
EG UK Theory and Practice of Computer Graphics (2007)
Ik Soo Lim, David Duce (Editors)

Streaming and Data Enrichment

M. J. McDerby, W. T. Hewitt, M. J. Turner

University of Manchester, UK

Abstract
Data is being created at a continuously increasing rate. Scientists are “drowning in their data”. So much so
they cannot visualize the data to see the big picture. This work-in-progress paper describes a data capture and
visualization problem, and the steps being undertaken to solve the problem. An overview is given of the various
approaches to dealing with these large data sets that have been previously proposed and the application of such
methods within a well known scientific visualization tool. The paper then goes on to propose a method that deals
with large data visualization by addressing the bottlenecks in the visualization pipeline, and combining some of
the approaches described herein with parallel techniques on a high performance visualization system.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation
I.3.4 [Computer Graphics]: Graphics Utilities I.3.5 [Computer Graphics]: Computational Geometry and Object
Modelling I.3.6 [Computer Graphics]: Methodology & Techniques

1. Introduction

Increasingly there is a need for the development of tools to
visualize extremely large datasets. Advances in computing
technology are making simulation as important to science
today as theory and experiment have been in the past. How-
ever, the amount of data that can be produced by these tech-
nologies is overwhelming, in fact “Scientists are drowning
in their data” and whilst scanning and raw computing tech-
nology provide the means to acquire or generate datasets,
other technologies such as storage, networking and graph-
ics have not kept up - creating “technological bottlenecks”.
Due to these bottlenecks more data is produced than can be
analyzed or visualized. The main aim of this project is to ad-
dress these bottlenecks by reviewing the standard Haber &
McNabb Reference Model [HM90], and proposing enhance-
ments to handle datasets more effectively so as to develop
multi-resolution software tools which will facilitate the un-
derstanding of large-scale simulation datasets.

This paper describes the work-in-progress to date and the
initial evaluation of the problem. Section 2 covers previous
work in the area of large data visualization and approaches
to streaming. Section 3 discusses the development of stream-
ing in AVS/Express, and how data is currently handled. Sec-
tion 4 gives an overview of streaming and the visualization
pipeline. In Section 5 we present the proposed approach and
Section 6 goes on to discuss future work.

2. Previous Work

Over the last decade extensive work has gone into out-of-
core algorithms to work on large datasets. Out-of-core is es-
sential for data that will not fit into memory, so methods have
been devised to simplify/compress meshes in order to visual-
ize them. Such methods include, mesh cutting, dereferenced
triangle soup, clusters and more recently streaming repre-
sentation. However, special attention has been given to the
initial format of the input mesh as this can complicate the
subsequent methods.

Levoy et al. [LPC∗00] used mesh cutting in the Digital
Michelangelo project. Michelangelo’s David when scanned
consisted of about 2 billion polygons, the data was stored as
range images (2D) instead of polygon meshes because of the
size of the 3D mesh (36 gigabytes). The authors [LPC∗00]
designed their own file formats to map the range values to
3D. However, problems still lay ahead as the authors report
that no matter how efficient their storage mechanism was -
they could still not display the complete model. The form of
mesh cutting used was to construct range pyramids. How-
ever, to display a range image, or to merge multiple range
images or to perform geometric operations on the data all
need the 3D points to be converted to a triangle mesh.

Ho et al. [HLK01] took mesh cutting one step further by
compressing the sub-meshes using mesh compression tech-

c© The Eurographics Association 2007.

http://www.eg.org
http://diglib.eg.org

M. J. McDerby, W. T. Hewitt, M. J. Turner / Streaming and Data Enrichment

niques. However, they go onto report that existing mesh
compression and decompression algorithms are only effec-
tive if a representation of the mesh’s entire topological and
geometric structures (and some other attributes) are small
enough to fit in-core. For the mesh compression stage (which
involves 3D geometry), the relationship between the vertices
and faces is multi-directional. Mesh compression algorithms
aim to create a linear ordering on the mesh (an ordering
based on spatial proximity which aims to reduce the vertex
or face traversals). However, the authors admit that they have
completely ignored the geometry of the simplified mesh, and
that it would be interesting to see if the geometry of the sim-
plified mesh can be used to further reduce the compressed
geometry of the input model. In fact, to proceed further in
their direction they say that a more refined and geometry-
oriented partition scheme is probably required.

External memory data structures is another way of par-
titioning a mesh, but the pieces are a lot smaller and are
referred to as clusters. Cignoni et al. [CMRS03] presents
a data structure called an Octree-based External Memory
Mesh (OEMM) that is based on a hierarchical geometric
partitioning of the data set with no vertex replication. The
aim is to have consistent vertex indexing between leaf nodes
which share a reference to the same vertex. The hierarchy is
coupled with a partial knowledge of the geometry and topol-
ogy which allows for a form of element tagging strategy.
The mesh format is considered in the simplification of the
mesh, but no re-ordering of the mesh is undertaken to re-
organise the data so as to make it easier to process. Hence,
many passes have to be done over the data to finalize trian-
gles which involves an extra time overhead.

So far we have considered indexed meshes - a mesh is
called indexed if all the triangles are encoded by storing
a triple of references to their vertices. Conversely, if the
data only consists of a list of the triangles and the shar-
ing of vertices is not considered then this is called a trian-
gle soup. In [Lin00] Lindstrom describes a method of out-
of-core simplification for triangle soups. The algorithm is
based on uniform sampling via vertex clustering, and is en-
hanced by the use of error quadrics. The use of a triangle
soup dataset enhances the simplification speed, but roughly
uses twice the disk space as compared with a mesh dataset.
This they reported can be solved by compressing the data on
disk and then decompressing it on the fly during simplifica-
tion. The algorithm unfortunately does not perform adaptive
sampling, which means that often models have to be further
coarsened.

One of the most recent surveys of streaming techniques
was published in 2005 [IL05]. This refers to the current mesh
formats and the failings with regards to storage and retrieval
of large data sets. Mesh formats are limited and so is the
common desktop, which people have to work with where,
the main memory limits are often set to a maximum 4 gi-
gabytes. This paper presents a streaming format for polygon

meshes that is more suitable for large meshes and still works
within the visualization pipeline.

In order to process geometric data sets that do not fit in
main memory it is essential to use out-of-core algorithms to
arrange the mesh so that it does not need to be kept in main
memory in its entirety, and adapt their computations to op-
erate only on the loaded parts [IL05]. Most commonly they
create a streaming mesh – which is a mesh that is a logi-
cally interleaved sequence of indexed vertices and triangles
with extra or meta-information about when vertices are in-
troduced and when they are finished with.

In most of the research covered a lot of the work as shown
in [LPC∗00] ignored the problem with meshes and used an
alternative method rather than tackle the problem of large
meshes head on. Hence, they still end up with the problem
of converting back and forth from 3D range data to mesh
data when they want to do some form of geometric opera-
tions. In [IL05] Isenburg et al. reports that the main problem
of most of these algorithms is the initial format of the input.
This is because the mesh formats being used were designed
many years ago when meshes were smaller and less com-
plex. One common mesh format - PLY - uses an array of
floats to specify vertex positions, followed by a second array
of indices into the vertex array to specify the polygons. The
order in which the vertices and polygons are arranged is var-
ied upon the methods used to create the mesh. This Isenburg
et al. say was convenient when meshes were much smaller,
but as meshes have become larger processing of such meshes
i.e., dereferencing - resolving triangle-to-vertex references
can slow down. Therefore, to visualize a polygon, a search
has to be done throughout the data for the vertices that make
up the polygon - if the data is effectively random and in no
subsequent order, then this can substantially reduce perfor-
mance. Figure 1 shows a scan of the Nukhul mountain range
in Egypt - the dataset of this scan is a typical problem for
Earth Scientists at The University of Manchester. The scan
of the mountain range consists of 16 separate scans totalling
a size of 19 gigabytes which cannot be easily viewed all at
once without using visualization techniques such as down-
sizing. But researchers need to see all the information from
the scan in order to analyse the rock content. The data re-
sultant from the scan is a perfect example of an incoherent
mesh and is shown in Figure 1. The different colours show
the way in which the data is visualized to the screen, and
demonstrates it’s incoherence.

Figure 1: Incoherent Nukhul Mesh

c© The Eurographics Association 2007.

222

M. J. McDerby, W. T. Hewitt, M. J. Turner / Streaming and Data Enrichment

Figure 2 shows a coherency graph of the same data mesh.
This graph is a layout diagram (the triangles and vertices are
laid out in the order they occur in the original data file) which
connects triangles that share the same vertex with horizontal
line segments (green), and vertices referenced by the same
triangle with vertical line segments (grey). The further the
green and grey line segments are from the major diagonal,
the less coherent the layout is.

Figure 2: Incoherent Layout Graph of Nukhul Data (Con-
sisting of n vertices and m triangles).

An easier way of explaining incoherence is shown using
a simple test example in Figures 3 and 4. Figure 3 shows a
small subset of the incoherent Nukhul mesh in 2D.

Figure 3: Small Mesh

Figure 4 shows the incoherence layout diagram for this
subset. Vertices are shown along the y axis and triangles
along the x axis. For each vertex of a triangle a purple point
is drawn, and a vertical line connects all the vertices that
make up that triangle. For each vertex a horizontal line is
drawn which shows all the triangles that reference it.

In [IL05] a characterization of a layout of an indexed
mesh is made to define it’s “streamability”. The triangle span

Figure 4: Incoherence Graph

(t-span) in the layout diagram (shown as a horizontal line
with arrows at either end) is the number of triangles between
and including the first and last reference to the vertex. The
vertex span (v-span) represented by the vertical double sided
arrow is the maximum index difference (plus one) of its ver-
tices. The vertex span of a layout is the maximum span of all
triangles (vertices). The vertex width of a layout is the max-
imal number of horizontal line segments that can be cut by
a new vertical line - 9 in Figure 4; the triangle width is the
maximum number of vertical line segments that can be cut
by a new horizontal line - 12 in Figure 4. Finally, the skip of
a layout is the maximum number of “concurrently” skipped
vertices. There is no skip in the Nukhul test example shown.

A major issue in large meshes is de-referencing which is
basically resolving all triangle-to-vertex references [IL05].
This slows down streaming, as algorithms have to search
about finding the vertices of the triangles in question. The
algorithms presented in the paper resolve this issue by fi-
nalizing the triangle-vertex relationships by interleaving in-
dexed vertices and triangles, and provides extra information
about when vertices are last referenced.

3. Streaming in AVS/Express

To support streaming the visualization software must sup-
port breaking the data set into pieces and correctly process-
ing those pieces. Ahrens et al. [ABM∗01] stated that the data
must be separable, mappable and result invariant.

• Separable. Breaking the data into pieces - each piece

c© The Eurographics Association 2007.

223

M. J. McDerby, W. T. Hewitt, M. J. Turner / Streaming and Data Enrichment

should be coherent in geometry, topology, and/or data
structure. Separating the data should also be both simple
and efficient. In addition, the algorithms in this architec-
ture must correctly process pieces of data.

• Mappable. Controlling the data streaming through the
pipeline - we must determine what portion of input data
we need to generate a given portion of the output. Allow-
ing control of the size of the data through the pipeline.

• Result invariant. Results should be independent of the
number of pieces and the execution mode (single or multi-
threaded).

Most visualization tasks within AVS/Express are car-
ried out using chunks e.g., an isosurface is comprised of
many chunks of a chosen number of triangles. Lever et al.
[LPL05] reports that such chunking of data improves han-
dling of memory and rendering speed. Under asynchronous
behaviour, chunks of renderable data are rendered and hence
cached by the graphics hardware. Chunking has two bene-
fits:

1. Users can see the visualization progressively appear as
it is produced, which is particularly useful for large
datasets.

2. The graphics pipes may cache more efficiently when ge-
ometry is streamed through them.

For example, taking the isosurface algorithm chunking
can be carried out by taking strips of the data. The data must
already be de-referenced, but it is not important that there is
any pre-intelligent processing.

This simple chunking system has the following draw-
backs:

• Triangles are taken in chunks, with no regards for final-
ization.

• Re-calculation upon boundary measures to ensure trian-
gles line up (result invariant).

However, Law et al. [LMST99] reports that commercial
visualization systems such as AVS and IBM Data Explorer
fail in two important ways when dealing with large data:

1. Interactive control of the visualization process is lost
when the time to transmit, process, or render data be-
comes very long.

2. The physical or virtual memory address space of the com-
puter is overwhelmed, and the system thrashes ineffec-
tively or crashes catastrophically.

The paper goes on to say that the typical response to this
is to go out and buy bigger computers such as a graphical
supercomputer, and that such solutions are only available to
wealthy users but this still may not solve the problem.

4. Streaming and the Visualization Pipeline

In [HM90] Haber and McNabb present a generic and very
popular model of scientific visualization as a complex set of

generalized mappings of data obtained from simulation, ob-
servation or experiment. The mappings transform raw data
into a geometric abstraction of the scientific information
content, which can then be rendered to a displayable image
using computer graphics or image processing. Any specific
sequence of mappings constitutes a visualization idiom.

The authors take the view that visualization is a series of
transformations that convert raw data into a displayable im-
age. The goal of these transformations is to convert the in-
formation to a format that is understandable by the human
perceptual system while maintaining the integrity of the in-
formation. Three major transformations occur in most visu-
alization procedures:

• Data Enrichment/Enhancement
• Visualization Mapping
• Rendering

Bottlenecks from large data sets in the visualization
pipeline usually occur at each of these transformations.

Following on from Law et al. [LMST99] the key to a
structured data streaming pipeline is the ability to break the
data into pieces. By controlling the size of the pieces of data,
we can avoid memory swapping. The size of the piece of
data needs to be controlled according to the size of the com-
puter memory and the number of filters in the visualization
pipeline. Therefore, there are two benefits from streaming
data through the visualization pipeline.

1. We can run visualization that wouldn’t normally fit into
memory or swap.

2. We can run visualizations with a smaller memory foot-
print.

5. Proposed Approach

One of the aims of this research is to address the bottlenecks
in the traditional visualization pipeline using AVS/Express
PST as the scientific visualization tool. This combines
streaming of data as outlined in [IL05] with a new approach
to the visualization pipeline as detailed below:

1. Pre-processing the mesh format to allow for a more eco-
nomic distribution across the processors involved.

2. Distribute the data following the work in [IL05], but par-
allelised over multiple processors.

3. Processing the data using parallel techniques inside of
PST.

4. Rendering the data using compression techniques [IL05].

5.1. Pre-processing the Data

The first task was to implement a streaming mesh format
which would allow for coherency in the data. Figures 1 to
4 show the initial investigation and the coherency of the
meshes that were obtained from the scan of the Nukhul re-
gion.

c© The Eurographics Association 2007.

224

M. J. McDerby, W. T. Hewitt, M. J. Turner / Streaming and Data Enrichment

Figure 5: AVS/Express Parallel Support Toolkit (PST) Visu-
alization Pipeline. Data is distributed as it is read in, so as to
speed up the reading of large datasets. The main bottleneck
is at the rendering stage.

This data is unstructured so by sorting we can increase the
coherency.

To demonstrate increasing coherency and streaming with
a well known dataset - the Stanford Bunny is shown in it’s
original data format in Figures 6 and 7 with final results
shown in Figures 8-10.

To make the data streamable a series of tasks has to be
undertaken to create a vertex layout, a triangle layout, and
finalization information.

1. In an initial pass over the input mesh write the vertices
and triangles to separate temporary files.

2. Store with each vertex its original index (so it can be iden-
tified by its triangles).

3. Compute vertex degrees (this is a count of the lifetime
of the vertex and is decremented each time the vertex is
used). This is used in the finalization step.

4. Specify explicit/fixed layouts as required.

Figure 6: Original Stanford Bunny Data Order Streaming

Figure 7: Coherency Layout of the Original Bunny Data

5. For a specified triangle layout, sort keys (k) are assigned
to vertices (v) based on their new incident triangle indices
(t).

6. The sort keys and vertex degrees are merged with the tri-
angles and vertices in their temporary files. The result is
a file with vertex records (kv,v,d,x,y, z) and a file with
triangle records (kt ,v1,v2,v3).

7. An external sort is then performed on the two files (on
increasing key value) to bring the elements into their de-
sired order.

8. A streaming mesh is then output by scanning these files
in parallel.

Explicit/fixed layout is mentioned in item 4, this really
depends on the data. A dataset may have coherent layouts
for both triangles and vertices, but they may not be compati-
ble in that they are sorted along different axes. According to
Isenburg et al. [IL05] it may be sensible then to keep one of
the original layouts fixed and to re-arrange the other layout

c© The Eurographics Association 2007.

225

M. J. McDerby, W. T. Hewitt, M. J. Turner / Streaming and Data Enrichment

so that it is compatible. An explicit layout directly gives you
a set of unique sort keys. This could be as simple as taking
spatially sorted vertices, and using the x-coordinate as the
sort key, or the same as in item 6 above.

De-referencing is accomplished by performing external
sorts on each vertex field in an explicit vertex order (item
7 in the list) and updating their vertex indices. Finalization
is achieved using the vertex degree and decrementing it each
time a vertex is used.

The vertex file contains (kv,v,d,x,y, z) where:

• kv is the sort key based on the new incident triangle in-
dices t;

• v is the original vertex order;
• d is the vertex usage/degree;
• x,y, z, is the vertex.

The triangle file consists of: (kt ,v1,v2,v3) where:

• kt is pre/post order triangle key (based on the indices in
the reordered layout);

• and v1,v2,v3 are the vertices which make up the triangle.

Pre/Post-order is defined in [IL05] and is the order upon
which you choose to interleave the triangles and vertices -
pre-order is where each vertex precedes all triangles that ref-
erence it and post-order is where each vertex succeeds all
triangles that reference it.

Figure 8 shows the data sorted by Y with colour map-
ping representing the streaming order and Figure 9 shows
the path of the data streaming for a possible single chunk.
The coherency graph of the Stanford Bunny data sorted by
Y is shown in Figure 10. This sort has had a tremendous ef-
fect on the coherency of the data - but may not be economical
enough as there is still some fuzziness around the diagonal
line in Figure 10. Section 5.2.1 discusses this further.

5.2. Streaming

The next phase then is to implement a streaming process:

• Large data is read streamed in.
• Data is distributed using PST.
• Overheads with respect to streaming the data across many

processors have to be taken into account at this point.
• The data is then piped to a parallel visualization module

such as isosurface.
• This in turn is streamed to a simplification process.
• Which then streams it to a compression engine.
• The resulting bit stream is then encoded and transmitted

to a remote location, where the triangles are rendered as
they decompress.

• Parallel rendering will be undertaken using compositing.

With regards to the reading and distribution of the data
the aim is to partition the mesh into sub-meshes, ensuring
that the overlapping partitions are minimised such that the
amount of information that must be shared between proces-
sors is minimised.

Figure 8: Stanford Bunny Sorted By Y

Figure 9: Stanford Bunny Sorted by Y Rendering

5.2.1. Overheads

The Stanford Bunny data has 35947 vertices and 69452 tri-
angles. When sorted in Y and divided across 4 processors
(17363 triangles per processor) the overhead which will re-
strict the visualization time can be calculated via the follow-
ing performance model summising the Overlap between p1
and p2 + Overlap between p2, p1 and p3 + Overlap between
p3, p2 and p4 + overlap between p4 and p3 divided by num-
ber of processors:

2363+4354+5513+2554
4

= 3696 (1)

c© The Eurographics Association 2007.

226

M. J. McDerby, W. T. Hewitt, M. J. Turner / Streaming and Data Enrichment

Figure 10: Coherency Layout of the Stanford Bunny Data
sorted by Y

Similarly, the average overlap for 2 CPUs (34726 triangles
per processor) is 2294 vertices, for 6 CPUs (11576 triangles
per processor) it is 3417, and the result for 8 CPUs (8682
triangles per processor) is 3959 vertices per CPU.

Figure 11: Overheads across CPUs

Figure 11 shows the series of experiments with the sorted
Bunny data visualized across a number of processors. Most
of the work is performed by the processors where there is
a bigger overlap due to the fact that the data is still not co-
herent enough i.e., all triangles and vertices which rely on
each other should be dealt with on the same processor (or
the same chunk of data). As mentioned in Sections 2 and 5.1
the aim is to remove de-referencing by means of sorting the
data in such a way that the vertices and triangles that rely
on each other are interleaved and compact. With regards to
the way the Bunny data is sorted, both Figure 11 and the
performance model above show that the data is still not in a
truly economical ordering, and that the more processors that
are used results in a steady increase in the average overlap.

Which shows that the triangles and vertices that rely on each
other are still largely distributed throughout the data. Such
large amounts of vertices in the overlaps can (or cell sets in
AVS/Express) cause problems at the rendering time in that
if a large cell set resides on a single processor, then the pro-
cessing is essentially serialized as all other nodes are idle
until that processing node has completed it’s work.

An alternative sorting method for the streaming of the
data and a possible solution to the problem mentioned above
is Spectral Sequencing [KCH02, IL05]. According to Koren
the spectral approach has two distinct advantages that make
it very attractive:

1. Mathematically-sound formulation leading to an exact
solution to a layout problem, improving on other formu-
lations that result in an approximation.

2. Computation speed. This is very important as we have
repetitively said in this paper that the amount of informa-
tion to be visualized is growing rapidly.

However, it can have drawbacks for large data sets since
it relies on eigenvector computation, so as an alternative
Liu et al. [LJZ06] reports that Nystrom approximation (a
subsampling and reconstruction technique orginating from
integral calculus) can be used. Isenburg et al. [IL05] pre-
simplify vertices into clusters using streaming edge col-
lapses. These clusters are kept in a memory-mapped array as
circular linked lists of vertices. The ACE (Algebraic multi-
grid Computation of Eigenvectors) algorithm by Koren et
al. [KCH02] is then applied to order the clusters in-core, and
then to order the mesh cluster by cluster - with no particular
vertex order within each cluster.

6. Future Work

The ACE [KCH02] method is used to order clusters in-core,
with no particular vertex order within each cluster. This can
be improved upon by ordering the vertices within each clus-
ter to minimise the streamability measures and further en-
sure coherence.

As mentioned above the aim is to develop this work with
AVS/Express MPE/PST, thereby ending up with a suite of
tools that allow the streaming, and compression of large
meshes in a parallel manner. Future work could be to develop
the approach even further and allow distributed streaming
visualization. Using several machines one for each phase
of the pipeline i.e., data enrichment phase - sorting and
streaming of data undertook on one machine, data is then
streamed to a visualization supercomputer whereby the vi-
sualization mapping phase is undertaken using PST, with the
displayable object being displayed in a multi-pipe environ-
ment.

Going one step further, the streaming and sorting of the
various scans (note that the Stanford Lucy model was made
up of originally 47 scans, and the Nukhul mountain scan is

c© The Eurographics Association 2007.

227

M. J. McDerby, W. T. Hewitt, M. J. Turner / Streaming and Data Enrichment

made up of 16 scans) can also be distributed across machines
to speed up the computation.

Some other areas that are still to be looked at in the re-
search arena is multi-resolution streaming of structured and
unstructured meshes.

7. Acknowledgements

The authors wish to thank Peter Lindstrom, Lawrence Liv-
ermore National Laboratories, for his advice on streaming.
David Hodgetts, School of Earth, Atmospheric and Environ-
mental Sciences, University of Manchester for the dataset
and time. Many thanks also go to the following staff in the
Manchester Visualization Centre; Robert Frank, Yien Kwok,
George Leaver, Louise Lever, Tobias Schiebeck.

References

[ABM∗01] AHRENS J., BRISLAWN K., MARTIN K.,
GEVECI B., LAW C. C., PAPKA M.: Large-scale data
visualization using parallel data streaming. In IEEE Com-
puter Graphics and Applications (2001), pp. 34–41.

[CMRS03] CIGNONI P., MONTANI C., ROCCHINI C.,
SCOPIGNO R.: External memory management and sim-
plification of huge meshes. In IEEE Transactions on Visu-
alization and Computer Graphics (2003), pp. 525–537.

[HLK01] HO J., LEE K., KRIEGMAN D.: Compressing
large polygonal models. In IEEE Visualization (2001),
pp. 357–262.

[HM90] HABER R. B., MCNABB D. A.: Visualization
idioms: A conceptual model for scientific visualization
systems. In Visualization in Scientific Computing (1990),
IEEE, pp. 74–93.

[IL05] ISENBURG M., LINDSTROM P.: Streaming
meshes. In Visualization (2005), IEEE, pp. 231–238.

[KCH02] KOREN Y., CARMEL L., HAREL D.: ACE: A
fast multiscale eigenvector computation for drawing huge
graphs. In IEEE Visualization (2002), pp. 137–144.

[Lin00] LINDSTROM P.: Out-of-core simplification of
large polygonal models. In Siggraph (2000), pp. 259–
262.

[LJZ06] LIU R., JAIN V., ZHANG H.: Subsampling for
efficient spectral mesh processing. In Computer Graphics
International (2006), pp. 172–184.

[LMST99] LAW C. C., MARTIN K. M., SCHROEDER

W. J., TEMKIN J.: A multi-threaded streaming pipeline
architecture for large structured data sets. In Visualization
1999 (1999), IEEE, pp. 37–44.

[LPC∗00] LEVOY M., PULLI K., CURLESS B.,
RUSINKIEWICZ S., KOLLER D., PEREIRA L., GINZTON

M., ANDERSON S., DAVIS J., GINSBERG J., SHADE J.,
FULK D.: The digital michelangelo project: 3D scanning
of large statues. In Siggraph (2000), pp. 131–144.

[LPL05] LEVER L. M., PERRIN J. S., LEAVER G. W.:
Integrated parallel rendering for AVS/Express. CSAR Fo-
cus, 14 (2005), 19–21.

c© The Eurographics Association 2007.

228

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CurlzMT
 /DfW5Printer
 /DfW5PrinterBold
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /FelixTitlingMT
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrenchScriptMT
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /ImprintMT-Shadow
 /Kartika
 /Latha
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /MaiandraGD-Regular
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /Oc_020
 /Oc_021
 /Oc_030
 /Oc_200
 /Oc_210
 /Oc_211
 /Oc_220
 /Oc_221
 /Oc_251
 /Oc_260
 /Oc_270
 /OCRAbyBT-Regular
 /OCRAExtended
 /OCRB10PitchBT-Regular
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Pristina-Regular
 /Raavi
 /RageItalic
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /Shruti
 /SureThingDVDSymbolsII
 /SureThingSymbols
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Ucs_020
 /Ucs_021
 /Ucs_030
 /Ucs_200
 /Ucs_210
 /Ucs_211
 /Ucs_220
 /Ucs_221
 /Ucs_251
 /Ucs_260
 /Ucs_270
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.001 842.000]
>> setpagedevice

