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Abstract

Building computer representations of real objects, which could be archaeological artifacts or planned buildings,
is a very active research area. Typically objects are represented in computer memory as a collection of geometric
primitives. In this paper we build on the concept of Image Manifolds, which we model in image space. This enables
us to model the appearance of an object essentially as a collection of images. We discuss one possible approach
to modelling image manifolds, which uses partial differential equations.

Categories and Subject Descriptors (according to ACM CCS): I.4.10 [Computer Graphics]: Image Representation

1. Introduction

The concept of an image manifold is one that has become in-
creasingly common in vision [BP94, LFHN98, DG05], and
recently to some extent in the graphics literature. Images,
which can be considered points in an high-dimensional im-
age space, of an object or environment undergoing a se-
ries of transformations (which are typically parameterised in
some way) are not randomly placed in image space. Instead
under certain circumstances these can be approximated as an
n-manifold, where n is the number of variables controlling
the image transformations, which we call an image manifold.
This mapping between the high-dimensional image space
and a lower dimensional sub-space has been particularly use-
ful in the area of vision [TP91,NNM96]. However develop-
ing efficient in-memory representations of image manifolds
has proven hard, and many researchers have used techniques
like PCA to simplify the representations. This is acceptable
if the intended use is recognition of images. However for the
purpose of synthesising images it proves to lose too many of
the details that make images appear realistic to human ob-
servers. A potential solution to this problem is to develop ex-
isting surface representation techniques to model these struc-
tures in image space directly, thereby exactly representing all
of the images that make up the manifold.

In this paper we present our work using PDE surfaces to
model a selection of image manifolds. In Section 2 we out-
line our approach, and discuss our solutions to the result-
ing PDEs. In Section 3 we illustrate several example images
from some of the image manifolds we are studying, and dis-

cuss some of their properties. We then test our model of
the image manifold by evaluating some previously unseen
points on this manifold, and visually inspecting the result-
ing images. In Section 4 we conclude with a discussion of
the these images, and future directions of study these have
opened.

Contributions

Our work forms part of a growing body of literature which
looks at the relationship between specific parameterised sets
of images and the corresponding structures these form in
image space [DG05, LFHN98, Ten98,WDCB05,HHLM07,
Ver06]. We see our work as making the following contribu-
tions:
• We extend existing surface modelling techniques, which
are typically oriented towards CAD style applications, to
model image manifolds. This provides a theoretical foun-
dation for producing visually plausible intermediate im-
ages on image manifolds, as opposed to existing heuristic
methods such as morphing.

• Using several example image manifolds we show anec-
dotally, using visual evidence, that our models of image
manifolds produce reasonable representations of image
manifolds.

2. Approach

Typically the computer graphics problem of modelling a 2-
D surface embedded in a 3-D space has been solved using
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one of several alternative methods. Of these methods, the
three that we are interested in are: polygon meshes, usually
triangles; NURBS [PT97]; and within the last few years, the
PDE surface method [UBW99].

For our work, we require a more general ‘manifold’
modelling technique, capable of modelling a structure
parametrised by p parameters in a n dimensional space. To
this end we have extended the standard definitions for PDE
surfaces, which is briefly outlined in the remainder of this
section.

2.1. PDE Surface

Initially here we will consider a 2-D parametric surface
X(u,v) in a 3-D space, which can be expressed as

X(u,v) = (x(u,v),y(u,v),z(u,v)) x,y,z ∈ R (1)

We now assume our surface to be periodic in v, and restrict
it to the finite domain ! = {u,v : 0 ≤ u ≤ 1;0 ≤ v ≤ 2"}.
We choose, as is usually the case [UBW99,DQ07], to use an
elliptic PDE. We therefore have that

(
#2

#u2
+$2

#2

#v2

)2

X(u,v) = 0, (2)

where $ is a “smoothing parameter”, which controls the
length over which the boundary conditions influence the in-
terior of the surface.

Existing work using the PDE surface method [UBW99]
has used the method of separation of variables [CB78] to
find an analytic solution to the PDE above, for which a com-
putationally efficient implementation is also possible.

Given that Eqn. (2) is elliptic, the boundary conditions we
have imposed are continuous, and the surface is “closed”, we
use the following general solution:

X(u,v) = A0(u)+
∞
%
n=1

[An(u)cos(nv)+Bn(u)sin(nv)] , (3)

where A0, An and Bn are vector valued functions as follows:

A0 = a00+a01u+a02u
2+a03u

3, (4)

An = an1e
$nu+an2ue

$nu+an3e
−$nu+an4ue

−$nu, (5)

Bn = bn1e
$nu+bn2ue

$nu+bn3e
−$nu+bn4ue

−$nu. (6)

Values for the vector constants a00, . . . , a03, an1, . . . , an4,
bn1, . . . , and bn4 are determined by Fourier analysis of
the boundary conditions imposed at u = 0 and u = 1. In
the examples presented here we have opted to truncate the
Fourier series at N = 6, and introduce a remainder term,
R(u,v). This approach is commonly seen in the literature
[UBW99,KUW04] for cases where the boundary cannot be
expressed precisely without an infinite series. For brevity,
images with N = 8, N = 10, etc., are omitted here.

The image manifolds we study are not however 2-D sur-
faces embedded in a 3-D space. Typically images intended
for viewing by humans have upwards of 300,000 pixels,
each made up of 3 colour channels. In this case the surfaces
we are dealing with are now embedded in a much higher di-
mensional space. We can extend the solution we outlined to
deal with this scenario – one simply has to provide suitable
boundary conditions for each dimension.

Many image manifolds are not parametrised by just two
parameters and so we are required to extend our definition
of the PDE surface to higher dimensional surfaces:
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X(u,v,w) = 0. (7)

In cases with further additional parameters we can extend
Eqn. (7) further still, although in the interest of brevity this
is not discussed here.

However, the analytic solution previously outlined for
Eqn. (2) cannot be used for Eqn. (7). We have therefore
developed a suitable numeric scheme, discussed further in
[WUL07].

3. Initial results

(a) Knight (b) Teapot

Figure 1: Sample images from the image manifolds studied

Fig. 1 illustrates two examples of source images from the
image manifolds we have been studying. These provide us
with examples of features likely to be found in many dif-
ferent kinds of images. The features that we are particularly
interested in are the source of the images (real or ray-traced),
the transformations range from rotations and translations of
a single object to illumination of a complex object. In the
case of the Knight dataset each of the boundary conditions
was formed from 9 images. For the teapot our boundary con-
ditions were specified by 20 images.

In the Knight set the images vary in illumination, being
illuminated from a range of points that form a hemisphere
around the subject. We use ' and ( of the hemisphere as the
u and v parameters for our image manifold, with u in [0,1],
and v in [0,2"]. In the teapot dataset u is a vertical translation
of the image in [0,1], whilst v in [0,2"] is a rotation around
the vertical axis.
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Some images we have generated from our models of the
image manifolds are shown in Fig. 2. In almost all cases the
images that we present are quite some distance in parame-
ter space from the original sample images we used to build
our model of the image manifold. This leads to some images
containing large, obvious visual inconsistencies when com-
pared with the original images. In these cases this results
from our sample images being too far apart in image space.
This in turn results in our models of the image manifold not
accurately representing the manifold’s actual path through
image space. In the case of the Knight however we find that
the path our model has taken in image space produces much
more visually plausible results, and indeed our results here
certainly seem comparable to those produced in the original
Lightstage work from which the Knight images are taken.

This difference in success of the results can be explained
through estimations of the curvature of the two correspond-
ing image manifolds. In the case of the Knight we believe to
have a much lower curvature in image space, and hence have
sufficient samples that our models of the surface correspond
closely with that of the true path in image space.

4. Conclusion
The early results we have presented here are not sufficient
to draw major conclusions from. The results here still show
great promise, and as such further study is now proposed,
looking at various as yet unconsidered factors. We intend to
consider:
• Required number of Fourier modes, values of the param-
eter $ and the order of the PDE surfaces.

• The distance between sample images in both parameter
space and image space, in particular through the estima-
tion of the manifold’s curvature.

• Better estimates of the derivatives of our surfaces.
• Other surface modelling techniques.

Currently all of our techniques assume that the underlying
surface must pass through the points we have sampled. This
is not always the case, because of for example the noise in-
troduced by the CCD. This implies that a noisy image in im-
age space is not simply a point as we have previously been
assuming, but a point within high dimensional probability
density field, centred around an unknown noise-free image.
In order to work around this it is proposed that we move
from a surface fitting approach which interpolates between
images on the manifold, to a system whereby we opt to fit
an approximate surface that is constrained in some fashion
to pass near our sample images.

Throughout this work we have made one major assump-
tion: image manifolds are continuous and differentiable. Up
to this point we have not explicitly considered the fact that
this will not always be the case. To convince yourself of this,
consider a simple example of a previously occluded object
passing into view. The first image where this new object ap-
pears will now be quite some distance in image space from

the last image in which it was occluded. Amore subtle exam-
ple where this may be a problem is that of rotation of a part
of an object (e.g. the spout or handle of a teapot) which is
mostly unlike the rest of the object. In this case a very small
change in parameter space may result in a large movement
in image space. Nonetheless there are still many interesting
questions to be answered – “In these degenerate cases can
a reasonable approximation be made by assuming they are
both continuous and differentiable?”. Furthermore a general
study of the topological properties of complex real image
manifolds is a vast and interesting area for potential work.

Specular highlights and occlusions are just some of the
many things found in complex real-world scenes that we
have illustrated here. In our on-going work we have several
other simpler synthetic datasets to illustrate important gen-
eral features of images, as well as several other real-world
sets.

We have so far chosen to only consider RGB colour im-
ages in this work, which is neither perceptually linear, nor
immune to problems with variations in illumination. On the
other hand the CIE L∗a∗b∗ [Fai98] colour space is probably
a more suitable colour space to use for this problem due to
its perceptually linear nature, and larger gamut.

To date our work has not focused on optimisation or real-
time rendering, and although it would probably be possible
to accelerate rendering of lower resolution images from the
PDE method using the analytic solution on graphics hard-
ware this has not been addressed. It should also be noted
that the analytic solution is only appropriate to the 2-D man-
ifolds, and many of our data sets are of a much higher di-
mension than this.
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Figure 2: Sample images from the image manifolds studied
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