EG UK Theory and Practice of Computer Graphics (2008)
Ik Soo Lim, Wen Tang (Editors)

Interactive Out-of-Core Exploration of Large Volume
Datasets in VTK-Based Visualisation Systems

A. Agrawall, J. Kohout', G.J. Clapworthyl, N.J.B. McFarlane', F. Dongl, M. Viceconti?, F. Taddei’, D. Testi®

! Department of Computing & Information Systems, University of Bedfordshire, Luton, UK
?Laboratorio di Tecnologia Medica, Istituti Ortopedici Rizzoli, Bologna, Italy
3BioComputing Competence Centre, SCS, Casalecchio di Reno, Italy

Abstract

The Visualisation ToolKit (VTK) has become a very popular tool for scientific data visualisation and it is used
as a base in many existing visualisation systems. Scientific datasets produced nowadays by complex scientific
simulations or by modern data acquisition techniques (e.g., airborne laser scanning) are often too large to be
processed in one piece on commodity hardware, as simply storing it requires several giga-bytes. Although VTK
provides a means for processing such datasets, their straightforward use is rarely efficient. This paper describes
an efficient interactive exploration of large volume datasets under the Multimod Application Framework (MAF)
[VZT*07], a VTK-based system; however, the proposed approach can be adopted for other systems with ease.
It exploits various techniques such as multi-resolution layout and a volume bricking scheme to access data at
an interactive rate. A user can explore the dataset by specifying a region of interest (ROI), which leads to the
generation of a more accurate data representation inside the ROL. If even more precise accuracy is needed inside
the ROI, nested ROIs are used. Experimental results show that the user can interactively explore large volume
datasets such as the Visible Human male (1760x1024x1878, with a file size of 3.15 GB) on a commodity platform.

Categories and Subject Descriptors (according to ACM CCS): 1.3.6 [Computer Graphics]: Graphics data structures

and data types

1. Introduction

Sophisticated data-acquisition techniques and complex sim-
ulations are producing volume datasets of continually in-
creasing size. These datasets often contain billions of vox-
els and, therefore, several gigabytes are required just to store
them, which quickly surpasses the virtual address limit of
current 32-bit PC platforms. At the highest resolution, they
cannot be visualised in one piece on a single commodity
computer. In the past, various solutions for visualisation of
large volume datasets were proposed - a common feature is
that they require an excellent cooperation of rendering algo-
rithm and data retrieval algorithm.

Multiresolution techniques for rendering large volume
data [LHJ99, DKCO00, EHK*06] construct a hierarchical
data structure (e.g., octree [LHJ99], multilevel pyramid
[PPL*99]) in the preprocessing. The lowest level in this
structure (i.e., leaves) keeps the original data, whilst higher
levels (inner nodes) contain low-resolution approximations

(© The Eurographics Association 2008.

of the data. The lower levels are stored on hard disk and
transferred to main memory on demand [SCESLO02] at run-
time. These methods typically display the volume in a region
of interest at a high resolution and the volume away from
that region at a progressively lower resolutions. This makes
interactive visualisation particularly challenging because the
generation of the next image may have to wait for a signif-
icant amount of time while the data required is read from
disk.

Parallel visualisation is also very often used to address
the issues of large data processing [CMCL06, SMW*05,
ABM™01, PPL*99]. In the overwhelming majority, it ex-
ploits a divide-and-conquer strategy that involves the sub-
division of the large volume dataset into parts small enough
to be processed on a single processor, successive or simulta-
neous processing (e.g., visualisation) of these parts, and the
merging of outcomes to produce the final result. The exist-
ing approaches differ in how they subdivide and merge the

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org

2 A. Agrawal et al. / Interactive Out-of-Core Exploration of Large Volume Datasets in VTK-Based Visualisation Systems

data (which may be quite complex, especially for transparent
objects [MCEF94]). These approaches are often combined
with multiresolution techniques.

There are also approaches that use wavelet compression
to reduce the size of the volume data and, thus, make the re-
tention of the entire dataset in memory possible or speed up
the transmission of data over the network in parallel visuali-
sation [GWGS02, SMW*05].

Although many of the existing approaches are able to vi-
sualise, or at least to explore, volume datasets of tens of GB
in real-time on a cluster of workstations (e.g., [CMCLO06]),
their integration into already existing visualisation systems
might be complex, or even impossible, for the following
reasons. First, these approaches are usually problem spe-
cific, e.g., they are suitable for visualising medical volume
datasets using only an iso-surface volume rendering tech-
nique [PPL*99], while visualisation systems typically aim to
be able to visualise volume datasets of any kind using a va-
riety of volume rendering techniques [EHK*06, PB07], and
most systems also provide the user with volume smoothing
and segmentation operations, colour mapping functions, etc.
Further, these systems were very often designed to run only
on a single computer.

Examples of these systems are as follows. MayaVi
Data Visualizer [Ram01] and MVE-2 [FVS06] are general-
purpose scientific-visualisation environments organised
around the data-flow paradigm. 3D Doctor [DD], and Mim-
ics [Mim] are 3D visualisation applications that excel in im-
age processing activities such as segmentation. 3D Slicer
[PLSKO6] is an application mostly focused on neurosurgery
problems. Other systems, such as OsiriX [Ros04] and the
Multimod Application Framework (MAF) [VZT*07] are
specialised in the processing of medical images.

Researchers using these systems have three options: not
to process large volume datasets at all; to redesign their sys-
tem (which involves modifying many volume operations and
the system core); or to exploit an alternative, less-efficient,
approach that is, however, easier to adopt.

This paper proposes an efficient out-of-core method for
the exploration of large volume data that is suitable for data-
flow oriented visualisation systems (especially, for those
based on VTK [SMLO04]). It exploits multiresolution repre-
sentations of the data (we use a low-resolution version for
representing the entire dataset, and a higher-resolution ver-
sion only for visualising smaller regions of interest) com-
bined with a fast compression by skipping "empty" voxels,
which usually occupy a large proportion of the space in med-
ical datasets, such as National Library of Medicine’s Visi-
ble Human dataset [VH]. We also perform a reorganisation
of voxels in the preprocessing stage to optimise disk access
at runtime. The approach allows the user to roam through
multi-gigabyte volume datasets in almost real time, with low
memory requirements.

The paper is organised as follows. The background of the
research is given in Section 2, and the proposed hierarchi-
cal bricked partition-based out-of-core strategy is explained
in Section 3. Results achieved with the proposed technique
are presented in Section 4. Finally, in Section 5, concluding
remarks and future work are described.

2. Background

The Visualisation ToolKit (VTK) [SML04] is an open
source, freely available software system for 3D computer
graphics, image processing, and visualisation used by thou-
sands of researchers and developers around the world. VTK
consists of a C++ class library, and several interpreted inter-
face layers including Tcl/Tk, Java, and Python. VTK sup-
ports a wide variety of visualisation algorithms including
scalar, vector, tensor, texture, and volumetric methods; and
advanced modelling techniques such as implicit modelling,
polygon reduction, mesh smoothing, cutting, contouring,
and Delaunay triangulation.

In a VTK application, the process of visualisation can be
described in terms of data flow through the so-called visu-
alisation pipeline. The visualisation pipeline consists of pro-
cess objects that operate on input data and transform it into
output data. These objects can be divided into three main
categories: sources, filters and mappers. The source objects
have no input and have at least one output. The filters have
at least one input and one output and the mappers have at
least one input but no output. An example of typical VTK
pipeline is depicted in Figure 1a.

The majority of process objects hold the data in main
memory, which makes the processing of large datasets us-
ing a common approach impossible. VTK, therefore, pro-
vides a streaming support to process larger datasets - see
Figure 1b. Using the streaming technique, a dataset is pro-
cessed piece by piece: a subset (piece) is loaded into mem-
ory, processed through classic VTK visual pipeline and the
obtained results are decimated (e.g., subsampled) and suc-
cessively combined together so they can be visualised. If we
consider roaming through a large volume dataset, this solu-
tion suffers, however, from inefficiency as it needs to pro-
cess the entire dataset whenever the region of interest (ROI)
changes.

Despite its limitations, VTK is a base for many visuali-
sation systems, e.g., MayaVi [Ram01], 3D Slicer [PLSKO06]
and OsiriX [Ros04], while in others, it can be used option-
ally, e.g., MVE-2 [FVS06].

The Multimod Application Framework (MAF) [VZT*07]
is another visualisation system based on VTK (and other
specialised libraries). This framework is designed to sup-
port the rapid development of biomedical software. It allows
the development of a multimodal visualisation application
in which different views of the same data are synchronised,

(© The Eurographics Association 2008.

A. Agrawal et al. / Interactive Out-of-Core Exploration of Large Volume Datasets in VTK-Based Visualisation Systems 3

Datasources | Datasources |
vtkimageReader vtkimageReader
A 4
Data filters
Datafilters vtkimageGaussianSmooth
vtkimageGaussionsmooth s 4
Data decimation
vtkimageResample
Datamappers A A
vtkVolumeRayCastMapper Data Streamer
| vtkMemoryLim:‘:rmageDatiStmer |
Renderer +
tkRenderer Datampppers
ALt vikVolumeRayCastMapper
Y
Renderer
a) b } | vtkRenderer |

Figure 1: VTK visualisation pipeline without (a) and with
(b) streaming support. An example for visualising volume
data is given in italics.

and when the position of an object changes in one view, it is
updated in all the other views.

There are four main components of MAF:
VirtualMedical Entities (VME), which are the data
objects; Views, which provide interactive visualisation of
the VMESs; Operations, which create new VMEs or modify
existing ones; and the Inter faceElements, GUI components
that define the user interface of the application. Special
operations are importers, which import and convert into
VME almost any biomedical dataset (e.g., RAW, DICOM,
STL, etc.), and exporters, which convert the VME into files
formatted according to the most common standards.

One method of creating a VME is by importing dig-
ital datasets. However, the importers for volume datasets
and operations on the imported volume VME inside MAF
are limited by the data size, which is typically a few hun-
dred megabytes - this limitation is primarily due to the con-
straints imposed by VTK on handling large data. The rela-
tionship between MAF components and the VTK visualisa-
tion pipeline in shown in Figure 2.

L

T
=

| vtkExtractvOl] vtkColourTransferFunction =
| L m
| | vtkDatasetToDatasetFilter | material settings
< =] = 4
| | vtkimageResample |
: I vtkVolumeRayCastMapper H vtkVolumeRayCastMIPFunction] %
I‘ | vikVolume fe— vtkvolumeProperty [l)
~ | | -
s 1

| vtkRenderer =+ vtkRendererwindow | g
|

Figure 2: An example of the VTK pipeline and its encap-
sulation in MAF. Note that from the user’s point of view, VP
(which is the visual pipe within MAF) is a part of View.

MAF is exploited in LhpBuilder, which is software being

(© The Eurographics Association 2008.

developed within The Living Human Digital Library [LHD]
project (LHDL). This project, which began in February 2006
and will last for three years, aims to create the technical in-
frastructure for another ongoing project: The Living Human
Project (LHP). LHP is a long-term project that aims to create
an in — silico model of the human musculo-skeletal appara-
tus which can predict how mechanical forces are exchanged
internally and externally at any dimensional scale from the
whole body down to the protein level. This model has been
designed as an infrastructure that can be updated and ex-
tended whenever new data and algorithms become available.

The main objective of the research reported in this pa-
per is to add a new capability to LhpBuilder for importing,
accessing, visualising and extracting part of a large volume
dataset by interactive visual exploration. For the visualisa-
tion of limited-size volume data, the existing volume vi-
sualisation functions of LhpBuilder have been used, which
are based on DRR (Digital Reconstructed Radiograph), MIP
(Maximum Intensity Projection) and iso-surface algorithms
[PBO7,KSC*04].

3. Our Approach

As mentioned above, an efficient algorithm for exploring
large volume data sets requires an excellent cooperation of
the rendering algorithm and the data retrieval algorithm.
Within the VTK scheme, however, rendering and data re-
trieval are two somewhat independent processes, which in-
troduces some limitations.

This is even more serious in MAF applications, e.g., in
LhpBuilder, (though similar problem may be expected in
other systems), where the VME, which includes the data re-
trieval algorithm, is not aware of the View that will be used
to visualise it, and the View (which contains the rendering al-
gorithm) does not know which VME it will visualise. Under
these circumstances, all we can do when visualising large
volume datasets is to prepare a subsampled snapshot of the
requested region of interest (ROI) that has memory require-
ments below the predefined memory limit, and let the system
visualise this snapshot.

The straightforward approach would be to have a VME
that reads the original volume dataset (typically stored in a
RAW file) and subsamples it whenever the requested ROI
or memory limit changes. However, this would be time con-
suming and would not support interactive visual exploration.
We propose, therefore, a more efficient way of data retrieval
based on the construction of a discrete multi-resolution
model during preprocessing.

3.1. Preprocessing

When a user wants to import a volume that is larger than
some given threshold, the volume is not loaded into the
memory using the regular approach (vtklmageReader) but

4 A. Agrawal et al. / Interactive Out-of-Core Exploration of Large Volume Datasets in VTK-Based Visualisation Systems

is preprocessed to produce subsampled versions (resolution
levels), which are stored on disk in an optimised form.

Starting with a sample rate (SR) of one, and incrementing
this by one at every step, the algorithm successively samples
the input dataset until the size of the lowest resolution level
drops below some given threshold (we use 1 MB).

If we consider cubic volumes with N voxels in one di-
mension, the number of levels k to be constructed can be
computed as: B> % =k~ 1%0. Assuming that there are
8 bits per voxel, the total size S of all constructed levels is

then: S = Y5 (¥)* =N YL, 1 bytes.

The Riemann zeta function {(s) of a complex variable s
is defined, for s with real part > 1, by the following infinite
series: {(s) = Y2, ll; We can now write that § < N3¢(3).
The value {(3) is known as Apéry’s constant and is approx-
imately 1.202. Thus, we can conclude that the total size of

the constructed levels is less than 1.21 - N bytes.

Figure 3 shows the dependency of the number of levels
to the volume data size. We note that for arbitrary volume
datasets, the number of levels may vary slightly from these.

Figure 3: Relationship between the number of resolution
levels and the volume data size.

The processing of the input dataset has three main steps:
sampling, bricking and fast compression - see Figure 4. As
the input dataset is too large to be fully loaded into memory,
it must be processed in parts, so these steps must be repeated
for each part. In the first step, the loaded part is subsampled
(using the sample rate SR). Next, the voxels are reorganised
into blocks (bricks) and finally they are stored (except for
bricks containing voxels that all have the same value) in the
output file. We shall now describe these steps in detail.

PREPROCESSING

Repeated k times for various
samplerateand bricksize

DATA SAMPLING ‘
(RAW)

BRICKING }

RESOLUTION

FAST COMPRESSION l
DATA v

Figure 4: The preprocessing scheme.

Given the sample rate SR and the number of levels to
be constructed k, the algorithm computes from these val-
ues the brick size BS, which is the number of voxels
per one side of brick, using the following formula: BS =
max (4, min(16, [k — (SR — 1) |4)) where |x], is a function
that rounds x down to the integer value divisible by the con-
stant r, e.g., | 14]4 = 12. Actually, this means that the BS
constant takes one of values: 4, 8, 12 and 16. The meaning
of this constant will be explained later.

The input file is then read line-by-line, slice-by-slice,
skipping lines and slices that do not correlate with the given
sample rate. When a line is loaded, it is sampled and the
samples are stored in a memory buffer capable of holding
BS slices. Hence, if we have a data set of N x N X N voxels,
N- SER . SER voxels are progressively loaded and sampled.

For example, let us suppose that we have volume data of
13 x 10 x 10 voxels. For SR = 4, only lines 0, 4, 8, in slices
0, 4, 8 are loaded and sampled, giving four voxels per line to
be stored - see Figure 5 (in which line 0 is at the bottom). If
BS is 2, the buffer must be capable of storing 24 samples.

Figure 5: Sampling one slice with a sample rate of SR =
4; only the light lines are loaded from the file and only the
underlined voxels are retained.

We note that, as the process is repeated for every SR, the
data is read several times. While this may negatively influ-
ence the overall time needed for the preprocessing stage, it
does makes the algorithm much simpler, and the preprocess-
ing stage only has to be performed once on any set of data.
The overall number of voxels to be loaded in all iterations
is: YN (5 =N & SN ER £ = N((2). As
€2) = “—62 ~ 1.644934, the preprocessing algorithm must
read about 1.65 - N> voxels.

When the buffer is full, its samples can be immediately
stored in the output file. However, this straightforward strat-
egy may not be the best because it would store two voxels
that are adjacent in the z-direction at two totally different
places in the file. This may lead to inefficient use of disk
cache because the effectiveness of current disk I/O algo-
rithms is based on the assumption that the file is likely to
be read (either entirely, or in part) in the order in which the
data items were originally stored in the file. This assumption

(© The Eurographics Association 2008.

A. Agrawal et al. / Interactive Out-of-Core Exploration of Large Volume Datasets in VTK-Based Visualisation Systems 5

is very often false when applied to multi-dimensional scien-
tific data such as volume data, which represents data in a 3D
spatial domain [LRBS07].

To circumvent this problem, samples are grouped into
bricks of BS x BS x BS samples. If there are not enough sam-
ples to form a brick, the missing samples are considered to
be zero - see Figure 6. After that, bricks can be stored, one
brick after another, into the output file. The order in which
the samples are stored is illustrated in Figure 7. This strat-
egy ensures that when the user explores a small portion of
volume data, the voxels to be retrieved will lie close to each
other in the storage.

Figure 6: Samples of two slices organised into 2x2x2 bricks
(the first corresponds to Figure 5). The missing samples are
given in italics. Bricks are denoted by grey scale.

Figure 7: The storing order of samples.

It may happen that some bricks contain samples all with
the same value, i.e., these bricks are uniform (like the top
left brick in Figure 6). This case is quite common, especially
for medical data which frequently contains a lot of empty
space - see Figure 8. It is not necessary to store such a brick
in the normal way - we simply need to store one sample
(the uniform value). This not only reduces the size of the
resolution level but may also speed up the data retrieval as
less data has to be transferred from the disk into the memory.

However, this also introduces a problem: while, previ-
ously, the position of brick samples in the file was given
implicitly by the brick index, now, we have to define the
position explicitly and we need not only to store these po-
sitions in the output file but also to keep them in memory
during runtime.

A straightforward approach is to store, for every brick,
a single bit denoting whether the brick is a uniform one or
not followed by several bits identifying the address in the
output file. It can be shown that the largest number of bricks
is obtained when SR = 1 (although the brick size BS is in
that case, save for smaller volumes, the largest one, i.e.,16).

(© The Eurographics Association 2008.

Figure 8: An example of medical data with highlighted
brick boundaries.

The required memory (in bytes) can be, therefore, computed
as: % where c is the number of bits consumed per brick.
When dealing with volumes up to 32 GB, at least 24 bits
per brick are required assuming that the position is stored
in brick units (163 = 4096). For volume data 1760 x 1024 x
1878 that is bricked into 110 x 64 x 118 bricks, 2.38 MB (24

bits per brick) are required.

Considering medical data (see Figure 8), this seems to
be unnecessarily space consuming, as there is typically only
one block of uniform bricks in any line of bricks. We there-
fore propose another strategy. For every line of bricks, we
store the number of bricks skipped in previous lines and a
list of pairs of indices identifying the beginning and the end
of each block of non-uniform bricks. This information is re-
tained in two separate tables.

The primary table has a fixed number of entries - one en-
try per one brick line. It stores the number of skipped bricks
(using a 32-bit integer), the length of the list (8 bits), the first
pair of indices (using 16 bits per index) and the index (24
bits), which points into the secondary table in which the re-
maining pairs are stored in linear order. Clearly, the number
of entries in the secondary table is data dependent.

Figure 9: An example of the data structure for the data from
Figure 8.

The storage requirements are 12 bytes per entry in the pri-
mary table and 4 bytes per entry in the secondary table. We
have discovered empirically that the average list length is
about 1.3, which means that the required memory is about

% -(1240.3-4) = 0.05 -N?. For the Visible Human data

6 A. Agrawal et al. / Interactive Out-of-Core Exploration of Large Volume Datasets in VTK-Based Visualisation Systems

set of 1760 x 1024 x 1878 voxels, only about 100 KB are
required (which is only 4% of size in comparison with the
straightforward approach).

We note that due to this fast compression strategy, the total
size of all 16 resolution files constructed for this dataset in
the preprocessing is only 1.2 GB, which is about one third in
comparison to the original size (3.15 GB).

3.2. Runtime

When the VTK visualisation pipeline is to be constructed
at runtime, all we have to do to support the visualisation of
large volume datasets is to use a custom data source object
(with vtkImageData as output) instead of using traditional
vtkImageReader. This custom object handles the selection
of the proper resolution file (from those computed during
the preprocessing stage) and the loading of the requested re-
gion of interest (ROI) from the file, which includes the re-
construction of the skipped (not stored) bricks and linearisa-
tion of the voxels on the fly.

The details of the data retrieval algorithm are as follows.
The user has to specify the maximum amount of memory
to be made available for the data that is to be visualised.
Increasing the size would allow a higher resolution for the
data, but it would also mean longer retrieval and rendering
times, which may reduce the smoothness of real-time ma-
nipulations such as rotation, translation or zooming. In ad-
dition, as vtkImageData stores volume data in a large one-
dimensional array, fragmentation of memory may mean that
there is not a free memory block large enough to satisfy the
demands. Therefore, in general, smaller limits (e.g., 16 MB)
are recommended.

The user also specifies the area to explore, i.e., the region
of interest (ROI). The algorithm computes the sample rate
for the specified ROI that will produce a snapshot that fits
within the given memory limit. The resolution file with this
sample rate is selected. The bricks that cover the requested
ROI are identified and these are processed line-by-line, slice-
by-slice. Uniform bricks are filled using the uniform value
stored in the file; non-uniform bricks are loaded from file.
The position of a brick in the file is computed from the in-
formation stored in the primary and secondary indexing ta-
bles. It is quite clear that brick samples, which are stored in a
linear order, must pass through a reverse process to bricking
when they are copied into the volume memory snapshot.

After the data is retrieved by the VME, it is passed to all
Views connected to this VME. In LhpBuilder, the user can
visualise the data using various volume rendering techniques
including DRR, MIP or iso-surface - see Figure 10. Figure
11 shows an example of the iterative process of data explo-
ration by specifying a smaller and smaller ROI at each step.
It can be seen that the resolution successively increases. We
note that the data retrieval process took only fractions of a
second on standard hardware.

Figure 10: Visualisation of the whole Visual Human male
dataset (3.15 GB) with the memory limit set to 8 MB using
DRR, MIP and iso-surface volume rendering. The selected
sample rate is 8.

Figure 11: [terative exploration of Visual Human male
dataset. The memory limits / selected sample rates are (from
the left to right and from top to bottom): 8MB /8, 8MB / 6,
S8MB /4, 64MB /2.

4. Experiments and Results

The approach described above was implemented in C++
(MS Visual Studio 2008) in the MAF visualisation environ-
ment. For our experiments, an older laptop Asus A2542D
(AMD Athlon 2.8 GHz, 512 MB RAM, HDD 60GB with

(© The Eurographics Association 2008.

A. Agrawal et al. / Interactive Out-of-Core Exploration of Large Volume Datasets in VTK-Based Visualisation Systems 7

4200rpm, Windows XP Pro) and the more powerful Dell
Precision 470 (2x Intel Xeon 3.4 GHz, 2 GB DDR2 400
MHz RAM, 2x HDD 137 GB SCSI with 10 000rpm, Win-
dows XP Pro) were used. The Visible Human volume data
(1760 x 1024 x 1878 - 3.15 GB) was used for the main tests.

Figure 12 compares the times required to retrieve various
ROIs of 400 x 400 x 100 samples from the highest resolu-
tion file (a) when samples are stored in a linear fashion and
(b) when they are stored in a bricked order (BS=16). For re-
trievals in the bricked version, almost constant times (221-
253 ms) were achieved, whilst in the linear version, ineffi-
cient use of disk cache led to retrieval times varying from
231 to 10,363 ms.

12 000
. ==-Linear order
10 000
=+=Bricked order (BS=16)
— 8000
w
Z yoo 1\
o 6000
E
= 4000 \
2000 \/iAv...--\-
0 ? Qé
2 3 4 5 6 7 8 9 10 11 12

1

Figure 12: The influence of bricking on the total time
needed for 12 data retrievals on an Asus A2542D.

We also experimented with various brick sizes in order to
find the optimal one. A comparison of data retrieval times
achieved for several sizes of ROI (within one resolution
only) for various brick sizes is given in Figure 13. As it can
be seen, whilst for smaller regions (ROIs), the data retrievals
are fastest for the brick size around 32, for larger regions,
the highest performance is reached when the brick size is
around 16. However, whilst the differences in times achieved
for brick sizes 16 and 32 are negligible for smaller regions
(up to 50 ms), they are significant for larger regions (more
than 1 s). Therefore, we decided to use the value 16 as a
base for our bricking techniques. Further experiments (not
presented here) showed that this value also leads to a higher
compression ratio when compared with larger constants.

Figure 14 compares the minimum and maximum times
needed to retrieve various ROIs (of differing sizes) by the
brute-force approach (Brute) that accesses the original vol-
ume dataset and performs the sampling on the fly (this is,
actually, the straightforward VTK streaming technique) with
times needed by our multiresolution approach (MR), with-
out and with the fast compression (FC) technique (i.e., in the
former case, all the bricks are stored). This experiment was
performed on the Dell Precision 470.

It is obvious that our approach significantly outperforms
the straightforward solution. It is important to point out

(© The Eurographics Association 2008.

10000 AN

Time [log(ms)]

—+=#1- 14 2MB

-=-#2-17.2MB ——#3-227MB
—#—#5 - 38 OMB -a-#6- 118 2MB

==#d - 30 1MB

4 8 1216 20 24 28 32 36 40 44 48 52 56 60 64
Brick size (BS)

Figure 13: Comparison of retrieval times achieved for var-
ious brick sizes on an Asus A2542D.

Figure 14: Comparison of minimum and maximum times
(in ms) achieved for various ROIs.

that although, in the very best cases, the multiresolution ap-
proach with fast compression consumes slightly more time
than the version without it (due to an overhead introduced by
the decompression), it is significantly faster in normal cases.

5. Conclusions and Future Scope

In this paper, we proposed an out-of-core approach that
combines various techniques such as multi-resolution and
volume bricking. The approach is suitable for an interac-
tive exploration of large volumes in VTK-based visualisa-
tion systems (such as LhpBuilder). In contrast with exist-
ing approaches that also exploit the multiresolution strategy
for data organisation, our approach does not create a space-
consuming resolution hierarchy (due to the fast compres-
sion) for typical medical data, yet, as can be seen from the re-
sults presented, it still allows almost real-time data retrievals.
Moreover, the proposed solution has a simple implementa-

8 A. Agrawal et al. / Interactive Out-of-Core Exploration of Large Volume Datasets in VTK-Based Visualisation Systems

tion and, unlike many other approaches, can be integrated
into existing VTK visualisation systems, with ease.

As part of future work, we shall exploit the use of multi-
threading or GPU to speed up the preprocessing step. There
also exists the possibility to further compress the prepro-
cessed bricked layout data by improving on the skipping pro-
cedure for empty bricks.

Acknowledgements

This work was supported by the Information Society Tech-
nologies Programme of the European Commission under the
project LHDL (IST-2004-026932). The authors would like
to thank the various people who contributed to the realisa-
tion of the MAF and LhpBuilder.

References

[ABM*01] AHRENS J., BRISLAWN K., MARTIN K.,
GEVECI B., LAw C. C., PAPKA M.: Large-scale data
visualization using parallel data streaming. /EEE Com-
puter Graphics and Applications 21, 4 (July/Aug. 2001),
34-41.

[CMCL06] CASTANIE L., MION C., CAVIN X., LEVY
B.: Distributed shared memory for roaming large vol-
umes. IEEE Transactions on Visualization and Computer
Graphics 12,5 (2006), 1299-1306.

[DD] 3D-DOCTOR: Vector-based 3d medical modeling
and imaging software; http://www.3d-doctor.com.

[DKC00] DoNG F., KrROKOS M., CLAPWORTHY G.:
Fast volume rendering and data classification using mul-
tiresolution in min-max octrees. Computer Graphics Fo-
rum 19 (2000), 359-368.

[EHK*06] ENGLE K., HADWIGER M., KNISS J. M.,
SALAMA C., WEISKOPF D.: Real-Time Volume Graph-
ics. AK Peters Ltd., 2006.

[FVS06] FRANK M., VASA L., SKALA V.: MVE-2 ap-
plied in education process. In Proceedings of .NET Tech-
nologies 2006 (2006).

[GWGS02] GUTHE S., WAND M., GONSER J., STRAER
W.: Interactive rendering of large volume data sets. In
IEEE Visualization *02 (2002), pp. 53-59.

[KSC*04] KROKOS M., SAVENKO A., CLAPWORTHY
G. J., LIN H., MAYORAL R., VICECONTI M., JAN S.
V. S.: Real-time visualisation within the multimod appli-
cation framework. In IV ’04: Proceedings of the Informa-
tion Visualisation (2004), pp. 21-26.

[LHD] LHDL:
http://www.biomedtown.org/biomed_town/lhdl.

[LHJ99] LAMAR E. C., HAMANN B., Joy K. I.: Mul-
tiresolution techniques for interactive texture-based vol-
ume visualization. In IEEE Visualization '99 (1999),
pp- 355-362.

[LRBSO7] LipPSA D., RHODES P., BERGERON R., SPARR
T.: Spatial prefetching for out-of-core visualization
of multidimensional data. In IS&T/SPIE 19th Annual
Symposium: Electronic Imaging Science & Technology
(2007), p. 64950G.

[MCEF94] MOLNAR S., Cox M., ELLSWORTH D.,
FucHs H.: A sorting classification of parallel rendering.
IEEE Computer Graphics and Applications 14, 4 (1994),
23-32.

[Mim] MiMICS: The standard for 3d image processing
and editing based on scanner data
http://www.materialise.com/materialise/view/en/92458-
mimics.html.

[PBO7] PREIM B., BARTZ D.: Visualization in Medicine:
Theory, Algorithms and Applications. Morgan Kaufmann,
2007.

[PLSKO6] PIEPER S., LORENSEN W. E., SCHROEDER
W. J., KIKINIS R.: The NA-MIC kit: ITK, VTK,
pipelines, grids and 3D slicer as an open platform for the
medical image computing community. In ISBI (2006),
pp. 698-701.

[PPL*99] PARKER S., PARKER M., LIVNAT Y., SLOAN
P.-P., HANSEN C., SHIRLEY P.: Interactive ray tracing
for volume visualization. IEEE Transactions on Visual-
ization and Computer Graphics 5, 3 (1999), 238-250.

[Ram01] RAMACHANDRAN P.: MayaVi: A free tool for
CFD data visualization. In 4th Annual CFD Symposium,
Aeronautical Society of India (2001).

[Ros04] ROSSET A.: Osirix: An open-source software for
navigating in multidimensional dicom images. Journal of
Digital Imaging 17 (2004), 205-216.

[SCESL02] SILVA C., CHIANG Y., EL-SANA J., LIND-
STROM P.: Out-of-core algorithms for scientific visualiza-
tion and computer graphics. In Visualization’02 (2002).
Course Notes.

[SML04] SCHROEDER W., MARTIN K., LORENSEN B.:
The Visualization Toolkit, Third Edition. Kitware Inc.,
2004.

[SMW*05] STRENGERT M., MAGALLON M.,
WEISKOPF D., GUTHE S., ERTL T.: Large vol-
ume visualization of compressed time-dependent datasets
on gpu clusters. Parallel Computing 31, 2 (2005),
205-219.

[VH] VH:

http://www.nlm.nih.gov/research/visible/visible_human.html.

[VZT*07] VICECONTI M., ZANNONI C., TESTI D.,
PETRONE M., PERTICONI S., QUADRANI P., TADDEI
F., IMBODEN S., CLAPWORTHY G.: The multimod
application framework: A rapid application development
tool for computer aided medicine. Computer Methods and
Programs in Biomedicine 85, 2 (2007), 138-151.

(© The Eurographics Association 2008.

