
EG UK Theory and Practice of Computer Graphics (2009)
Wen Tang, John Collomosse (Editors)

Simulation of X-ray Attenuation on the GPU

F. P. Vidal1, M. Garnier2,1, N. Freud3, J. M. Létang3 and N. W. John1

1School of Computer Science, Bangor University, Dean Street, LL57 1UT, Bangor, UK
2INSA-Rennes, 35043 Rennes, France

3CNDRI (Laboratory of Nondestructive Testing using Ionizing Radiation), INSA-Lyon, 69621 Villeurbanne, France.

delivered by

EUROGRAPHICSEUROGRAPHICS

D LIGITAL IBRARYD LIGITAL IBRARY
www.eg.org diglib.eg.org

Abstract

In this paper, we propose to take advantage of computer graphics hardware to achieve an accelerated simulation
of X-ray transmission imaging, and we compare results with a fast and robust software-only implementation.
The running times of the GPU and CPU implementations are compared in different test cases. The results show
that the GPU implementation with full floating point precision is faster by a factor of about 60 to 65 than the
CPU implementation, without any significant loss of accuracy. The increase in performance achieved with GPU
calculations opens up new perspectives. Notably, it paves the way for physically-realistic simulation of X-ray
imaging in interactive time.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Physically based modeling
I.3.7 [Computer Graphics]: Raytracing J.2 [Computer Applications]: Physics

1. Introduction

The simulation of X-ray imaging techniques such as radio-
graphy or tomography is extensively studied in the physics
community and different physically-based simulation codes
are available. Deterministic methods based on ray-tracing
are commonly used to compute direct images (i.e. images
formed by the X-ray beam transmitted without interac-
tion through the scanned object) of computer-aided design
(CAD) models. Ray-tracing provides a fast alternative to
Monte Carlo methods [FDLB06]. Such programs are very
useful to optimize experiment parameters, to conceive imag-
ing systems, or to take into account non-destructive testing
during the design of a mechanical structure [BCL02,LFP04].
However, even with fast ray tracing algorithms, the simula-
tion of complex X-ray imaging systems still requires very
long computation times and is not suitable for an interactive
use as would be required in a medical training tool.

Physics-based simulations are traditionally performed on
CPUs. However, there is a growing interest for general-
purpose computation on GPUs (GPGPU) and this has been
an active area of research some time [OLG∗07].

In this paper, we present an efficient simulation of X-ray
attenuation through complex objects, that makes use of the
capability improvement of today’s graphics cards. We also

compare the performance of this GPU approach with an ef-
ficient software-only implementation. To our knowledge this
is the first GPU-based X-Ray attenuation simulation. Such a
simulation tool can be deployed in medical virtual interac-
tive applications for training fluoroscopy guidance of nee-
dles, catheters and guidewires [VVH∗09], and can also be
useful to speed-up current physics-based simulation where
computational accuracy is critical.

The following Section gives an overview of the context
and objectives of this work. The implementation of our sim-
ulation scheme is described in Section 3. The results and
performance comparisons with a software-only implemen-
tation are given in Section 4. The last section discusses the
work carried out and provides directions for further work.

2. Context and objectives

To date, there are two different kinds of X-ray simulation
algorithms:

• probabilistic methods, based on Monte Carlo trials;
• determinist or analytic methods, based on ray-tracing

(these include the resolution of the Boltzmann transport
equation).

Monte Carlo simulations can produce very accurate X-ray
images, but they are computationally expensive, which pre-

c© The Eurographics Association 2009.

DOI: 10.2312/LocalChapterEvents/TPCG/TPCG09/025-032

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/LocalChapterEvents/TPCG/TPCG09/025-032

F. P. Vidal et al. / Simulation of X-ray Attenuation on the GPU

vents their use in any interactive applications. For example,
to simulate an image consisting of 106 pixels, with a noise
level of 1%, at least 1010 photons have to be cast (depend-
ing on the attenuation in the object). This would take days
of computation time if using only a single PC. This time
can be reduced using a cluster of PCs, a supercomputer, or
Grid computing. Pasciak et al. show the possibilities of per-
forming Monte Carlo simulations applied to radiation trans-
port using a field-programmable gate array (FPGA) [PF06].
However, so far no realistic object geometry is implemented.
One of the problems encountered is the fact that FPGAs can-
not be programmed using standard programming languages,
and low level design has to be used at the gate level.

Alternatively, the ray-tracing principle has been adapted
to X-ray simulation [IGJX98, FDLB06]. Here, all intersec-
tions between a ray and an object have to be considered and
radiation attenuation is computed by considering the thick-
ness penetrated by the ray going through the object char-
acterized by its density and attenuation coefficient. The 3D
scene is typically made up of objects described by trian-
gle meshes. The main reason to use triangle meshes is to
make the render process fast as many algorithms in real-
time 3D graphics have been developed for such geometry
representation, including polygon clipping and filling, etc.
and also the classic Z-buffer algorithm to remove hidden
faces. A modified version of the Z-buffer, known as the L-
buffer (for length buffer), can be used to store the length
of a ray crossing a given 3D object [FDLB06]. The simu-
lation of radiographic images from CT data sets has been
also reported [IGJX98, LKP00]. More recently, volume ren-
dering by ray-casting has been adapted to the realistic sim-
ulation of X-rays in a virtual reality environment [LKS∗07].
Ray-casting can also be used to implement a hybrid deter-
minist/probabilistic approach to compute the dose deposited
in cancerous and healthy tissues during radiotherapy treat-
ment [FLM∗07]. In this case, each voxel corresponds to a
cube characterized by its attenuation and energy-absorption
coefficients. Using this approach, the attenuation of the in-
cident X-ray beam is computed for each voxel traversed.
Laney et al. proposed a GPU simulation of based on vol-
ume rendering of unstructured data [LCM∗05]. Using a
3D texture, ray-tracing through voxel data is also possible
on GPU to simulate fluoroscopic images [VJG07]. In this
method, voxels are processed as parallelepiped boxes. Yan
et al. adapted GPU volume rendering by ray-casting to gen-
erate digitally reconstructed radiographs (DRRs) for image
guided radiation therapy (IGRT) [YRGY07]. The original
ray casting algorithm creates a high quality image by cast-
ing a ray for each pixel into the volume and compositing
the light reflected back to the viewer from a set of samples
along the ray [Lev88]. An alternative adaptation of GPU vol-
ume rendering to reconstruct DRRs is splatting [SBW∗07].
In splatting, voxels are “thrown” at the image in a forward
projection, forming a footprint, and the result is accumulated
in the image plane [Wes89]. The previous approaches to sim-

ulate X-ray images using GPU implementation all make use
of volume rendering.

The hypothesis of this work is that using GPUs can pro-
vide the real-time simulation of X-ray imaging techniques
from surface models and that the simulated results still have
all the required numerical accuracy. As the core building
block of this type of simulation is the ray tracing algorithm,
the work is focused on its implementation using GPUs and
comparison with a CPU implementation of the same method,
described by Freud et al. [FDLB06]. The scope of the vali-
dation of our GPU implementation is limited to the assess-
ment of the potential of GPUs to accelerate X-ray imaging
simulation and to provide accurate results. In this paper, we
consider test cases with a point source of monochromatic X-
rays, and homogeneous objects with triangle meshes. Only
the directly transmitted photons are simulated, using the X-
ray exponential attenuation law. Physically more realistic sit-
uations can be simulated in a straightforward manner by in-
troducing additional loops, to take into account polychro-
matic X-rays or focal spots causing geometric unsharpness
[DFKB00]. The simple case studied in this work also con-
stitutes the core calculation for more complex simulations
involving emission of secondary radiation, such as scattered
or fluorescence photons [FLB05], or emission of γ photons
by radiotracers in nuclear medicine applications.

3. Simulation algorithm

3.1. Attenuation law

The attenuation law, also called the Beer-Lambert law, re-
lates the absorption of light to the properties of the material
through which the light is travelling. The integrated form for
a monochromatic incident X-ray beam (i.e. all the incident
photons have the same energy) is:

Nout(E) = Nin(E)× e(−
R

μ(E,ρ(x),Z(x))dx) (1)

with Nin(E) the number of incident photons at energy E,
Nout(E) the number of transmitted photons and μ the linear
attenuation coefficient (in cm-1). μ can be seen as a proba-
bility of interaction by unit length. It depends on: i) E - the
energy of incident photons, ii) ρ - the material density of the
object, and iii) Z - the atomic number of the object material.

3.2. Overview

Specific algorithms can be implemented as shader programs
that will be executed directly on the GPU to replace the parts
of the fixed graphics rendering pipeline [Ros06]. A shader
program is twofold i) a vertex shader (or vertex program)
that substitutes major parts of the vertex operations of the
fixed function of the geometry processing unit, and ii) a
fragment shader (or fragment program) that substitutes ma-
jor parts of the fragment operations of the traditional fixed
function of the rasterization unit. Such programs are written
in a shading language such as the OpenGL shading language

c© The Eurographics Association 2009.

26

F. P. Vidal et al. / Simulation of X-ray Attenuation on the GPU

(GLSL) by the OpenGL Architecture Review Board. More
recently Nvidia released CUDA technology to use the stan-
dard C language to implement programs that run directly on
the graphics processor without the need of a graphics Appli-
cation Programming Interface (API).

The algorithm presented below has been implemented us-
ing GLSL. Figure 1 shows the simulation pipeline. The prin-

������������� �	
���
� ����������
���
�� ��������� ��������

��� ���� ��������� ����� �����

��� ���� �� ������

!����(FBO (Lp(i)))

!������(FBO (Lp(i)))

"�����(FBO (
∑

μ(i)Lp(i)))
���#� ��� �	 FBO (Lp(i))�

!������(FBO (Nin ∗ exp (−∑
μ(x)Lp(x))))

���#� ��� �	 FBO (
∑

μ(x)Lp(x))

!����(FBO (
∑

μ(i)Lp(i)))

Figure 1: Pipeline to compute the X-ray attenuation.

ciple of computing direct images is to emit rays from the
X-ray source to every pixel of the detector. For each ray,
the total path length through each object is determined using
geometrical computations. Finally, the attenuation of X-rays
for a given pixel is computed using the recorded path lengths
and X-ray attenuation coefficients. Eq. 1 can be written as
follows:

Nout = Nin × exp

(
−

i<ob js

∑
i=0

μ(i)Lp(i)

)
(2)

with ob js the total number of objects and Lp(i) the path
length of the ray in the ith object. It can be decomposed to
illustrate the different rendering passes:

1. compute and store the path length of every object, i.e.
Lp(i) in Eq. 2,

2. make use of the first pass to compute ∑i μ(i)Lp(i) in
Eq. 2,

3. make use of the second pass to compute the number of
transmitted photons using the attenuation law.

Multi-pass rendering algorithms are usually implemented
using a 2D texture attached to a framebuffer object (FBO), a
relatively new extension of the OpenGL API. This makes it
possible to render the 3D scene into a framebuffer that is not
displayed but saved into a 2D texture. For example, the ef-
fect is that the L-buffers computed during the first rendering
pass will never be written to the screen framebuffer. Using a
texture attachment, the result of that rendering pass is stored
into a 2D texture. During the second rendering pass, a rect-
angle of the size of the detector is displayed making use of
this texture to compute ∑i μ(i)Lp(i) in Eq. 2. Similarly, dur-
ing the final rendering pass, a rectangle of the size of the
detector is displayed making use of this texture to compute
the X-ray attenuation. Storing intermediate rendering passes
in textures attached to FBOs is a compulsory stage.

Floating point precision is necessary in the L-buffer, and
this can be obtained via off-screen rendering (floating point
texture attached to a FBO).

Finally, displaying the results of the simulation is not al-
ways necessary. For example, one application is the opti-
mization of experimental parameters in the imaging chain.
For this purpose, it is necessary to simulate large series of
images with no need to visualize every image. The X-ray at-
tenuation image is therefore stored as a floating point texture
attached to a FBO.

3.3. Computation of path length

To evaluate Eq. 4, a shader program is used to compute
the L-buffer for every object (Lp(i)). The result is stored in
FBO(Lp(i)). The X-ray source and detector parameters are
taken into account using the OpenGL projection and mod-
elview matrices: the projection matrix is set to match the
X-ray detector’s geometrical properties and the modelview
matrix is set so that the camera position matches the X-ray
source position (see Figure 2).

The naive approach to compute the path length (Lp) of
the ray in objects consists of determining and sorting the in-
tersection points. This can be handled using the well-known
depth-peeling technique [Eve01], that is used to render semi-
transparent polygonal geometries without sorting polygons.
However this is a multi-pass technique, which is a computa-
tional overhead. To efficiently perform path length compu-
tations, we use the algorithm presented by Freud et al for
GPU programming. This method is more effective in our ap-
plication as it only requires a single pass and no intersection
ordering is needed. By convention in OpenGL, triangles of
a mesh are described so that their respective normal vectors
are outward. Consider the geometry setup described in Fig-
ure 3. This is a 2D representation of a scene made up of a

c© The Eurographics Association 2009.

27

F. P. Vidal et al. / Simulation of X-ray Attenuation on the GPU

Virtual detector

X−ray source

scanned object
CAD model of the

Figure 2: Radiographic simulation.

Image plane

X−ray source

d4
d3

d2

d1

viewVec

μd
Nin

Nout

N4

N3

N1

N2

Figure 3: Principle of the computation of path length.

disk in which a rectangular hole has been made. Let μd be
the attenuation coefficient of the disk. In this case, the path
length is given by:

Lp = (d2 −d1)+(d4 −d3) (3)

where d1 to d4 are the distances from the X-ray source to
the successive intersection points of the ray with the trian-
gle mesh. We can observe in Figure 3 that the ray penetrates
into the disk when the dot product between viewVec and Ni,
the normal of the triangle at the intersection point, is posi-
tive. Conversely, the ray leaves an object if the dot product
between viewVec and Ni is negative. The path length of the
ray in a given object can be written as follows:

Lp = ∑
i
−sgn(viewVec ·Ni)di (4)

where i refers to the ith intersection found in an arbitrary

order, di is the distance from the X-ray source to the inter-
section point of the ray with the triangle, sgn(viewVec ·Ni)
stands for the sign of the dot product between viewVec and
Ni. This dot product and di must be computed for each inter-
section point. These operations can be efficiently achieved
on the GPU using a fragment program. During the rendering
stage, hidden surface removal algorithms such as Z-buffer
and back-face culling are disabled so that every triangle of
the polygon mesh is taken into account. In the vertex pro-
gram, we first compute the viewing vector (viewVec). The
position of the vertex being handled by the geometry pro-
cessing unit is stored and will be used later in the fragment
program to compute the distance of the intersection to the
X-ray source. The normal vector of the vertex is stored and
will be automatically interpolated to be used later in the frag-
ment shader. In the fragment shader, we evaluate the sign
of the dot product between viewVec and the normal vector
(Ni). Note that the calculation of Lp using Eq. 4 raises ro-
bustness issues, notably when rays encounter triangle edges
or vertices, or when the normal vector Ni is perpendicular to
the viewing direction viewVec. These issues are addressed
in [FDLB06] in the case of a CPU implementation, and we
propose a method to address these on the GPU (see Sec-
tion 3.5).

To evaluate Eq. 4, fragment values computed from over-
lapping intersections at a given pixel of the detector (i.e. in-
tersection points found along the corresponding ray) must be
added to each other into the framebuffer. In practice the cur-
rent value that is computed by the fragment program needs
to be combined with the value that is already in the frame-
buffer. This operation is known as blending. It is not possi-
ble to perform the blending operation within the fragment
program alone because a fragment program does not give
any access to the current value of the fragment in the frame-
buffer. Without blending, the new fragment will overwrite
the value in the framebuffer. The only way to avoid this
is to enable the OpenGL built-in blending function. Using
the blending function glBlendFunc(GL_ONE, GL_ONE), it
is possible to update the value that is already in the frame-
buffer by adding the new value computed by the fragment
program. Figure 4(a) shows the L-buffers corresponding to
Figure 4(b).

(a) L-buffer. (b) Radiographic image.

Figure 4: Examples of 1024×768 images computed from a
polygon mesh consisting of 202,520 triangles.

c© The Eurographics Association 2009.

28

F. P. Vidal et al. / Simulation of X-ray Attenuation on the GPU

3.4. Computation of the X-ray attenuation

An intermediate stage is required to compute ∑i μ(i)Lp(i)
in Eq. 2. This second pass is stored into another FBO,
called FBO(∑i μ(i)Lp(i)). A textured rectangle of the
size of the X-ray detector is drawn using the texture
that is attached to FBO(Lp(i)). To compute ∑i μ(i)Lp(i),
glBlendFunc(GL_CONSTANT_ALPHA, GL_ONE) is used
with glBlendColor(1.0, 1.0, 1.0, μ(i)).

Similarly, in the final stage, a textured rectangle of the
size of the X-ray detector is rendered to compute the to-
tal attenuation (Nout in Eq. 2). This can be achieved by a
fragment program that makes use of the texture attached to
FBO(∑i μ(i)Lp(i)). Figure 4(b) shows the computed image
from the L-buffer of Figure 4(a).

3.5. Correcting Artefacts

When intersections occur between a ray and an object, there
should be the same number of incoming and outgoing in-
tersections. However, some intersections may be duplicated
when the ray hits triangle edges or vertices. Also, uncertainty
occurs when the normal vector Ni is perpendicular to the
viewing direction. In these cases, black or white pixel arte-
facts in the final image will appear depending on the orien-
tation of the normal vector. Figure 5(a) shows such a X-ray
image from a complex scene without artefact correction. It

(a) Without filtering. (b) With adaptative filter-
ing.

Figure 5: Effect of the artefact correction filtering.

makes use of a human model made up of the ribs, spine,
sternum, diaphragm, lungs, cartilage, liver and skin.

However, it is possible to detect for each pixel if such arte-
facts will occur and correct them using image processing.
Indeed, Eq. 5 should always be null for every pixel:

n

∑
i=1

sgn(viewVec.Ni) (5)

with n the number of intersections between the ray and the
processed triangle mesh. The fragment shader used to com-
pute the L-buffer can be extended so that the sign of the dot

product is stored into the green channel of the L-buffer tex-
ture. The sum operation in Eq. 5 is performed by taking ad-
vantage of the blending function used during the L-buffer
computations. Before using any value of the L-buffer, we
check the validity of the green component. If the green com-
ponent is not null, then the L-buffer value is invalid. To avoid
the artefact, it is replaced by the average value of the valid
pixels within its direct neighbourhood. Figure 5(b) shows
the X-ray image corresponding to Figure 5(a) when artefact
correction is enabled.

4. Results and discussion

Radiographs usually represent the negative images of the at-
tenuation, e.g. highly attenuating materials such as bones are
in white and gas in black. Figure 6 presents such medical im-
ages. CT datasets have been segmented to extract polygon
meshes. The hip model is composed of the bowels, fat, mus-
cle and bones. Note that the hands are visible on the top of
the image. The foot model is made of muscle and bones only.
In [VVH∗09], we show how to integrate our GPU imple-

(a) Hip. (b) Left foot. (c) Left foot.

Figure 6: Simulated radiographs.

mentation within an interactive training simulator for percu-
taneous transhepatic cholangiography procedures. It makes
use of dynamic data that simulates the patient respiration.

To further assess the performance of our method, we first
compare the computation time with a CPU implementation.
Then, we compare computed images with a reference image
simulated using the CPU implementation. The images have
been computed on GPUs using full floating point precision
(128 bits per pixel) or half floating point precision (64 bits
per pixel). Three GPUs from NVIDIA have been selected: i)
GeForce 8800 GTX, a high-end gaming graphics processor,
ii) GeForce 8600M GT, a graphics processor for laptops, and
iii) Quadro FX 3500, a high-end professional graphics pro-
cessor for workstations. The test results of the CPU imple-
mentation are based on an Intel Core 2 Duo E6600 (2.4 Ghz)
and 2 GB of RAM with 64-bit Linux operating system.

4.1. Computation time

The computational performance is given in number of gen-
erated frames per second (FPS). Figure 4(b) shows an exam-
ple of the computed images. Using test objects with 11,102,
47,794, 202,520 and 871,414 triangles, the running times of

c© The Eurographics Association 2009.

29

F. P. Vidal et al. / Simulation of X-ray Attenuation on the GPU

 10

 100

 1000

25
6x

19
2

34
1x

25
6

51
2x

38
4

10
24

x7
68

13
65

x1
02

4

N
um

be
r o

f f
ra

m
es

pe
r s

ec
on

d
(F

P
S

)

Number of pixels

Performance comparison with direct display (no transfer to RAM)

(1) CPU implementation
(2) NVIDIA GeForce 8800 GTX (full-float)
(3) NVIDIA GeForce 8800 GTX (half-float)
(4) NVIDIA GeForce 8600 GS (full-float)
(5) NVIDIA GeForce 8600 GS (half-float)
(6) NVIDIA Quadro FX 3500 (half-float)

(a) Number of radiographs computed in one second, from a poly-
gon mesh consisting of 11,102 triangles, with respect to the image
resolution, with direct display (no transfer to RAM).

 10

 100

 1000

25
6x

19
2

34
1x

25
6

51
2x

38
4

10
24

x7
68

13
65

x1
02

4

N
um

be
r o

f f
ra

m
es

pe
r s

ec
on

d
(F

P
S

)

Number of pixels

Performance comparison with transfer to RAM

(1)
(2)
(3)
(4)
(5)
(6)

(b) Idem Fig. 7(a) but with transfer of each frame from GPU to
RAM.

 10

 100

 1000

11
10

2

47
79

4

20
25

20

87
14

14

N
um

be
r o

f f
ra

m
es

pe
r s

ec
on

d
(F

P
S

)

Number of triangles of the object

Performance comparison with direct display (no transfer to RAM)

(1)
(2)
(3)
(4)
(5)
(6)

(c) Number of radiographs (1024 × 768 pixels) computed in one
second, with respect to the polygon mesh resolution, with direct dis-
play (no transfer to RAM).

 10

 100

 1000

11
10

2

47
79

4

20
25

20

87
14

14

N
um

be
r o

f f
ra

m
es

pe
r s

ec
on

d
(F

P
S

)

Number of triangles of the object

Performance comparison with transfer to RAM

(1)
(2)
(3)
(4)
(5)
(6)

(d) Idem Fig. 7(c) but with transfer of each frame from GPU to
RAM.

Figure 7: Number of radiographs of the whole object, with 21.5% detector coverage, computed in one second.

the GPU and CPU implementations to generate a predefined
animation of 1000 frames were recorded. We also simulated
images of increasing resolutions. The average cover of the
detector area by the test object is 21.5%.

When assessing the performance, two different scenarios
can be identified as regards the data transfer between GPU
and CPU, which can be a bottleneck. In many cases, there is
no need to transfer any data from the GPU to the CPU (see
Figures 7(a) and 7(c)). For example, to simulate a radiograph
taking into account the finite size of the X-ray tube focus
(causing geometric unsharpness), many projections have to
be carried out with a collection of source points represent-
ing the focal spot. These image contributions only have to
be integrated to obtain the final image. The integration can
be done in the same FBO using the blending function. If ev-
ery simulated image has to be transferred to the RAM (see

Figures 7(b) and 7(d)), the time required to transfer the data
may become the limiting factor. A test case confirmed this
assumption when small numbers of polygons are considered.
For objects with a high number of triangles, the data transfer
is a limited expense in the overall computation time.

It can be observed in Figure 7(a) that when the number of
pixels becomes very high, the number of FPS tends to de-
crease linearly with a slope equal to −1 in the logarithmic
graph. It corresponds to the fact that the fragment calcula-
tions become the prevailing component in the computation
time, and the number of FPS is then inversely proportional
to the number of pixels. The same type of behaviour is ob-
served with respect to the number of triangles of the mesh
(Figure 7(c)). When the number of triangles increases, the
number of FPS also tends to decrease linearly with a slope
of −1, meaning that the vertex calculations prevail in the

c© The Eurographics Association 2009.

30

F. P. Vidal et al. / Simulation of X-ray Attenuation on the GPU

computation time. In the case of objects with 871,414 trian-
gles, the GPU implementation using full floating point pre-
cision is up to 61 times faster than the CPU implementation.
With the least powerful GPU, the performance obtained us-
ing the highest resolution triangle mesh still enables interac-
tive frame rates.

When every frame is transferred from the GPU to the
RAM, the number of FPS tends to decrease linearly with
a slope equal to −1 in the logarithmic graph and the num-
ber of FPS is then inversely proportional to the number of
pixels (see Figure 7(b)). The number of FPS tends to be
constant when the number of triangles increases, unless the
number of triangles is very high (see Figure 7(d)). It cor-
responds to the fact that i) the time required to transfer the
data, which is constant at a given pixel resolution, becomes
the limiting factor when small numbers of polygons are con-
sidered, and ii) for objects with a high number of triangles,
the data transfer becomes negligible. In the case of an im-
age with 1024× 768 pixels, transferring every frame to the
RAM, the performance is up to 9 times slower for objects
with 11,102 triangles and 2 times slower for objects with
871,414 triangles.

4.2. Accuracy

To validate the accuracy of our GPU implementation, we
simulate an image with the same physical parameters on ev-
ery platform and we compare intensities pixel by pixel with
a reference image computed with the CPU implementation
(see Figure 8). The gray square in Figure 8(a) shows the re-
gion of the scanned object that has been chosen for the accu-
racy comparison. Comparing the results with the full image
would underestimate the average error because of the high
proportion of rays which do not intersect the object. In the
chosen region, 99.42% of the rays are attenuated by the ob-
ject. Figure 9 shows clos-up diagonal profiles of the images
computed with the GPUs and with the CPU. It illustrates
that simulations performed on GPUs are relatively close to
the reference simulation. Profiles extracted from the images
computed with full floating point precision accurately match
the profile from the reference image. This contrasts with
computations performed using half floating point precision.

To quantify inacuracy, disparity measurements using the
pixelwise relative error were computed for each test image
computed on GPUs with respect to the reference image (see
Table 1). The error metrics is computed pixelwise as follows:

δ(i, j) =
|A(i, j)−B(i, j)|

B(i, j)
(6)

with A the image computed on GPUs and B the reference
image. These results confirm our hypothesis that a fast and
accurate GPU implementation of X-ray simulation can be
implemented with full floating precision. Using half floating
point precision, the accuracy of computations is somewhat
reduced but the relative error stays below 1.2%.

(a) The gray rectangle indicates the reference im-
age used for accuracy tests.

(b) Reference image used for accuracy compar-
ison (1024× 768 pixels). See Figure 9 for pro-
files corresponding to the gray line.

Figure 8: Test image used in accuracy comparison.

 2.275

 2.28

 2.285

 2.29

 2.295

 2.3

 2.305

 2.31

 20 40 60 80 100 120 140 160 180

In
te

ns
ity

Pixel

CPU implementation using 64-bit floating point precision
GPU implementation using 32-bit floating point precision
GPU implementation using 16-bit floating point precision

Figure 9: Close-up of profiles diagonal profiles correspond-
ing to Figure 8(b).

Table 1: Disparity measurements.

Maximum Average
Precision GPU error error
full float GeForce 8800 GTX 2.55e−3 2.19e−6

half float GeForce 8800 GTX 1.20e−2 1.36e−3

full float GeForce 8600M GT 2.55e−3 2.22e−6

half float GeForce 8600M GT 1.20e−2 1.36e−3

half float Quadro FX 3500 1.12e−2 1.36e−3

c© The Eurographics Association 2009.

31

F. P. Vidal et al. / Simulation of X-ray Attenuation on the GPU

5. Conclusion

The simulation of X-ray transmission imaging using com-
mon CPU-based approaches is highly time consuming. The
use of the GPU allows the simulation to be accelerated con-
siderably. Our implementation has proved to be both fast and
accurate.

Acknowledgements

This work has been partially funded by the UK Department
of Health under the Health Technology Devices programme
and commissioned by the National Institute for Health Re-
search (NIHR). This is independent research and the views
expressed are those of the authors and not necessarily those
of the NHS, the NIHR or the Department of Health.

References

[BCL02] BONIN A., CHALMOND B., LAVAYSSIÈRE B.:
Monte-Carlo simulation of industrial radiography images
and experimental designs. NDT & E International 35, 8
(2002), 503–510.

[DFKB00] DUVAUCHELLE P., FREUD N., KAFTAND-
JIAN V., BABOT D.: A computer code to simulate x-ray
imaging techniques. Nuclear Instruments and Methods in
Physics Research B 170, 1-2 (2000), 245–258.

[Eve01] EVERITT C.: Interactive Order-Independent
Transparency. White paper, NVIDIA OpenGL
Applications Engineering, 2001. Available
at http://developer.nvidia.com/object/
Interactive_Order_Transparency.html (accessed
27th March 2008).

[FDLB06] FREUD N., DUVAUCHELLE P., LÉTANG

J. M., BABOT D.: Fast and robust ray casting algorithms
for virtual X-ray imaging. Nuclear Instruments and Meth-
ods in Physics Research B 248, 1 (2006), 175–180.

[FLB05] FREUD N., LÉTANG J.-M., BABOT D.: A hy-
brid approach to simulate X-ray imaging techniques, com-
bining Monte Carlo and deterministic algorithms. IEEE
Transactions on Nuclear Science 52, 5 (2005), 1329–
1334.

[FLM∗07] FREUD N., LÉTANG J. M., MARY C.,
BOUDOU C., FERRERO C., ELLEAUME H., BRAVIN A.,
ESTÈVE F., BABOT D.: Fast dose calculation for stereo-
tactic synchrotron radiotherapy. In Proceedings of the
29th IEEE EMBS (2007), pp. 3914–3917.

[IGJX98] INANC F., GRAY J. N., JENSEN T., XU J.:
Human body radiography simulations: development of a
virtual radiography environment. In Physics of Medical
Imaging (1998), vol. 3336, pp. 830–837.

[LCM∗05] LANEY D., CALLAHAN S. P., MAX N.,
SILVA C. T., LANGER S., FRANK R.: Hardware-
accelerated simulated radiography. In IEEE Visualization
2005 (VIS’ 05) (2005), pp. 343–350.

[Lev88] LEVOY M.: Display of surfaces from volume
data. IEEE Computer Graphics and Applications 8, 3
(1988), 29–37.

[LFP04] LÉTANG J.-M., FREUD N., PEIX G.: Signal-to-
noise ratio criterion for the optimization of dual-energy
acquisition using virtual X-ray imaging: application to
glass wool. Journal of Electronic Imaging 13, 3 (2004),
436–449.

[LKP00] LAZOS D., KOLITSI Z., PALLIKARAKIS N.: A
software data generator for radiographic imaging investi-
gations. IEEE Transactions on Information Technology in
Biomedicine 4, 1 (2000), 76–79.

[LKS∗07] LI N., KIM S.-H., SUH J.-H., CHO S.-H.,
CHOI J.-G., KIM M.-H.: Virtual x-ray imaging tech-
niques in an immersive casting simulation environment.
Nuclear Instruments and Methods in Physics Research B
262 (2007), 143Ű–152.

[OLG∗07] OWENS J. D., LUEBKE D., GOVINDARAJU

N., HARRIS M., KRÜGER J., LEFOHN A. E., PURCELL

T. J.: A survey of general-purpose computation on graph-
ics hardware. Computer Graphics Forum 26, 1 (2007),
80–113.

[PF06] PASCIAK A. S., FORD J. R.: A new high speed so-
lution for the evaluation of monte carlo radiation transport
computations. IEEE Transactions on Nuclear Science 53,
2 (2006), 491–499.

[Ros06] ROST R. J.: OpenGL Shading Language, 2nd ed.
Addison-Wesley Professional, 2006.

[SBW∗07] SPOERK J., BERGMANN H., WANSCHITZ F.,
DONG S., BIRKFELLNER W.: Fast DRR splat render-
ing using common consumer graphics hardware. Medical
Physics 34, 11 (2007), 4302–4308.

[VJG07] VIDAL F. P., JOHN N. W., GUILLEMOT R. M.:
Interactive physically-based x-ray simulation: CPU or
GPU? In Medicine Meets Virtual Reality 15 (2007),
pp. 479–481.

[VVH∗09] VILLARD P., VIDAL F. P., HUNT C., BELLO

F., JOHN N. W., JOHNSON S., GOULD D. A.: Simula-
tion of percutaneous transhepatic cholangiography train-
ing simulator with real-time breathing motion. In Pro-
ceeding of the 23rd International Congress of CARS -
Computer Assisted Radiology and Surgery (2009).

[Wes89] WESTOVER L.: Interactive volume rendering. In
Proceedings of the 1989 Chapel Hill workshop on Volume
visualization (1989), pp. 9–16.

[YRGY07] YAN H., REN L., GODFREY D. J., YIN F. F.:
Accelerating reconstruction of reference digital tomosyn-
thesis using graphics hardware. Medical Physics 34, 10
(2007), 3768–3776.

c© The Eurographics Association 2009.

32

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CurlzMT
 /DfW5Printer
 /DfW5PrinterBold
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /FelixTitlingMT
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrenchScriptMT
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /ImprintMT-Shadow
 /Kartika
 /Latha
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /MaiandraGD-Regular
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /Oc_020
 /Oc_021
 /Oc_030
 /Oc_200
 /Oc_210
 /Oc_211
 /Oc_220
 /Oc_221
 /Oc_251
 /Oc_260
 /Oc_270
 /OCRAbyBT-Regular
 /OCRAExtended
 /OCRB10PitchBT-Regular
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Pristina-Regular
 /Raavi
 /RageItalic
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /Shruti
 /SureThingDVDSymbolsII
 /SureThingSymbols
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Ucs_020
 /Ucs_021
 /Ucs_030
 /Ucs_200
 /Ucs_210
 /Ucs_211
 /Ucs_220
 /Ucs_221
 /Ucs_251
 /Ucs_260
 /Ucs_270
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.001 842.000]
>> setpagedevice

