EG UK Theory and Practice of Computer Graphics (2007)
Ik Soo Lim, David Duce (Editors)

Level of Detail for Physically Based Fire

Odd Erik Gundersen and Lars Tangvald

Norwegian University of Science and Technology, Trondheim, Norway

Abstract

In this paper, we propose a framework for implementing level of detail for a physically based fire rendering
running on the GPU. The physics of the fire is simulated using a fluid solver and combustion modelling, and the
fire is visualised using a particle system. Our preliminary results indicate that by adjusting the simulation domain
and particle system, performance can be increased without noticeably degrading the fire visually when it is far

from the camera.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism, Animation

1. Introduction

Computer games push the limits of real-time graphics, and
current titles like Gears of War™and The Elder Scrolls:
Oblivion™have stunning graphics. Still, there is a long way
to go until virtual environments are mistaken for real ones.
Generally, games that take place in cities look more realis-
tic than games that take place in natural environments. Con-
trary to human-build structures, natural phenomena are very
complex, and thus hard to visualise in a realistic manner,
especially in real-time. Until natural phenomena are ren-
dered in a convincing way, virtual environments will look
exactly like that; virtual. Our belief is that rendering of natu-
ral phenomena should be based on the laws of physics. How-
ever, there are problems related to this philosophy as solving
equations describing the laws of physics often are computa-
tionally very demanding. This is because either lots of small
equations need to be computed or that the solutions only can
be approximated numerically using methods needing several
iterations.

Our focus is on realistic rendering of fire. As many other
natural phenomena, like smoke, water, and explosions, fire
can be simulated using computational fluid dynamics (CFD).
CFD methods used for creating realistic flames have gener-
ally been too computationally demanding for real-time im-
plementations [TOT*03] [LF02]. But as hardware is becom-
ing increasingly more powerful, this is changing. In recent
years, numerous methods for rendering realistic fire that run
in real-time have been published [ZWF*03] [AH05] [BF06].

(© The Eurographics Association 2007.

Although the papers referenced above describe real-time
techniques for rendering physically based fire, they are not
easily utilised in a virtual environment. This is because they
use large amounts of the resources available to render the fire
only, even when the fires are far away from the camera and
are not important to the scene. Similar problems related to
object geometry are solved using level of detail (LOD) algo-
rithms. LOD algorithms seek to reduce the detail of object
geometry without creating a visual difference. Reducing the
detail of the objects leads to shorter processing time, which
again leads to higher frame rates. However, there is a lack
of research on LOD algorithms for fluid dynamics system in
the literature. We aim to develop a framework that enables
the inclusion of a physically based fire into a virtual environ-
ment.

Our goal is to enhance our previous work on real-time
fires presented in [RSG06] and [GRS06] with a LOD algo-
rithm that reduces the computational cost without creating a
notable difference in visual quality. As both the simulation
and visualisation is completely executed on the GPU, this is
a requirement for our LOD algorithm too. The framework is
still under development, and the results presented in this pa-
per are preliminary. In spite of that, the results indicate that
we are on the right track.

Our contribution. The collection of methods presented
in this paper is a first step to towards a fully GPU imple-
mented LOD framework for rendering physically based real-
time fires. Solutions for both the simulation part and visual-
isation part of the fire rendering process are presented. Dy-

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org

214 0dd Erik Gundersen & Lars Tangvald / Level of Detail for Physically Based Fire

namically resizing the resolution of the simulation domain
together with simulation step skipping are the methods pro-
posed for reducing the computational cost of the simula-
tion, while particle size adjustment and particle count resiz-
ing are used for reducing the cost of the visualisation step.
The framework can easily be extended to work for animating
both smoke and explosions.

This paper is organised as follows. After a brief overview
of related work, an introduction of the fire rendering algo-
rithm is presented. Then, the LOD framework is proposed
followed by preliminary results. The paper concludes with
summary and future work.

2. Related Work

As physically based fires traditionally have been too compu-
tationally demanding for real-time applications, several non-
physical methods have been developed. The most promi-
nent non-physically based method is presented in [Ngu04].
They use video-textured sprites for creating believable rag-
ing fires with smoke in real-time. In order to add variety
to the flames, two flame animations are combined in var-
ious ways. Another non-physical approach is presented in
[KCROO]. They use volume rendering in combination with
a set of textures to visualize animated amorphous materials
such as fire, smoke, and dust. Dynamics and illusion of mo-
tion are created through cycling the textures in each voxel.
In [FMFO6], a method that uses a photometric solid defining
luminous intensities for a set of zentihal and azimuthal direc-
tions is presented. The intensities are stored in a 2D texture
and by rotating this texture the fire is animated.

We have not been able to find any previous work on LOD
algorithms used with physically based fires. There are how-
ever a plethora of literature published on LOD. LOD for
graphics is generally divided into three different types of
methods according to [LRC*03]. These are discrete, which
uses different versions of objects generated before starting
the application, continuous, which generates new versions of
the object during run-time, and view-dependant, which gen-
erates multiple detail levels of the same object during run-
time.

[HDO4] presents a list of of conditions that determines
the importance of an object to the current frame. Among
these conditions are velocity of the objects, distance from
camera, size, and whether the objects are completely or par-
tially visible. LOD has been applied to object geometry
[CCSS05] [DHDSO05] including terrain [Hop98] [RHSS98],
physics [HC97] [FC97], and autonomous behaviour of ob-
jects not controlled by the user, like computer played charac-
ters and effect from weapons [OCV*02]. [OFLO01] presents
a method for clustering particles together to increase calcu-
lation efficiency of particle systems.

3. Rendering Physically Based Fire

The fire rendering process is divided into two parts. First,
the fire is simulated, and then the simulation is visualised.
Simulation is the most computationally demanding process
because it solves a fluid system. This fluid system evolves
four fields controlling the temperature, the amount of ex-
haust gas, the amount of fuel, and the velocity in the simu-
lation domain. The simulation domain is the limited volume
where the fire can burn.

After simulation, the state of the fluid system is visualised
using a particle system of textured particles. The particles
flow through the simulation domain guided by the velocity
field. For each voxel in the simulation domain, a fire colour
is computed and stored in a table called the fire colour field.
The particle’s texture colour is looked up in the fire colour
field based on the particle’s position.

The rest of this chapter gives a brief overview of the fire
rendering process. For a detailed description of the complete
method, see [RSGO06].

3.1. Simulating Fire

The fire is simulated by evolving a fuel gas field, an exhaust
gas field, and a temperature field in co-evolution with a ve-
locity field. These fields are governed by the Navier-Stokes
equations and the combustion process, which converts fuel
gas to exhaust gas and heat when the temperature exceeds
a certain threshold. Buoyancy due to heat then causes the
hot exhaust gas to rise, which in combination with vorticity
confinement, cause the characteristic fire-like motion.

3.1.1. The Simulation Domain

We use a voxel data structure to represent the simulation do-
main and will refer to each unit as a cell. The simulation do-
main limits the volume where a fire is simulated. There are
two different kinds of cells in the simulation domain; interior
cells and boundary cells. Each cell contains a corresponding
field value. When discretizing the fields into cells, the field
values are defined in the centre of the cells and assumed to
be uniform inside each one. As for boundary conditions, the
boundary cells are set to 0 in the density fields and to the
wind vector for the velocity field.

3.1.2. Velocity field

The velocity field u is governed by the Navier-Stokes equa-
tions for incompressible flow with zero viscosity, also known
as the Euler equations:

ou

57—(U~V)U—Vp+F (1)

V-ou=0 2)

(© The Eurographics Association 2007.

0dd Erik Gundersen & Lars Tangvald / Level of Detail for Physically Based Fire 215

The first term on the right-hand side of equation 1 is the
self-advection of the velocity causing velocity to move along
itself. The second term, —V p, is the pressure gradient caus-
ing velocity to move from areas of high pressure to areas
of low pressure. The pressure field is used as a correct-
ing term ensuring that equation 2 holds. Equation 2 is the
non-divergence condition, which states that the velocity field
should be mass conserving. The last term on the right hand
side of equation 1 is the external force acting on the velocity
field. The external force actually consists of several separate
forces as shown in equation 3:

F= fvorticity + fgruviry + fbuoyancw (3)

where fyoriciry 18 the vorticity confinement force, foraviry
is the gravity force due to fuel and exhaust gases, and
Jbuoyancy 1s the buoyancy force due to heat.

3.1.3. Fire density fields

The three separate scalar fields specifying the amount of fuel
gas, exhaust gas, and heat distributed throughout the sim-
ulation domain are collectively referred to as the fire den-
sity fields. These three scalar fields are evolved by the same
equation:

%”tl = —u-Vd+x,Vd—04d+S4+Cs (4

The parameter d is a scalar quantity that represents either
the amount of fuel gas, exhaust gas, or temperature in a cell
in the simulation domain; denoted by g, a or T respectively.
Equation 4 describes the evolution of a scalar field over time
in the simulation domain as the velocity field u affects the
scalar field. We use a slightly modified form of the equations
described in [Sta99].

The first term on the right-hand side in equation 4 gov-
erns the advection of the scalar quantity d by the velocity
field u, while the second term governs the diffusion of the
scalar quantity d. x, is the diffusion constant controlling
the amount of diffusion associated with each of the density
fields. Furthermore, the third term governs the dissipation
of the scalar quantity d where o; denotes the dissipation
rate. The dissipation rate ensures that fuel gas, exhaust gas,
and temperature will decrease over time. S; denotes a source
term used for increasing the scalar quantity d. Only the fuel
gas field has a source, which is used for injecting fuel, while
temperature and exhaust gas are produced solely in the com-
bustion process. Cy is the combustion term that controls the
effect of the combustion process on a specific density field.

3.2. Visualising Fire

Using a precomputed black-body radiation lookup table, a
fire colour field is computed based on the exhaust gas and

(© The Eurographics Association 2007.

temperature fields. The fire is visualised using a particle sys-
tem, and the particle positions are updated based on the ve-
locity field, and the particle colours are read from the fire
colour field. Smoke is implemented in a separate particle
system, and the light intensity is based on the fire colour
field.

3.2.1. Computing the fire colour field

We use Planck’s formula for black-body radiation (equation
5) in order to calculate the intensity radiated by the hot ex-
haust gas.

21the?

By\(T) = m

(&)

By using the wavelengths of red, green, and blue light and
the temperature of the gas, we calculate the three intensities
Byed, Bgreen, and Byy,,.. These intensities have a very high dy-
namic range whereas the resulting colour should have a lim-
ited dynamic range suitable for display on traditional com-
puter monitors. To map the given intensities between 0 and
1, we use the exponential mapping function from [Mat97]:

—L
n =1 — eLaverage 6)

L is the original intensity, and Layerqge is @ constant con-
trolling the overall brightness. The resulting intensity n will
be in the range [0,1).

Equations 5 and 6 are used to precompute black-body ra-
diation colour values for a user specified range of tempera-
tures, which are stored in a one dimensional lookup table.

At the beginning of each visualization step, the exhaust
gas and temperature fields are used in combination with the
black-body radiation lookup table in order to compute the
fire colour field. This is done for each cell in the simula-
tion domain. Equation 7 shows how the colour ¢ in the fire
colour field is computed based on the temperature 7', exhaust
gas a, and a temperature scaling factor Ty.,;., which is used
to control the resulting brightness of the fire. lookup is the
black-body radiation lookup table.

¢ = a X lookup (TscaleT))

3.2.2. Visualisation using two particle systems

We visualize the fire and the smoke using separate particle
systems defined in the simulation domain. By computing
a separate smoke field instead of trying to incorporate the
smoke into the fire colour field, we get more control over the
appearance and the amount of smoke produced in the fire.
Each particle represents a small element of the fire or the

216 0dd Erik Gundersen & Lars Tangvald / Level of Detail for Physically Based Fire

smoke and has a set of associated variables: spawn position,
current position, initial spawn delay, current velocity, and
colour. Spawn position and initial spawn time are given at
the beginning of the simulation, whereas the other variables
are dynamically updated. A particle’s colour is specified by
an RGBA colour value. The amount of smoke is computed
based on the temperature at a given cell and the amount of
exhaust gas, quite similar to how the fire colour field is gen-
erated.

Initially, after the given spawn delay, a particle’s position
is set to the spawn position of the particle. A simple Euler
step is later used to update a particle’s position:

X; = X; + V;0t, (8

where x; and v; are the position and velocity of particle
i respectively and & is the timestep. Based on the particle
position, the particle’s velocity and colour are found by in-
terpolating samples from the discretized simulation velocity
and fire colour fields.

When a particle’s intensity drops below a certain thresh-
old, it is respawned by resetting its position to its spawn po-
sition. A minimum initial lifetime ensures that the particle
is not respawned before it has had a chance to enter the fire.
Particles are textured to create more low-level detail.

3.3. Additional Properties

Fires interact with their surroundings. Our fire implementa-
tion reacts to dynamic wind, looks realistic when moved, and
illuminates surrounding objects. Wind is generated dynami-
cally by utilising Perlin noise curves [Per85]. The wind vec-
tor operates on the simulation domain. Simulation domain
advection is used for moving the fire around. The simulation
domain and the particles are advected using the distance vec-
tor, which is the distance between the new and old position.

In addition, lights with dynamically set intensities are im-
plemented. One or more point light sources are placed inside
the simulation domain, and based on their position in the
simulation domain the light intensities are computed from
the amount of exhaust gas and temperature at their respec-
tive position. The dynamic lighting produces the flickering
light often associated with fires.

4. Level of Detail Framework

As shown above, rendering of fire is a complex task with
several steps utilising different technologies. Thus, there are
several possible ways to reduce the computational load. We
propose four different strategies, and they are:

Simulation domain resizing: The resolution of the sim-
ulation domain is changed according to the distance be-
tween the fire and the viewer. At close range, the simula-

tion is done at maximum resolution, while reduced with
prolonged range.

Simulation step skipping: By skipping simulation steps
when the fire is not significant to the view, lots of re-
sources can be saved. The visualisation steps are not
skipped though.

Particle count adjustment: The amount of particles in the
particle system is reduced when the camera moves away
from the fire and increased when moving towards it.

Particle resizing: The size of the particles is increased
when reducing the particle count and decreased when the
particle count rises.

The following sections describe in detail the different
strategies used in our LOD algorithm for physically based
fire rendering.

4.1. Overall LOD

The overall LOD of an object is a value describing how de-
tailed the object should be rendered. Two LOD conditions
determines the overall LOD, and these are view culling and
distance.

View culling determines whether the fire is inside the view
or not. The angle between the camera’s view direction and
the line from the camera to the fire is calculated. If the angle
exceeds a certain value, the fire is determined to be outside
the view, and no further calculations are performed.

The distance between the camera and the fire is calculated.
The detail level of the fire decreases linearly as the distance
increases. This strategy is based on the assumption that a fire
seen at a distance need less details to be visually convincing.
The LOD value for distance is calculated by the formula:

b
lod = —
od =, ©)

where b is the maximum distance the camera can be away
from the fire while still rendering the fire at full detail, and d
is the distance between the fire and the camera.

4.2. Simulation Domain Resizing

The most computational demanding step in our fire render-
ing algorithm is solving the fluid dynamics system. There-
fore, reducing the amount of computations associated with
solving the fluid dynamics system is most important. Our
solution is to resize the simulation domain according to how
important the fire is to the scene. By reducing the size of the
simulation domain, the Navier-Stokes equations are solved
fewer times for each simulation step, and thus the fire need
less resources to render.

The resolution of the simulation domain is changed ac-
cording to the distance between the fire and the viewer. At

(© The Eurographics Association 2007.

0dd Erik Gundersen & Lars Tangvald / Level of Detail for Physically Based Fire 217

close range, the simulation is done at maximum resolution,
while it is reduced when prolonging the range.

To transfer values from the old simulation domain to the
new, a form of bilinear filtering for three dimensions is used.
Each cell in the new simulation domain is given the aver-
age value of the eight closest cells from the old simulation
domain.

4.3. Simulation Step Skipping

In [RSGO6], the simulation is done at each time step. How-
ever, when the flame is not significant to the view, it is
not necessary to perform these calculations for every frame.
Thus, simulation steps may be skipped while letting the par-
ticles used for visualisation travel through the simulation
domain fetching old values from the velocity and fire den-
sity fields. This may, however, lead to a static looking fire if
too many steps are skipped as the simulation in practice is
slowed down.

There are other possible variants to this strategy. One is
to extend the interval between each simulation step while vi-
sualising at constant intervals. This will probably lead to a
more flickering fire, but the simulation is not slowed down
and therefore the fire will not look static. The computational
savings will not be as good as for step skipping as long as the
intervals between simulation runs are less than a full step.
However, the visual quality of the fire animation might be
better. It might, however, be hard to implement a fully work-
ing version of this variant for the GPU.

The other variant of this strategy is a more low-level one.
In stead of skipping or extending the interval between sim-
ulation steps, it is possible to lower the quality of the sim-
ulation. The velocity field simulation may be skipped every
other simulation step, and the velocity field computed last
simulation step may be used to evolve the fire density fields
in the current simulation step. This will, for each skipped ve-
locity field simulation, save the computational cost of solv-
ing twenty iterations of the Jacobi method, which are used
for solving the advection step in the velocity field. Still, the
Jacobi method is used to solve the diffusion step in all three
density fields. Informal tests we have done show that reduc-
ing the diffusion approximation from twenty to four itera-
tions may give satisfying visual results. This strategy will
not save as many GPU cycles as the other two variants, but
the visual quality should be better.

4.4. Particle Count Adjustment

In [RSGO06], the size of the particles and the particle count is
constant. When a particle is no longer visible it respawns at
the base of the fire. When the fire is small or viewed briefly, a
lower particle count is needed as the details of the fire is less
important for the visual quality of the fire. There are several
possible ways of adjusting the particle count.

(© The Eurographics Association 2007.

As in [OFLO1], particles with similar position and speed
may be clustered together when computing the motion of the
particle and visualised individually. Clustering particles may
be a good solution when the motion of the particles are com-
puted individually. The particles in our particle systems fetch
their velocity from the velocity field, and their new positions
are found from their velocity and current position. This is
done in parallel for several particles at once (how many de-
pend on your specific GPU). Another reason for gains in the
frame rate when rendering fire on the GPU is that the fire par-
ticles are not connected in any way. The particles need not
to know anything about other particles and thus only need to
read from its own location in memory. We have not imple-
mented this strategy.

Another option is to cluster neighbouring particles into
one particle that behaves as one both for simulation and vi-
sualisation. As with the other method mentioned above, this
would require knowledge about other particles, which would
decrease the gain of performing the calculations on the GPU.
Therefore this method has not been investigated further ei-
ther.

We use particle respawning together with the cameras dis-
tance from the fire to control the particle count of the parti-
cle system. We define a target respawning variable that is set
based on the distance between the fire and the camera. The
target value is set to all particles in the particle system when
the camera is close to the fire. The farther away the camera is
from the fire, the lower target value. Particles are respawned
until the target value is reached. If the particle count of the
particle system is higher than the target value, no particles
are respawned.

Halting respawning would create a region of the flame
with few or no particles followed by a wall of flame as
respawning restarts. To counteract this, spawning can be
done according to the ratio of current and desired particle
count. For example, if the particle count is twice the target
count only every other particle will respawn until the desired
count is reached.

The target particle count decreases linearly with the fire’s
overall LOD value. The target count ¢ is determined by the
formula

t = basecount x lod, (10)

where basecount is the base particle count used at the
highest detail level and lod is the overall LOD value. Par-
ticles are added to or removed from the fire by altering the
respawn rate of particles instead of adding or removing par-
ticles instantly.

4.5. Particle Resizing

When reducing the number of particles in the particle sys-
tem, the fire may look less dense as the particles are quite

218 0dd Erik Gundersen & Lars Tangvald / Level of Detail for Physically Based Fire

small. Also, strange looking holes may appear in the flame.
To counterbalance this, we adjust the particle size accord-
ing to particle count. If the number of particles is lowered,
the size of each particle is increased in scale to compensate.
Altered particle size only affects newly spawned particles.

Particle size increases logarithmically as the fire’s overall
LOD value decreases. The size of particles s is determined
by the formula:

s =logd, (€8))]

where d is the distance from the camera.

4.6. Other Considerations

For many physical simulations it is important to approximate
the behaviour when not in view. For example, you expect a
ball or a heat-seeking missile to have a certain behaviour
when not in your view. If a ball is thrown out of your view
and bounces on a wall, you expect it to return in the same di-
rection. Also, if a heat-seeking missile is aimed and launched
at you, you will not stop running just because you cannot see
it any longer. Because of the turbulent behaviour of a fire,
you will not have any visual expectations of how the flames
have evolved when not looking at them. Thus, visual expec-
tations of the viewer will not cause any problems.

There is a problem connected to illumination, though. The
fire illuminates its surroundings and the light intensity is set
based on the fire’s properties. Something will have to be
done to approximate the light intensity of the fire as it may be
possible to look at the illuminated surroundings and not the
fire. The fire intensity may be stochastically generated based
on the maximum, minimum and mean temperature of the
fire. In transitions between simulated light intensity and ran-
domly generated, the light intensity will be interpolated be-
tween the last random generated and current simulated value
for a short time interval. The light intensity will be generated
by a proxy simulation when the fire is not in the view.

4.7. The Complete Algorithm

The LOD algorithm shown in Figure 1 is run for each frame.
The algorithm first checks if the fire is visible. If not, the vi-
sualization is disabled, and a simple stochastic simulation is
used to maintain the flickering of the dynamic lights. If the
fire is visible, a single LOD value is calculated based on the
fires distance from the camera as well as a factor determined
by the scale of the scene. The LOD value is used to calculate
a new size for the simulation domain and a new particle tar-
get count and spawn ratio. The simulation domain resizing is
done by using a three dimensional form of bilinear filtering.
When a fire particle is set to respawn the spawn ratio deter-
mines whether no, one or several particles are spawned.

Figure 1: Pseudo code for the LOD framework for our phys-
ically based fire implementation.

5. Results and Evaluation

All tests were run on an intel 1.83GHz Core Duo with
1GB RAM and an NVIDIA Geforce 7600 Go with 512 MB
VRAM. Three different tests have been implemented. The
first one focused on possible LOD methods and ran with-
out a proper fluid simulation. Simulation domain resizing,
step skipping, particle resizing, and particle count adjust-
ment was implemented. The performance gains indicated by
these results did convince us that we were on the right track.

Table 1 shows the result of the second test, which was a
2D fire rendering running on the CPU using different grid
dimensions. As can be seen, the performance increases lin-

(© The Eurographics Association 2007.

0dd Erik Gundersen & Lars Tangvald / Level of Detail for Physically Based Fire 219

early with the size of the grid, with performance roughly
quadrupling when the dimensions are halved. The resulting
flame is shown i figure 3.

5.1. Results

Grid size | Frame rate

128x128 12.76
64x64 51.25
32x32 202.54
16x16 798.68

Table 1: Performance results for the second test: two-
dimensional flame using different simulation domain sizes.

Table 2 shows the performance result from the third test.
A 3D fire that ran completely on the GPU with different grid
dimensions and particle counts was tested, see figure 2 for
the visual result. The tests were run with the camera a con-
stant distant from the fire. As expected, the impact from al-
tering the particle count is greater when the grid dimensions
are small, as the simulation dominates the calculation com-
plexity when the dimensions are larger. This indicates that
altering particle count needs to be combined with altering
the simulation dimensions to be effective.

Grid size
Particle count | 16x24x16 | 24x36x24 | 32x48x32
512 43.27 20.87 6.28
1024 37.12 18.19 6.12
2048 29.20 14.19 5.94
4096 20.11 10.07 5.54
8192 12.37 7.86 4.87
16384 7.64 5.78 3.93

Table 2: Performance results (frames per second) for the
third test with a three-dimensional flame using different sim-
ulation domain sizes and particle counts.

6. Summary and Future Work

We have presented an algorithm for combining dynamic
LOD with physically based fire rendering on the GPU. The
algorithm is based on changing the size of the simulation
domain and altering the particle system to increase perfor-
mance of the fire rendering when the fire is far away or
not visible. While the work is still incomplete, the prelimi-
nary results presented indicate that the algorithm should give
good performance gains without significantly degrading the
visual appearance of the fire when it is far away from the
camera.

Future work will include implementing the complete
framework for execution on the GPU to get conclusive re-
sults.We will also investigate additional ways to calculate

(© The Eurographics Association 2007.

Figure 3: Screen captures from the second test. The figure
shows three different 2D fire renderings with simulation do-
main dimensons 32x32, 64x64 and 128x128.

the relative importance of the fire, for instance determining
whether other objects obscure the camera’s view of the fire.

References

[AHO5] ADABALA N., HUGHES C. E.: Grid-less control-
lable fire. Game Programming Gems 5 (K. Pallister, Ed.),
Charles River Media (2005), 539-549.

[BFO6] BALCI M., FOROOSH H.: Real-time 3d fire simu-
lation using a spring-mass model. Multi-Media Modelling
Conference Proceedings, 2006 12th International (2006),
8pp.

[CCSS05] CALLAHAN S. P., COMBA J. L. D., SHIRLEY
P., SiLvA C. T.: Interactive rendering of large unstruc-
tured grids using dynamic level-of-detail. Visualization,
2005. VIS 05. IEEE (October 2005), 199-206.

[DHDS05] DUGUET F., HERNANDEZ C., DRETTAKIS
G., SCHMITT F.: Level of detail continuum for huge ge-
ometric data. SIGGRAPH 2005 (2005).

[FC97] ForSYTH D., CHENNEY S.: View-dependent
culling of dynamic systems in virtual environments. Pro-

ceedings 1997 Symposium on Interactive 3D Graphics
(1997), 55-58.

[FMF06] F.B.-L., M. L., F R.: Afigraph 006: Enhanced
illumination of reconstructed dynamic environments us-
ing a real-time flame model. In Proceedings of the 4th
international conference on Computer graphics, virtual
reality, and interaction in Africa (Aire-la-Ville, Switzer-
land, Switzerland, 2006), ACM Press.

[GRS06] GUNDERSEN O. E., R@DAL S., STORLI G.:
Physically based simulation and visualization of fire in
real-time using the gpu. In Eurographics UK Chapter

220 0dd Erik Gundersen & Lars Tangvald / Level of Detail for Physically Based Fire

Figure 2: Screen captures from the third test. Fire rendering at different distances using 20, 200, and 4000 particles and

simulation domain dimensions 16x24x16.

Proceedings: Theory and Practice of Computer Graph-
ics 2006 (Aire-la-Ville, Switzerland, 2006), Eurographics
Association, pp. 13-22.

[HC97] HODGINS J., CARLSON D.: Simulation levels
of detail for real-time animation. Graphics Interface *97
(1997), 1-8.

[HDO4] HEeok T. K., DAMAN D.: A review on level of
detail. Computer Graphics, Imaging and Visualization,
2004 (2004), 70-75.

[Hop98] HOPPE H.: Smooth view-dependent level-of-
detail control and its application to terrain rendering. Pro-
ceedings of the conference on Visualization 98 (1998),
35-42.

[KCROO] KING S. A., CRAWFIS R. A., REID W.: Fast
volume rendering and animation of amorphous phenom-
ena.

[LFO2] LAMORLETTE A., FOSTER N.: Structural model-
ing of flames for a production environment. Proceedings
of the 29th annual conference on Computer graphics and
interactive techniques (2002), 729-735.

[LRC*03] LUEBKE D., REDDY M., COHEN J. D.,
VARSHNEY A., WATSON B., HUEBNER R.: Level of
Detail for 3D Graphics. Morgan Kaufmann Publishers,
2003.

[Mat97] MATKOVIC K.: Tone Mapping Techniques and
Color Image Difference in Global Illumination. PhD
thesis, Institute of Computer Graphics and Algorithms,
Vienna University of Technology, Favoritenstrasse 9-
11/186, A-1040 Vienna, Austria, 1997.

[Ngu04] NGUYEN H.: Fire in the “vulcan” demo. In
GPU Gems: Programming Techniques, Tips, and Tricks
for Real-Time Graphics, Fernando R., (Ed.). Addison-
Wesley Professional, 2004, pp. 87-105.

[OCV*02] O’SULLIVAN C., CASSELL J., VILHJALMS-

SON H., DINGLIANA J., DOBBY S., B. MCNAMEE
C. PETERS T. G.: Levels of detail for crowds and groups.
Computer Graphics Forum, Volume 21 number 4 (2002),
733-741.

[OFLO1] O’BRIEN D., FISHER S., LIN M. C.: Automatic
simplification of particle system dynamics. Computer An-
imation, 2001. The Fourteenth Conference on Computer
Animation. Proceedings (2001), 210-257.

[Per85] PERLIN K.: An image synthesizer. In SIGGRAPH
’85: Proceedings of the 12th annual conference on Com-
puter graphics and interactive techniques (New York, NY,
USA, 1985), ACM Press, pp. 287-296.

[RHSS98] ROTTGER S., HEIDRICH W., SLUSALLEK P.,
SEIDEL H.-P.: Real-time generation of continuous levels
of detail for height fields. Proc. 6th Int. Conf. in Central
Europe on Computer Graphics and Visualization (1998),
315-322.

[RSG06] R@DAL S., STORLI G., GUNDERSEN O. E.:
Realistic 2d fire in real-time. In Norsk Informatikkonfer-
anse NIK 2006 (Trondheim, Norway, 2006), Tapir Forlag,
pp- 189-200.

[Sta99] StaMm J.: Stable fluids. In SIGGRAPH ’99:
Proceedings of the 26th annual conference on Com-
puter graphics and interactive techniques (New York,
NY, USA, 1999), ACM Press/Addison-Wesley Publishing
Co., pp. 121-128.

[TOT*03] TAKESHITA D., OTA S., TAMURA M., FuIll-
MOTO T., MURAOKA K., CHIBA N.: Particle-based vi-
sual simulation of explosive flames. Computer Graphics
and Applications, 2003. Proceedings. 11th Pacific Con-
ference on (2003), 482-486.

[ZWF*03] ZHAO Y., WEI X., FAN Z., KAUFMAN A.,
QIN H.: Voxels on fire. Proceedings of the 14th IEEE
Visualization 2003 (VIS’03) (2003), 36.

(© The Eurographics Association 2007.

