh is needed and can be extended for different
splitting criteria easily. Triangles are defined as being in one
of eight states and transitions can be calculated in a few in-
expensive operations. In the future we aim to apply our tech-
nique to the simulation of clothing on virtual human charac-
ters. The use of more sophisticated collision techniques will
be required to enable complex interactions to be calculated
efficiently. Also, it would be prudent to investigate the par-
allelisation of this approach to allow for more detailed cloth
while keeping it Real-Time.

References

[BS05] BOUBEKEUR T., SCHLICK C.: Generic mesh
refinement on GPU. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hard-
ware (2005), ACM New York, NY, USA, pp. 99–104.

[DB99] DESBRUN M., BARR A.: Interactive animation of
structured deformable objects. In In Graphics Interface
(1999).

[EEHS00] ETZMUSS O., EBERHARDT B., HAUTH M.,
STRASSER W.: Collision adaptive particle systems. In
Proceedings Pacific Graphics 2000 (2000), vol. 4.

[HH98] HOWLETT P., HEWITT W.: Mass-Spring Sim-
ulation using Adaptive Non-Active Points. In Com-
puter Graphics Forum (1998), vol. 17, Blackwell Syn-
ergy, pp. 345–353.

[LV05] LI L., VOLKOV V.: Cloth animation with adap-
tively refined meshes. In Proceedings of the Twenty-
eighth Australasian conference on Computer Science-

c© The Eurographics Association 2009.

83

http://www.urbanmodellinggroup.co.uk/ClothSim.wmv

Simnett et al. / Edge-based Deformable Cloth

Volume 38 (2005), Australian Computer Society, Inc. Dar-
linghurst, Australia, Australia, pp. 107–113.

[MKM∗04] MUJAHID A., KAKUSHO K., MINOH M.,
NAKASHIMA Y., MORI S., TOMITA S.: Simulating Re-
alistic Force and Shape of Virtual Cloth with Adaptive
Meshes and Its Parallel Implementation in OpenMP. In
Proceedings of international conference on parallel and
distributed computing and networks (PDCN2004) (2004),
pp. 386–91.

[Pro95] PROVOT X.: Deformation Constraints in a Mass-
Spring Model to Describe Rigid Cloth Behaviour. In
GRAPHICS INTERFACE (1995), CANADIAN INFOR-
MATION PROCESSING SOCIETY, pp. 147–147.

[SSIF07] SIFAKIS E., SHINAR T., IRVING G., FEDKIW

R.: Hybrid simulation of deformable solids. In Proceed-
ings of the 2007 ACM SIGGRAPH/Eurographics sympo-
sium on Computer animation (2007), Eurographics As-
sociation Aire-la-Ville, Switzerland, Switzerland, pp. 81–
90.

[TWS06] THOMASZEWSKI B., WACKER M., STRASSER

W.: A consistent bending model for cloth simulation
with corotational subdivision finite elements. In Proceed-
ings of the 2006 ACM SIGGRAPH/Eurographics sympo-
sium on Computer animation (2006), Eurographics Asso-
ciation Aire-la-Ville, Switzerland, Switzerland, pp. 107–
116.

[VB05] VILLARD J., BOROUCHAKI H.: Adaptive mesh-
ing for cloth animation. Engineering with Computers 20,
4 (2005), 333–341.

[VL03] VOLKOV V., LI L.: Real-time refinement and
simplification of adaptive triangular meshes. Visualiza-
tion, 2003. VIS 2003. IEEE (2003), 155–162.

[VPBM01] VLACHOS A., PETERS J., BOYD C.,
MITCHELL J.: Curved PN triangles. In Proceedings of
the 2001 symposium on Interactive 3D graphics (2001),
ACM New York, NY, USA, pp. 159–166.

[ZY01] ZHANG D., YUEN M.: Cloth simulation using
multilevel meshes. Computers & Graphics 25, 3 (2001),
383–389.

c© The Eurographics Association 2009.

84

