EG UK Theory and Practice of Computer Graphics (2007)
Ik Soo Lim, David Duce (Editors)

Data Driven Graphical Applications: A Fluid approach

A. Jones and C. Mantle and D. Cornford

Knowledge Engineering Group, Computer Science, Aston University, Birmingham, UK

Abstract

The inclusion of high-level scripting functionality in state-of-the-art rendering APIs indicates a movement toward
data-driven methodologies for structuring next generation rendering pipelines. A similar theme can be seen in the
use of composition languages to deploy component software using selection and configuration of collaborating
component implementations. In this paper we introduce the Fluid framework, which places particular emphasis
on the use of high-level data manipulations in order to develop component based software that is flexible, exten-
sible, and expressive. We introduce a data-driven, object oriented programming methodology to component based
software development, and demonstrate how a rendering system with a similar focus on abstract manipulations
can be incorporated, in order to develop a visualization application for geospatial data. In particular we describe
a novel SAS script integration layer that provides access to vertex and fragment programs, producing a very con-
trollable, responsive rendering system. The proposed system is very similar to developments speculatively planned
for DirectX 10, but uses open standards and has cross platform applicability.

Categories and Subject Descriptors (according to ACM CCS): D.2.11 [Software Engineering]: Software Architec-
tures 1.3.3 [Computer Graphics]: Methodology and Techniques D.2.13 [Software Engineering]: Reusable Software

1.3.8 [Computer Graphics]: Applications

1. Introduction

Data processing is at the heart of almost all modern software.
Various paradigms are used to develop software for the spe-
cific requirements. In the traditional view of computer pro-
grams, they are seen as the flow of data through a fixed set of
processes to produce the desired output. In recent years more
attention has been paid to ideas of data driven programming,
especially in the computer games industry. Data driven pro-
gramming means that data passed into the program affects
not only the behaviour, but also the structure, of the exe-
cutable program. Thus the distinction between data, script-
ing and code is more and more blurred. In this paper we
describe a framework, Fluid, that supports data driven pro-
gramming concepts and will incorporate a data driven ren-
dering system that can support near-photorealistic visualiza-
tions at interactive frame-rates.

Fluid is a component framework with a particular empha-
sis on driving runtime behaviour via high-level abstractions
and data manipulations. In the Fluid framework, data drives
the logical and behavioural composition of a component-
based application. Fluid utilises concepts available to the
object oriented programming paradigm to support expres-

(© The Eurographics Association 2007.

sive composition and manipulation of small scale software
implementations. Fluid thus introduces object-oriented data-
driven programming (OODDP) to the field of component
based software development [JC06].

Fluid’s movement toward higher-level abstractions re-
flects a similar trend in popular modern rendering APIs.
While previous graphics hardware architectures have pro-
vided limited facilities for the description of object appear-
ances and special effects, modern hardware and software
APIs allow a wide range of effects to be described using a
variety of high level languages. Furthermore, a small num-
ber of state-of-the-art APIs (such as CgFX and DirectX 10)
offer an additional level of abstraction, whereby multiple ef-
fects may be chained together via an abstract scripting sys-
tem written within the effect scripts themselves.

The paper is organised as follows: Section 2 describes
the design of a high-level scripting interface to a high-
performance rendering pipeline, placing the design within
the context of both previous advances and modern standards
in rendering technology. We describe the development of a
scripted rendering system that will form part of a compo-
nent based application, whose initial domain is the visual-

delivered by

www.eg.org

-G EUROGRAPHICS
: DIGITAL LIBRARY

http://www.eg.org
http://diglib.eg.org

188 A. Jones & C. Mantle & D. Cornford / Data Driven Graphical Applications

ization of geospatial scenes. Section 3 provides an overview
of the Fluid project, relating its current incarnation to an ear-
lier prototypical implementation. We describe our plans to
include a data-driven rendering system as part of the final
proof-of-concept system. Focusing on the use of data-driven
methodologies, we describe how application composition
and runtime behaviour may be driven by high-level data ma-
nipulations. We conclude in Section 4 with an overview of
the relationship between the Fluid framework and the ren-
dering technologies described.

2. A data-driven rendering pipeline

The complexity and dynamic nature of modern real-time
rendering software has matched the extraordinary power and
flexibility of modern graphics hardware. Simple textured
surfaces have been replaced by near-photorealistic represen-
tations using physical approximations, and developers now
have the ability to apply film-quality pre- and post-process
effects to rendered scenes. A generic real-time render system
must give developers and artists low-level control of the ren-
dering process, whilst still maintaining the speed required
for real-time applications.

We propose a generic, data-driven render system to sit be-
tween client application and graphics library (GL), which
uses text-based, human-readable descriptions of effects and
a scripting component to abstract the vast majority of the
logic required to generalize the creation and use of effects.
The PirateHat render system library (PirateHatIRS), cur-
rently under development, operates on one or more effect
definition files, each containing chains of embedded pipeline
control scripts.

2.1. Architecture of graphics hardware, past to present

The typical render pipeline, as employed by the majority of
modern graphics hardware, can be seen in Figure 1.

Vertex

Connectivity
Transformed
Vertices Vertices Primitive
Vertex Assembly
Transformation and
Rasterization
Pixel
Positions
Fragments
Fragment
o;‘:::z"s Texturing
Pixel Coloured and Colering
Updates Fragmenis

Figure 1: A typical hardware render pipeline.

The render pipeline, however, does not simply concern the

graphics hardware. Its layered nature is illustrated in Fig-
ure 2. A rendering pipeline extends out of the graphics hard-
ware, through its driver and a graphics library, into the appli-
cation. The capabilities of graphics hardware, however, have
always determined the capabilities of higher-level abstrac-
tions.

5]]]
«2| |82 |85 &8
SBINETINE SINE | N ul
R ezl as ~
== ® Ve B [
0o E: |LQ - @

{9- o ‘0 oz

Figure 2: The four layers which make up a rendering
pipeline, from the most abstract level to the finished, ren-
dered image.

2.1.1. Fixed function rendering pipelines

Early commercially-available GPUs had fixed pipelines,
which conformed to the specifications of one or more spe-
cific graphics libraries. The rendering available through
fixed-function GPUs was very limited, allowing only the
material properties, texturing and lighting prescribed by the
specification of the GL in use. Once vertex and texture data
was submitted to the GPU through a GL, client applications
had no direct control over the rest of the rendering process;
the data was pushed through the pipeline, and the resulting
rasterization was displayed.

2.1.2. Configurable rendering pipelines

The limitations of fixed-functionality pipelines were partly
addressed by the next generation of GPUs, through the in-
troduction of configurable pipelines. Configurable pipelines
allowed developers to indirectly manipulate the rasterization
of fragments by configuring the inputs and outputs of com-
biner registers inside the GPU. This provided more flexi-
bility in shading, allowing more realistic lighting based on
more complex physical models, and enabling developers to
use effects such as bump mapping in real-time rendering for
the first time. However, the way in which configurable func-
tionality was exposed was at times complicated and unintu-
itive, and based in part on vendor-specific extensions. This
required client applications to provide multiple render paths
for different hardware, each utilizing the functionality avail-
able to a specific set of GPUs.

2.1.3. Programmable rendering pipelines

The next leap forward in graphics hardware saw the intro-
duction of programmable GPUs, where vertex and fragment
processing is performed by dedicated programmable sub-
processors with their own instruction sets. Through Shader
Model version 1.x in Direct3D 8.0, and vendor-specific ver-
tex and fragment program extensions in OpenGL, develop-
ers were given the freedom to completely rewrite parts of the

(© The Eurographics Association 2007.

A. Jones & C. Mantle & D. Cornford / Data Driven Graphical Applications 189

rendering pipeline which reside on the server (GPU) side.
This was achieved by submitting to the GL two programs,
both written in dedicated assembly languages: one which re-
placed the vertex processing part of the pipeline, and another
which replaced the fragment rasterization part.

Further advancements in GPU technology have permit-
ted longer, more advanced programs to be written; this has
been reflected in the two dominant graphics APIs. Shader
Model version 2.0 and the High-Level Shading Language
(HLSL) arrived with Direct3D 9, version 3.0 was added in a
later revision, and version 4.0 will be central to Direct3D 10.
Vendor-specific extensions to programmable functionality in
OpenGL were combined and standardized by the ARB into
ARB_vertex_program and ARB_fragment program; ver-
sion 2.0 of OpenGL added support for the OpenGL Shading
Language (GLSL).

2.2. Current technologies

The advances in GPU hardware have continued apace, with
designers and manufacturers taking advantage of new tech-
nology, ever-increasing GPU clock speeds and the parallel
nature of rendering to keep the latest generation of graph-
ics cards ahead of even the speed increases predicted by
Moore’s Law [Moo65].

Probably the most significant recent development has
been the replacement of low-level assembler with dedicated
shading languages, which are closer to the programming lan-
guages used to create code for CPUs, and therefore much
more intuitive. Direct3D 9 introduced HLSL, and version
2.0 of OpenGL included new ARB-approved extensions for
writing GPU programs using GLSL. A third language, Cg (C
for Graphics), was developed by NVIDIA in parallel with
HLSL, and can be used with both OpenGL and Direct3D.
Sh, originally part of the SMASH project [MQPO02], offers
an alternative approach to manipulating GPU behaviour us-
ing high level scripts embedded in the application code.

HLSL, GLSL and Cg use a C-like syntax, familiar to most
programmers, with implicit support for composite data types
like floating-point vectors and matrices. Sh provides similar
capabilities via its C++ types and operators.

2.3. A scripted approach to rendering pipelines

While the power and programmability of modern graphics
hardware and GLs permits developers to create complex sur-
face, pre-process and post-process effects, the logic required
to implement these effects in a generic way extends far be-
yond the GL and GPU, into the client application itself.

Microsoft have created the FX file format, designed to
package an effect, which uses the concept of techniques and
passes. An effect can have one or more techniques, each of
which targets specific hardware. Techniques have a number
of passes which, when combined, produce the effect. Each

(© The Eurographics Association 2007.

pass holds the required state changes and GPU programs.
Other required objects, such as textures and arbitrary values,
are declared as effect-wide variables. Support for FX files
is built into Direct3D, and is also provided to applications
using either OpenGL or Direct3D through NVIDIA’s CgFX
framework [FKO03].

FX files provide a basic way to modify rendering pipeline
behaviour. However, FX files describe only static state
changes, and on their own do not contain enough infor-
mation to describe a full range of effects. In order to rem-
edy this, Microsoft recently released a standard for adding a
scripting component to FX files, in the form of Standard An-
notation and Semantics (SAS). As SAS script is embedded
in the techniques and passes of effects, complex chains of
script are formed, with each script driving part of the effect
it controls. Operating at a higher level of abstraction than
the shading languages presented in section 2.2, SAS facili-
tates the runtime combination of individual scripts in order
to define more complex and dynamic rendering effects and
processes.

‘ Client Application

Render System
T

‘ Graphics Library

Figure 3: The position of the render system layer with re-
gard to the rendering pipeline.

PirateHatIRS is a C++ library which provides a complete
interface between a client application and the GL by wrap-
ping the CgFX platform with an additional layer of abstrac-
tion (Figure 3). A complete abstraction, in this case, is a re-
quirement; the RS must fully replace calls from the client ap-
plication to the GL. It is infeasible for both the client appli-
cation and the RS to share the responsibilities of interacting
with the GL, due to the rendering methods employed by the
RS, which will be elaborated on shortly. A complete abstrac-
tion also has other benefits. It permits close management and
instancing of resources, and optimizations to the rendering
process. Client applications primarily interact through a Pi-
rateHatIRS IRenderSystem interface object, which is imple-
mented internally as a RenderSystem object.

PirateHatIRS operates on modified FX files, which are
given the file extension *.cgfx, and referred to as shaders
in PirateHatIRS terminology. The modifications required to
convert an FX file to a CgFX file are trivial, mainly thanks to
Cg being almost identical to HLSL, along with the underly-
ing functional similarities between Direct3D and OpenGL.
Some modifications are simple identifier replacements: sub-
stituting "PixelShader" for "FragmentProgram", for exam-
ple. Other modifications are slightly more involved: matri-

190 A. Jones & C. Mantle & D. Cornford / Data Driven Graphical Applications

ces must be converted from the row-major order expected
by Direct3D to the column-major order OpenGL requires.
It would be a simple exercise to write a program which au-
tomated the conversion of FX files into CgFX files; so far,
however, we have relied on manual modification.

The extension of the render pipeline provided by Pirate-
HatIRS relies on SAS scripting. As outlined above, SAS
script is embedded into FX files through "Script" anno-
tations, which provide additional semantic information to
applications. Annotations reside in techniques and passes,
and also in a special effect variable which carries the
STANDARDSGLOBAL semantic. SAS script comprises a
set of commands, each taking the form of an assignment,
each instructing the RS to dynamically change the state of
the GL, the state of the RS itself, or the state of the script exe-
cution. Each script is composed of one or more of these com-
mands, which are executed serially by the RS. Several of the
commands form the basis for loops, and conditional branch-
ing is also permitted through the use of a modified, n-ary ?:
operator. Figure 4 contains some sample SAS script, taken
from the standalone technique of a post-process negative-
image shader.

string Script =
"RenderColorTarget0=SceneTexture;"
"RenderDepthStencilTarget=DepthBuffer;"
"Clear=Color;"
"Clear=Depth;"
"ScriptExternal=color;"
"Pass=p0;";

Figure 4: An example SAS script taken from a negative-
image shader. Note that the individual strings will be con-
catenated to form a single script delimited by semicolons.
Interested readers may refer to the DirectX Standard Anno-
tations and Semantics Reference [Mic] for more informa-
tion.

When client code requests through an IRenderSystem in-
terface that a shader be loaded, the CgFX file specified is
opened through the CgFX framework, and the SAS script is
extracted and parsed. PirateHatIRS contains a class for each
command, based on a common ICommand superclass inter-
face, which perform the task of the command they repre-
sent by calling methods on the RenderSystem object. Com-
mand classes are created sequentially through a factory pat-
tern as required by the ordering of the commands in the
script, and each script is therefore composed of a vector of
commands. Shaders are always one of two types. FX file
terminology refers to these types as "scene" and "object";
PirateHatIRS terminology prefers the RenderMan-inspired
labels "imager" and "surface". The former operate on the
framebuffer before and after rendering of objects has taken
place; the latter operate on objects themselves. Prior to ren-
dering, the client application specifies which imager shaders

it would like applied to the scene before and after render-
ing, and these are placed in an internal list. Each geometric
object in the scene has a surface shader attached when it is
created through the IRenderSystem interface.

During rendering, each imager shader in the list is visited,
and the effect-wide script from it’'s STANDARDSGLOBAL
variable is executed. This script will contain, among other
things, a Technique command, specifying a technique to ex-
ecute, and each of these will contain one or more Pass com-
mands, specifying a pass to execute. The CgFX framework
is used manage the setting of pass states.

In order to be executed, a script has a "frame" created for
it, which contains a copy of the script, a command counter
and other data related to the script’s execution. This is ex-
actly the method through which function calls are handled
by traditional programming languages. Frames are pushed
on to a call stack, and execution of the script at the top of
the stack continues until the script ends, and it’s frame is
popped off the call stack, or until it specifies another script
should execute through the Technique, Pass or ScriptExter-
nal commands. In this way, each script can be thought of
as a function, with all of the scripts together comprising a
program which drives the PirateHatIRS rendering pipeline.

Once all imager shaders in the list have been executed,
the geometric objects which populate the scene are rendered
with their surface shaders (all of which also contain SAS
scripts), and the call stack unwinds as all shaders finish ex-
ecuting. An interesting side-effect of this traditional stack-
based execution (along with correct use of the ScriptEx-
ternal command in the scripts themselves) is that a high-
level execution order of the scripts in the list is guaran-
teed: pre-process shaders execute first, followed by the ren-
dering of scene geometry, and finally post-process shaders
are executed. This is extremely useful to client applications,
as properly-written imager shaders can be added to and re-
moved from the list while only taking into account the re-
spective positions of other shaders in the same category (i.e.
pre- and post- processing).

2.4. Summary

A rendering pipeline is much more than just the familiar
graphics pipeline. The client application itself is a large
and important part, and must be written to control and
take advantage of the hardware available. A scripted ap-
proach to rendering pipelines provides high-level abstrac-
tion, but retains the great flexibility required in rendering.
Wrapping this scripted functionality inside a render sys-
tem layer further enhances the abstraction, permitting an
entire library of code to be reused, and providing a sta-
ble platform for client applications to be built upon and
interact with. Graphics hardware and software will con-
tinue to evolve; render pipeline scripting seems set to be-
come one of the best methods for keeping up with these

(© The Eurographics Association 2007.

A. Jones & C. Mantle & D. Cornford / Data Driven Graphical Applications 191

changes in a manageable and timely fashion. A number of
game developers are already using render pipeline script-
ing to build powerful drag and drop tools (for example,
see http://www.unrealtechnology.com/html/
technology/ue30.shtml).

3. Data-driven applications

The rendering system described in Section 2 was initially
intended to form part of a flexible, extensible framework for
the visualization of geospatial scenes [JCO6]; this framework
has since been named the Fluid prototype. The data-driven
manipulations and abstract descriptions of runtime behav-
iour provided by the PirateHatIRS library form a focal part
of the Fluid prototype. The Fluid prototype is a plug-in based
architecture, which makes use of a collaborating collection
of dynamically linked modules in order to provide runtime
behaviour. The configuration and composition of these mod-
ules is driven by a high-level XML-based composition lan-
guage, which incorporates a novel object-oriented type sys-
tem in order to provide additional flexibility during appli-
cation deployment. Furthermore, we emphasize the use of
the data-driven methodology described above in both plug-
in implementations, and when (dynamically) configuring the
application’s runtime behaviour as a whole. We focus on fa-
cilitating the use of high-level data manipulations to deter-
mine the application’s behaviour on multiple scales: from
altering the functionality of individual plug-ins, through the
formation of more complex behaviour via plug-in associa-
tions and collaborations, to the configuration of application
sub-systems.

The Fluid prototype’s design has evolved to incorporate
themes from component based software development; the
definition of its component model has been generalized to
support a wide range of component types, and its composi-
tion language has been improved to provide additional flex-
ibility, extensibility, and robustness to component software
developers. Section 3.1 provides an overview of the Fluid
project’s current status, while Section 3.2 outlines our fu-
ture plans to re-implement the rendering system described in
Section 2 within the context of the improved Fluid system.

3.1. Fluid: A component framework

Fluid consists of a component framework, component
model, and composition language, with a focus on provid-
ing an environment for the development of data-driven com-
ponent software. Figure 5 gives an illustrative overview,
while the following paragraphs provide a brief description
of Fluid’s constituent parts.

Fluid’s component framework is a generalization of the
Fluid prototype’s high level architecture. As described else-
where [JCO06], the Fluid prototype presented two customiza-
tion points for plug-in based extension: developers could
replace entire subsystems in order to modify functionality

(© The Eurographics Association 2007.

Manipulations:
Composition Language | - Fluid
-Lua

[High-level language i
Type system

T - | Component:
Cﬂm.l?me"l Harogey; Component Model | - Implementation
ype system i
- Specification
- Schema

Deployment space

Type system Component Framework

Figure 5: An overview of Fluid’s architecture, displaying
its three tiers, their respective roles, and main client inter-
actions. Note that the Component Framework provides func-
tionality to the higher-level Fluid tiers, and does not provide
a substantial client interface.

at a coarse level of granularity, and new subtypes of scene
object facets could be introduced in order to provide cus-
tom functionality at a finer scale. By contrast, the Fluid
component framework provides a uniform deployment space
for components of any scale, as long as their design ad-
heres to Fluid’s component model. Fluid’s uniform deploy-
ment space was originally intended to mimic the concept
of namespaces in popular object-oriented languages such as
C++ [Str97], although its current inception is more closely
modelled after Lua’s tables [ler06], and provides a hierarchy
of named value associations. Fluid thus provides a hierarchi-
cal, dynamically typed, globally accessible storage location
in which components may be deployed, configured, inter-
connected and manipulated, with the flexibility and expres-
siveness of Lua, a popular scripting language.

Fluid’s component model builds upon a common design
from component based development. In order to communi-
cate with the Fluid framework, component implementations
must first make use of a given component interface. The
component interface is used to create and manage compo-
nent instances; as part of its focus on data-driven application
functionality the component model also configures a com-
ponent’s runtime behaviour via its interface. The component
interface also provides two facilities for component commu-
nication and collaboration: a procedure binding system, and
an event subscription system. In the case of procedure con-
nections, a component implementation is able to expose its
procedures to the Fluid framework’s deployment space, and
form local proxies to procedures belonging to other compo-
nents. The event subscription system allows components to
expose event types to the deployment space, and form sub-
scription callbacks to other components’ event types. The
Fluid component model thus builds upon the facilities of the
component framework in order to allow for component in-
stantiation, configuration, and collaboration, within the con-
text of a flexible deployment space.

Fluid’s composition language forms a major contribu-
tion of the Fluid project. Building upon the Fluid proto-
type’s configuration files, as well as concepts from rele-
vant research in composition languages [BirO1, TC03], the

http://www.unrealtechnology.com/html/technology/ue30.shtml
http://www.unrealtechnology.com/html/technology/ue30.shtml

192 A. Jones & C. Mantle & D. Cornford / Data Driven Graphical Applications

Fluid framework leverages XML as a language for com-
ponent software composition. An XML based composition
language provides a number of benefits, including platform
independence and a hierarchical structure that maps well
to the Fluid framework’s deployment space. Furthermore,
XML serves as a suitable basis for the declaration of Fluid
components and their configuration and wiring, and provides
a means for composition document validation through the
use of XML schema. Fluid’s composition language includes
mappings for a number of XML types, such as booleans,
floating-point types, integral types, strings, optional values,
sequences and choices between two or more types; these
supported XML types, and additional types based on them,
are used to facilitate type-safe communication between the
Fluid framework, component compositions and their config-
urations, and component implementations at runtime.

Fluid’s composition language is used to form coherent
component software applications from collaborating com-
ponent deployments. A Fluid component deployment con-
sists of three types of file: one or more implementation
libraries (currently Windows dynamically-linked libraries)
implementing the component’s runtime behaviour; a com-
ponent specification, which provides a name for the com-
ponent, and describes the component’s required and pro-
vided procedure and event exposures; and finally an XML
schema specifying how the component’s behaviour may be
configured, if at all. A Fluid developer introduces component
deployments to the Fluid framework via composition files,
whereupon the components become part of the framework’s
integrated type system. Further composition files may in-
stantiate defined components and assign them to Fluid’s de-
ployment space; a component’s configuration (if any) will
be validated by its deployment’s configuration schema, and
any procedure or event connections described by the deploy-
ment’s specification may be used to form links with compat-
ible exposures made by other component instances. In a sim-
ilar manner to existing component frameworks, Fluid com-
ponents may thus be added to the framework’s runtime en-
vironment, instantiated, configured and manipulated to form
collaborating behaviours.

Finally, the Fluid composition language includes an ad-
ditional level of abstraction to component software devel-
opers. Forming a novel link between computer games tech-
nology and the composition language field, we introduce an
object-oriented, data-driven type system that operates at a
macro level to allow for expressive manipulation of compo-
nent compositions. While Fluid components may be instan-
tiated and assigned to the deployment space alone, they may
also form part of much larger component hierarchies, where
the particular selection, hierarchical arrangement, and con-
figuration of collaborating components forms a composition
type at a larger scale. For example, a component software
developer may associate a combination of sibling Appear-
ance and Geometry components as a renderable that may
be passed to a compatible component providing rendering

capabilities. Fluid’s composition language supports the use
of such composition types. Developers may define a given
hierarchical arrangement of component instantiations, con-
figurations, and wiring, and associate them with a compo-
sition type name, which may be used thereafter to instanti-
ate a copy of the associated arrangement. Furthermore, the
composition type is introduced as a prototypical instance in
a types section of the Fluid framework’s deployment space.
Once defined, a composition type may be used to create
additional instances of its component arrangement; alterna-
tively, it may form part of an object-oriented inheritance re-
lationship, whereby child composition types may inherit or
override portions of its parent type’s definition.

Fluid consists of three tiers: the Fluid framework, which
provides a flexible deployment space alongside an XML-
based type system; the Fluid component model, which al-
lows a wide range of component implementations to in-
teract with Fluid’s other constituent parts; and a composi-
tion language, which supports a number of high-level ab-
stractions and manipulations to be described. Together, these
three tiers facilitate the development of expressive compo-
nent software compositions, with a focus on driving runtime
application behaviour using high-level abstractions and data-
driven methods.

3.2. Fully data-driven rendering

The Fluid prototype incorporated two subsystem plug-ins
that were closely tied to the geospatial visualization appli-
cation domain: a scene system, which was responsible for
the management and manipulation of objects representing
the scene’s contents; and a render system, which was re-
sponsible for providing a visualization pipeline to the other
subsystems in the application. Using an early revision of
Fluid’s composition language, application developers could
describe a given geospatial scene as a combination of small-
scale plug-ins and their configurations. The Fluid prototype
also incorporated the object-oriented data-driven manipula-
tions that Fluid’s composition language applies to its com-
position types. The scene system was required to maintain
a scene graph of objects in the scene, and to update their
runtime state by triggering the behaviour provided by the
objects’ constituent plug-ins. Objects with visual representa-
tions included geometry and appearance plug-ins, and would
be passed to the render system once per frame for rendering.

We expect application developers to visualize geospatial
scenes via the Fluid framework using similar techniques to
those described above. However, the Fluid framework’s ap-
plication domain is not restricted to geospatial visualization,
and it provides no native facilities for scene management,
and no default rendering pipeline. In order to validate the
Fluid framework, we aim to replace the Fluid prototype’s
fixed architecture with a collection of corresponding com-
ponents and component configurations. The development of
a PirateHatIRS component is expected to form a substantial

(© The Eurographics Association 2007.

A. Jones & C. Mantle & D. Cornford / Data Driven Graphical Applications 193

part of the resulting visualization application. Section 3.2.1
gives a high-level outline of the methods we intend to use
in order to integrate PirateHatIRS as a Fluid component, and
Section 3.2.2 describes how other component deployments
may interact with it.

3.2.1. A PirateHatIRS Fluid component

Our first task will be to develop a wrapper class that im-
plements the Fluid component model interface, while act-
ing as a thin proxy to the PirateHatIRS library. The resulting
Fluid component, depicted in Figure 6, will expose the Pi-
rateHatIRS library’s interface to the Fluid component frame-
work, and will be responsible for forwarding procedure calls
from collaborating components to their PirateHatIRS equiv-
alents. The Render System component’s specification will
describe the procedures exposed by the Render System com-
ponent, as well as the Fluid types required to communicate
with it. For example, the specification may include defini-
tions for a Vertex type consisting of a sequence of floats,
a Geometry type consisting of a sequence of Vertex types,
an Appearance type that is configured by an Effect type in-
stance (see below), and so on. While the use of XML-derived
types will allow the Fluid framework to support many inter-
face types such as these, there will be a number of types with
their own behaviour that must be defined as related compo-
nent types; we describe the Effect component type as one
such type below. The Render System component will also
require a corresponding configuration schema that describes
its configuration parameters.

An excellent example of the component types we plan to
develop is the Effect component type, which will represent a
data-driven rendering effect that can be attached to geome-
try to support a wide variety of object appearances, and also
applied to the scene as a whole to provide a number of pre-
and post- rendering manipulations. The Effect component
will take either a complete high level SAS script or a path to
an SAS script file, which will be validated using an appropri-
ate XML schema. Upon instantiation, the Effect component
will make use of the PirateHatIRS library to parse the given
effect script, and to form an internal representation that can
be communicated to the Render System component. After
parsing the SAS script, the Effect component will also dec-
orate its own instances with child elements corresponding to
the script’s various parameters.

3.2.2. Using the Render System component

The following paragraphs present an intended usage sce-
nario for a PirateHatIRS component instance as part of a
Fluid visualization application. Figure 7 provides a compli-
mentary illustration to the description given below.

In order to make use of the PirateHatIRS library as part
of a component software visualization application, the com-
ponent developer will first create an instance of a Render
System component, with an appropriate configuration, and

(© The Eurographics Association 2007.

Render System Component Deployment

PirateHat|RS
[

(o ion Schema
Ci

i !
Libra:
o Definitions for
Communication Types

Translation layer Render System Client

Configuration Schema
Effect Component -
Component Specification

Figure 6: An illustration of how the PirateHat|RS library is
to be wrapped as a Fluid component deployment, consisting
of multiple component implementations and interface type
descriptions.

deploy it to the Fluid framework’s deployment space. This
Render System component instance will be analogous to the
Fluid prototype’s singleton rendering subsystem, and will
provide the visualization application’s rendering pipeline
functionality.

In a similar vein to the Fluid prototype’s scene descrip-
tions, the Fluid framework provides a high level of abstrac-
tion and expressiveness for defining geospatial scenes as a
collection of configured component instances. However, the
Fluid framework will not rely upon a dedicated system for
managing such scenes; instead, composition types represent-
ing objects in the scene will be assigned to the Framework’s
hierarchical deployment space, while a collection of visitor
components will be used to manage and manipulate them.

Application developers will describe visible geospatial
objects as composition types including an associated pair of
Geometry and Appearance components. One or more visitor
components will be responsible for collecting visible objects
and communicating their Geometry, Appearance, and other
constituents to the Render System component, which will
then render the object’s visible representation as part of next
frame.

Application developers will also be able to invoke Render
System components directly in order to attach and detach
pre- and post- rendering effects. Alternatively, effects may
be added and removed by procedural calls made by other
components, they may form part of the Render System com-
ponent’s configuration, or they may be manipulated via Lua
scripts either forming part of current composition, or sent to
the Fluid Framework by the user.

3.3. Summary

The Fluid prototype is currently being redeveloped as a com-
ponent framework. We aim to validate the transition, from a
flexible albeit ultimately fixed architecture, to a generalized
component environment by demonstrating Fluid’s capabil-

194 A. Jones & C. Mantle & D. Cornford / Data Driven Graphical Applications

Fluid Deployment Space

“Scene Graph" Namespace “#
Scene Object Component 4

Geometry Component -

Geometry Component A

A “Scene Graph” deployment space entry
containing multiple renderable Scene Object
instances

RenderScene
Visitor
PirateHat|RS Component
Geometry
| Geometry |
Appearance L Vertices
) Normals,
Etc...
Appearance |

SAS Script

A rendering pass sends geometry The render system passes underlying
and appearance components to the representations to the PirateHat|RS
render system instance

library for rendering

Figure 7: A depiction of the PirateHat|RS component’s intended use as part of a Fluid composition.

ities as a visualization component application for geospa-
tial data. In order to achieve this, we aim to wrap a num-
ber of the Fluid prototype’s subsystem implementations as
Fluid components. In particular, the Fluid prototype’s ren-
der system implementation will be replaced by the Pirate-
HatIRS library, which continues the data-driven focus of
the Fluid project by providing a high-level scripting inter-
face to a high-performance rendering pipeline. As part of
the Fluid project, we aim to develop a component software
visualization application that makes full use of Fluid’s ex-
pressiveness, flexibility and extensibility, while facilitating
highly detailed visualizations of geospatial scenes at inter-
active frame-rates.

4. Conclusion

Modern rendering systems are moving toward higher-level
descriptions for object appearances and special effects that
were previously only available to off-line renderers. State
of the art rendering APIs are already introducing the next
layer of abstraction, in the form of a scripting system that
forms part of effect scripts themselves. The incorporation
of such scripts, and the use of the bindings and exposures
they provide, indicate a movement toward higher level, data-
driven manipulations of next-generation rendering pipelines.

The Fluid framework places a similar data-driven focus
on the composition and runtime behaviour of component-
based software. As described above, we support the com-
position and collaboration of small-scale components, while
also providing a flexible and expressive OODDP composi-
tion language that can be used to make logical manipulations
at high-levels of abstraction.

In this paper, we have described a Fluid approach to the
growing trend in data-driven methodologies. With the inclu-
sion of a data-driven rendering system, we aim to introduce
a novel and unique level of flexibility and expressiveness to
visualization applications for geospatial data.

References

[BirO1] BIRNGRUBER D.: CoML: Yet another, but simple
component composition language. In Proceedings of First
Workshop on Composition Languages (Vienna, Austria,
Sept. 2001).

[FK03] FERNANDO R., KILGARD M. J.: The Cg Tuto-
rial: The Definitive Guide to Programmable Real-Time
Graphics. Addison-Wesley, 2003.

[ler06] IERUSALIMSCHY R.: Programming in Lua, Sec-
ond Edition. Lua.org, 2006.

[JCO6] JONES A., CORNFORD D.: A flexible, extensible
object oriented real-time near photoreaslistic visualisation
system: The system framework design. In Progress in
Spatial Data Handling. 12th International Symposium on
Spatial Data Handling (2006), Riedl A., Kainz W., Elmes
G., (Eds.), Springer-Verlag, pp. 563-579.

[Mic] MICROSOFT: DirectX Standard Annotations and
Semantics Reference. http://msdn2.microsoft.
com/en-us/library/bbl173004.aspx.

[Moo65] MOORE G. E.: Cramming more components
onto integrated circuits. Electronics 38, 8 (1965), 114—
117.

[MQP0O2] McCooL M. D., QIN Z., PoPA T. S.: Shader
metaprogramming. In Proceedings of the 17th Euro-
graphics/SIGGRAPH workshop on graphics hardware
(New York, Sept. 1-2 2002), Spencer S. N., (Ed.), ACM
Press, pp. 57-68.

[Str97] STROUSTRUP B.: The C++ Programming Lan-
guage, 3 ed. Addison-Wesley, 1997.

[TC03] TANSALARAK N., CLAYPOOL K. T.: XCom-
pose: An XML-based component composition frame-
work. In Proceedings of Third International Workshop
on Composition Languages (2003).

(© The Eurographics Association 2007.

http://msdn2.microsoft.com/en-us/library/bb173004.aspx
http://msdn2.microsoft.com/en-us/library/bb173004.aspx

