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Abstract

Recent hardware and software advances have demonstrated that it is now practicable to run large visual comput-
ing tasks over heterogeneous hardware with output on multiple types of display devices. As the complexity of the
enabling infrastructure increases, then so too do the demands upon the programmer for task integration as well
as the demands upon the users of the system. This places importance on system developers to create systems that
reduce these demands. Such a goal is an important factor of autonomic computing, aspects of which we have used
to influence our work. In this paper we develop a model of adaptive infrastructure for visual systems. We design
and implement a simulation engine for visual tasks in order to allow a system to inspect and adapt itself to optimise
usage of the underlying infrastructure. We present a formal abstract representation of the visualization pipeline,
from which a user interface can be generated automatically, along with concrete pipelines for the visualization.
By using this abstract representation it is possible for the system to adapt at run time. We demonstrate the need
for, and the technical feasibility of, the system using several example applications.

1. Introduction

Although desktop graphical capabilities continually im-
prove, visualization at interactive frame rates remains a
problem for very large datasets or complex rendering al-
gorithms. This is particularly evident in scientific visualiza-
tion, (e.g., medical data or simulation of fluid dynamics),
where high-performance computing facilities organised in a
distributed infrastructure need to be used to achieve reason-
able rendering times. Such distributed visualization systems
are required to be increasingly flexible; they need to be able
to integrate heterogeneous hardware (both for rendering
and display), span different networks, easily reuse exist-

ing software, and present user interfaces appropriate to the
task (both single user and collaborative use). Complex dis-
tributed software systems tend to be hard to administrate and
debug, and tend to respond poorly to faults (hardware or soft-
ware).

In recognition of the increasing complexity of general
computing systems (not specifically visualization), IBM
have suggested the Autonomic Computing approach [KC03]
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to enable self-management, which we have used to direct our
system.

Figure 1: The deployment model for developing a visual
supercomputing infrastructure [BBC∗05].

We can think of a typical user scenario – a clinician will
import a new data set into the system. The system will at-
tempt to visualize the data based upon previous usage. A se-
lection of images will be presented. The user will select the
most appropriate, and then will describe their requirements
for the system (e.g. real-time, critical, or lower quality and
cheaper is preferable). The system determines the resources
available to fulfil the requirement, and takes care of the vi-
sualization. The user may migrate their visualization from
their desktop to their PDA, or may invite others to join in
collaborative visualization. All changes are managed by the
system. Also from the developer’s point of view, their soft-
ware can be integrated into this environment and take ad-
vantage of all these features. Our previous work [BBC∗05]
made an extensive study of the enabling technologies and the
challenges that will be faced in implementing such a system.
We proposed a model for the deployment of such a system
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(figure 1) wherein we suggested that more intelligence about
the system environment, user requirements and visualization
can lead to a system that is able to analyse, predict and mod-
ify its own behaviour, and result in the above autonomic be-
haviour.
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Figure 2: Functional description of e-Viz.

This paper presents a model of semantic data flowwithin a
visualization system (called e-Viz) that will allow the system
to self-configure, self-model and self-adapt its configuration
subject to general goals from the user. The motivation is to
simplify the user’s experience of interacting with such com-
plex visual systems, and simplify the integration cost for de-
velopers of visual software. We demonstrate the system us-
ing working prototypes, and show how easy it is to reuse and
integrate existing software within the system. We present a
system for the modelling, scheduling and managing of vi-
sualization computational tasks with run-time strategies for
adaptability.

2. Related Work

Several visualization applications have been built using
Grid services. The TeraGrid [Ter05], for example offers ex-
tremely large computational resources to scientists. Simu-
lation and visualization is carried out on clusters and dis-
played locally. This is a large scale system, with large scale
demands — for example integrating new software ‘involves
6-10 weeks of work by 4-6 staff members’ [Ter05].

Shalf and Bethel [SB03] examine the impact of the Grid
on visualization and compare pipelines running: entirely on
a local PC; with part on a cluster; and with all (apart from
display) on a cluster. They demonstrate that for small prob-
lem sizes the local PC will give the best performance, and
thus argue that dynamic scheduling of the pipeline is re-
quired. Although their approach lacks adaptive or autonomic
capability for task management, they do suggest the need for
a simulation environment in the context of Grid research.

The Resource Aware Visualization Environment (RAVE)
project [GAW04] implements visualization services using
the Grid infrastructure. Render services are tested to check
loading, and data is moved to and from render services
to maintain good utilisation. RAVE supports heterogeneous
render services, and display clients (including PDA).

The Grid Visualization Kernel (GVK) [HK03] supports
the interconnection of the scientific visualization pipeline
with Grid services. GVK is capable of dynamically chang-
ing the visualization pipeline without user knowledge, ac-
cording to changing network conditions. It is implemented
as modules for a number of visualization packages.

The real-time ray tracer (RTRT, or *-Ray) renders triangu-
lar meshes, volume data as isosurfaces and ray marching vol-
ume rendering [DPH∗03]. Supervisors distribute tasks (im-
age tiles) to worker nodes. They employ a hierarchical data
structure for fast empty volume traversal, thus ensuring less
disk thrashing. A 428MB data set of the Visible Human Fe-
male runs at 4fps on 6 nodes (each node is a dual processor
1.7GHz Xeon cpu).

Chromium [HHN∗02] intercepts an application’s
OpenGL stream, and distributes it over a cluster of PCs with
GPUs. Each GPU processes part of the image or object, and
image fragments are composited to create the final image. It
achieves volume rendering of 256MB of MRI data at nearly
10fps across 16 GPUs (64MB GeForce 3) [HHN∗02].
Chromium relies on an OpenGL pipeline being available,
and can distribute rendering using image-based or object-
based approaches. A particular advantage of the system is
that OpenGL applications can be integrated very easily.
Integration of Chromium with the Globus Toolkit has also
been demonstrated [FJ07].

The OpenRT engine fromWald et al. [WBDS03] also em-
ploys a cluster to distribute rendering. They use a demand
driven tile based approach where each worker requests a tile
from the supervisor. This helps with load balancing the ren-
dering, and along with other acceleration methods (SIMD,
etc.), their engine is able to provide real-time ray tracing.

The Semotus Visum (or remote visualization) framework
described by Luke and Hansen [LH02] includes three strate-
gies - image streaming, where all rendering is done re-
motely; geometry rendering, where the client has responsi-
bility for rendering; and Ztex rendering which divides the
load between client and server. Results show their frame-
work is capable of delivering high frame rates and low la-
tency for interaction.

Zhu et al. [ZWRI04] model the visualization pipeline as
a sequence of modules, each with a computational cost, and
the resources available as a set of nodes, each with a compu-
tational power. Connections between nodes are modelled in
terms of bandwidth and delay. They use dynamic program-
ming techniques to optimize the allocation of modules to
nodes.

All of these systems are successful, and some show fea-
tures such as dynamic load balancing (through workers re-
questing tiles from a supervisor), and the ability to work
with heterogeneous clusters and/or diverse display clients.
Our system demonstrates such features, and also enables
a low integration overhead, a low configuration overhead
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(through the use of visualization-, user- and task- centred se-
mantics) and by introducing introspection, adaption and self-
modelling it is able to implement aspects of the autonomic
model. In addition we seek to include adaptability into the
user interface, to react to user behaviour. We note the earlier
work of Domik and Gutkauf [DG94] in this area: they mod-
elled the colour perception, mental rotation capability and
fine motor coordination of users in order to improve the way
visualizations are presented.

3. Adaptive Visualization

In [BBC∗05] we proposed a deployment model for auto-
nomic visual systems (figure 1). Basic systems provide a
user interface to the visual task. Managed systems introduce
a service layer (or middleware) (e.g., Grid) to manage the
security, distribution, output destination and resources avail-
able to a task. Predictive systems add an information layer
that can provide data about the performance of the system
and quality of visualization. Adaptive systems will begin to
use such data to alter their own state in order to achieve self-
management, which leads on to a fully autonomic system,
where a knowledge base is added to reason about the intel-
ligence (both task side intelligence (e.g., this visualization
method is the best for this kind of data), and user side intel-
ligence (e.g., this user prefers this camera control widget)).

Figure 2 shows the functional description of e-Viz. We
have placed the adaptive deployment model alongside, and
have colour coded the principal components to match the
model. The system and task simulation service layer (sec-
tion 4) performs simulation using descriptions of the avail-
able hardware and proposed (or used) system pipeline. The
ultimate aim of this service layer (called SimuVis) is to pro-
vide optimsed system pipelines for various types of visual-
ization problems. All knowledge and information is stored in
a database that can be queried using particular data types, in
order to provide a valid pipeline (section 5). This pipeline is
encoded using a formal pipeline description language (sec-
tion 5.2), from which the user interface (section 6) and sys-
tem pipeline (section 5.3) can be generated. During execu-
tion, the interface, formal description and system pipeline
can be adapted to meet the user requirements (sections 6,
5.2 and 7).

4. Simulating Visualization Infrastructures

Visualization tasks are carried out on a variety of system ar-
chitectures and some are executed on large infrastructures. In
general, it is hard to anticipate the combined effects of many
visualization systems when they interact with the underly-
ing infrastructure, users, and one another. It is also difficult
to create a variety of possible scenarios in which visualiza-
tion algorithms are expected to function, and to recreate a
particular condition for the purpose of testing and optimiza-
tion. It is risky to install any visualization system that has not

been through an adequate engineering process. It is costly to
provide a replica of the live system in order to engineer and
test visualization systems. One solution to such problems is
simulation, which plays a vital part in a development process
and enables us to determine how well a complex visualiza-
tion would work without the risks and limits of testing it on
a live system.

Many simulation systems have been built to assist in the
engineering of computer systems. Many of these focus on
emulating particular hardware and operating systems. In the-
ory, it may be possible to build a testbed for visualization
systems by running a mixture of existing simulators. In prac-
tice, such a testbed will be costly to build and maintain due
to the complexity and incoherence associated with various
software interfaces and data representations. In fact, such
fine-grained simulation is not particularly necessary for the
development of visualization systems.

4.1. SimuVis – A System for Visualization Simulation

The design of the e-Viz system was facilitated by the use of
SimuVis to prototype some components. SimuVis is based on
SimEAC [CC06], and allows the simulation of autonomic
visualization systems. SimuVis was created as a design tool
to allow rapid prototyping and evaluation of components of
the e-Viz system.

SimuVis enables the designer of a visualization system to
create an underlying infrastructure to be simulated by spec-
ifying a collection of hardware attributes, and it provides a
fine degree of control over operating system and task simula-
tion, hence allowing new algorithms to be prototyped, tested
and optimized on the virtual system infrastructure. Simu-
Vis supports modeling and simulation of a variety of system
architectures, including large scale networked systems, in a
relatively abstract manner. It provides a user interface for
configuring a virtual system infrastructure, and for specify-
ing the statistical and stochastic behavior of the system (e.g.,
system failures) and that of visualization tasks (e.g., dynamic
job loads). SimuVis allows the designer to conduct experi-
mentation on different virtual architectures without the risks
of bringing down a service system, and enables scientific
evaluation of typical system attributes such as scalability.

The specification of a visualization system to be simulated
is divided into three layers. The bottom layer describes the
capabilities of the hardware, including connections between
individual hardware nodes. The top layer specifies various
visualization tasks. The middle layer contains resource man-
agers, which allocate access to hardware resources in the
bottom layer to tasks in the top layer. The main technical
modules of SimuVis include:

• Abstract Modeling — An XML schema is provided for
specifying various hardware components and their con-
nectivity, such as Processing Units, Storage Units, Inter-
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connect and Routers. The schema also provides references
to resource managers and visualization tasks.

• Algorithmic Specification — An API in Objective-C is
provided for coding resource managers and visualization
tasks, each written as a class conforming to a formal pro-
tocol.

• Built-in Models — To assist users with limited program-
ming experience, a number of built-in classes have been
provided, for modeling of resource managers and visual-
ization tasks with some commonly required functionality.
A GUI, also written in Objective-C, allows the built-in
classes and user-defined classes to be selected for simula-
tion, and customized with initial parameters.

• Simulation Engine — The simulation engine runs using
discrete time intervals, known internally as ticks. The size
of each tick is controlled by the user — shorter ticks pro-
duce a more accurate simulation at the expense of requir-
ing more processor run time for the simulator. Most in-
teraction between components in the system takes place
through an abstracted message passing system.

4.2. Simulating e-Viz Components: The Pollution

Simulator

We applied SimuVis to the pollution simulator to be detailed
in 7.1. The pollution simulator is an integrated simulation
and visualization application implemented in e-Viz and con-
sists of three components, namely the simulator, renderer,
and client. Each component was implemented as a visual-
ization task in SimuVis. The objective of the simulation was
to determine how the system would function in different net-
work configurations.

We first conducted a primary simulation running in near-
optimal conditions. Figure 3 (a) shows some results col-
lected from this simulation. Each component of the system
was run on a different (simulated) machine, connected with a
100Mbit network connection. It can be seen from this graph
that the application is able to meet the target framerate with-
out saturating either network; something we already knew
experimentally.

This test was used to calibrate the simulation model. In-
strumentation was added to the application to determine the
CPU load, simulation and rendering times, and network us-
age in this configuration. Once these values had been col-
lected, they were applied to the simulation, and validated by
modifying other values such as the granularity of the simu-
lation.

Based on the calibrated simulation model, we evaluated
the performance of the pollution simulator working under
different conditions by modifying various parts of the spec-
ification, resulting in a performance profile for the pollution
simulator. Figure 3 (b) shows the result of one such simu-
lation. In this example, the renderer and the client are sepa-
rated by a comparatively low-bandwidth Internet link.
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Figure 3: Simulation of Pollution Demonstrator.

In this case, there is not enough bandwidth available to de-
liver the required frame rate. To overcome this problem, we
added a new autonomic feature to the simulated model. The
simulated renderer task detects a long delay between sending
a frame and receiving an acknowledgement, and increases
the amount of compression applied (indicated by the blue
line on the graph). This autonomic feature is adaptive, and
the compression ratio stabilizes relatively quickly to a value
which allows both the desired framerate and an effectively
utilized network. This analysis will drive the next revision
of the pollution simulator.

5. The e-Viz run-time system

5.1. e-Viz Pipelines

The e-Viz system offers the user a selection of pre-defined
visualization services, implemented using a range of ei-
ther standalone visualization applications such as Visual
Molecular Dynamics (VMD) and the Real-Time Ray Tracer
(RTRT), or configurations of generic visualization systems,
such as the Visualization ToolKit (VTK). We refer to a run-
ning instance of a visualization service as an e-Viz pipeline.

The process of initialising an e-Viz pipeline closely fol-
lows the gViz reference model described by Brodlie et al
[BDG∗04]. In the gViz model three tiers or layers of ab-
straction are defined; conceptual, logical and physical. The
conceptual layer describes a visualization independently of
the hardware and software used to run it. The logical layer
additionally includes details of the implementing software,
and the physical layer adds a description of the underlying
hardware resources.

When creating a visualization, the e-Viz user is provided
with a list of candidate visualizations described at the con-
ceptual level, but the process of defining the visualization at
the logical and physical levels is left to the e-Viz system. The
user has only to choose the desired type of visualization and
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not how it is implemented or where it is run. We have devel-
oped an e-Viz remote rendering library that enables multi-
ple servers to deliver frames to the same client window, and
so can switch between alternate frame streams at runtime.
Several codecs are supported, each offering different trade-
offs between compression ratio, image quality, and the time
taken to encode and decode. Meta-data is gathered relating
to the time taken to deliver frames so that the most appro-
priate codec for the current environment can be selected (see
also section 4.2). Servers can be added and removed at any
point in the life-time of a session, meaning that an e-Viz vi-
sualization can seamlessly migrate from server to server.

The list of candidate visualization pipelines is identified
through the use of a relational database. In the database,
each conceptual pipeline is described in terms of the for-
mat and entity type of the input data. Each pipeline is then
related to implementation software instances, yielding a log-
ical pipeline. Finally each logical pipeline is related to the
hardware instances capable of running the software that the
individual user has access to. This gives us a description of
the pipeline at the physical layer. In this way, the e-Viz sys-
tem can inform the user which of its visualization services
are available for use with a particular dataset.

This system is implemented by means of a client side wiz-
ard style launcher application, which identifies the user and
his/her data type and format, and then queries the centralised
e-Viz database through a web-service interface. The database
returns a list of candidate visualization services to the user,
providing a thumbnail preview image of the type of visual
output that might be expected from each pipeline for a stan-
dard dataset. This database is our first step in an evolution to-
wards the vision of a knowledge server that will ‘learn’ over
a period of time. The user then selects the desired pipeline,
and the e-Viz system begins the task of allocating resources
and running the job.

In our implementation we used PostgreSQL for the
database, WSRF-Lite for the web service interface, gSOAP
to interface with the web service from the client, and QT
to build the launcher application (see also [RWB∗05]). We
have used the E-notation classification scheme identified in
[BCE∗92] as the basis of our technique to relate input data
to visualization techniques. In this scheme, the underlying
phenomenon being visualized is described in terms of the
dimension of the domain and the type and number of associ-
ated data fields. Visualization techniques are then classified
according to type of entity that they are suitable for use with.

5.2. Formal Pipeline Description Language

At the heart of the e-Viz system is a formal description of
the conceptual dataflow pipeline, with RDF annotations to
indicate the transformation to logical and physical versions.
We build on the work of the UK e-Science project, gViz,
which proposed an XML language, called skML, to describe

dataflow pipelines [BDG∗04, DS05]. skML sees a pipeline,
or map, as a set of links and modules, each link joining
a pair of modules, from an out-port on one to an in-
port on another. Modules have a param element, which
is used to associate relevant parameters with the module. In
the snippet below, skML is used to describe an isosurface
rendering pipeline.

<skml>
<map id="isosurface">
<module id="DR" name="ReadData"

out-
port="Output">

<param name="Filename">Dglazing.dat</param>
</module>
<module id="IS" name="IsoSurface"

in-port="DataIn" out-
port="Geometry">

<param name="Threshold">65.0</param>
</module>

....
<link id="DRtoIS">

<module ref="DR" out-port="Output" />
<module ref="IS" in-port="DataIn" />

</link>
....

</map>
</skml>

skML does more than just capture a snapshot of the sys-
tem (i.e. describe the current state) - it provides a mecha-
nism to alter the visualization pipeline that is being used.
This is achieved by the provision of an action attribute to the
module element which allows it to be created, destroyed or
modified, and the link element which allows for connection
and disconnection. These five actions in general allow for
the modification of the pipeline at the module level (add a
new module, make a new connection between modules etc.)

Thus we have used skML to provide a formal, non-
proprietary foundation for the e-Vizsystem. Indeed we take
it further than its original intent, by using it to automatically
generate visualization user interfaces. This requires some
small extensions to the specification, so that it can drive the
selection of appropriate widgets, and so that it can support
the sort of adaptivity we need. Thus we extend skML in the
following ways:

• We add a type attribute to the parameter element of
skML so that an appropriate widget can automatically be
selected and presented in the user interface.

• We also add a widgetType attribute to the parameter
element, allowing a user-specified choice of widget to be
included rather than the automatically selected one.

• We add an action attribute to the parameter element,
allowing dynamic changes to the way parameters are pre-
sented in the user interface - for example, this allows the
parameter to be hidden in the interface, or visible but in-
active.
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The use of skML to drive the user interface generation is
described in more detail in section 6.

5.3. Visualization Task Management

The first task in an e-Viz session is to describe the visualiza-
tion that is to be performed using the launcher application
(see section 5.1). Once the visualization technique and im-
plementing hardware and software have been identified, we
can create a description of the pipeline in skML. The sys-
tem must then arrange for the execution of the server-side
software, taking account of any server specific considera-
tions such as batch queues and firewalls. When a visualiz-
tion involves the use of external time-managed HPC facili-
ties, Grid software such as the Globus Toolkit [Fos05] pro-
vides the necessary middleware functionality. In situations
where a visualization is implemented using locally adminis-
tered networks and machines, process management is taken
care of using software agents as described by Roard and
Jones [RJ06].

Visualizations and user interfaces can be reconfigured as
they run in order to satisfy user defined metrics (such as
performance requirements and cost functions), either au-
tonomously by monitoring agents, or on the request of the
visualization itself.

5.3.1. Self-optimizing

The system implementation of the adaptive features is
greatly simplified through the use of software agents. Using
relatively simple individual software agents, a more complex
system can be built up. We can regard visualization software
as an agent that transforms an environment into an image.
This gives a simple pipeline (see figure 4 where an appro-
priate user interface (section 6) can produce the environment
(as skML). The glue code (skeleton application as mentioned
above) accepts the skML environment parameters and sets
the local environment within the visualization software, and
transmits the image(s) back. Progressive rendering, for ex-
ample, has the same domain as the simple visualization pro-
ducers – it consumes an environment, and produces an im-
age. Internally it sends the environment to (e.g.) 3 visualiza-
tion agents, but altering the image size parameter within the
environment. The highest resolution, most recent image is
the output sent for rendering. If a new environment is con-
sumed, the stop functions are called on the higher quality
agents as their images are no longer needed, and they are re-
quired to start rendering high quality images for a new view.

If the visualization producer exposes the camera environ-
ment to the e-Viz system, then a tile based distributed render-
ing can be achieved. A visualization producer agent is started
on each available hardware client (up to a user or system
limit). A dispatcher which has the same domain (consumes
an environment and produces an image, figure 4) will send
a modified environment to each visualization producer (the

Figure 4: Tile-based distributed rendering node dropped in
to the pipeline.

camera position, ‘look at’ and image size will be modifed).
The dispatcher gathers the resulting image tiles, and com-
posites them before issuing the output image.

By monitoring frame-rate, e-Viz can decide whether pro-
gressive rendering or tile based distribution is required to
maintain performance. If required, and hardware is avail-
able, then extra threads are introduced to carry out the tile
rendering, or lower quality rendering in the case of progres-
sive rendering.

5.3.2. Self-healing

The e-Viz system offers a degree of self healing by moni-
toring active visualization components through agents using
a ping function. If one component is lost due to a software
failure or network problems, the monitoring agents forward
the information to the associated pipeline, which can then
switch to other similar running components (if they exist) or
request new ones. Details about the monitoring and restart
process are given in Roard and Jones [RJ06]. If no redun-
dancy strategy is in place for a pipeline, a failure will be
translated into a service interruption on the client side, but a
replacement component will be requested and the visualiza-
tion will thus restart automatically after a few seconds. This
mechanism is transparent for the user.

5.3.3. Self-protection

Self-protection is provided through redundancy. For exam-
ple, with tile based rendering, a pool of rendering agents is
used to render the tiles. If an agent fails, the tile is not re-
turned to the dispatcher, and so will be rendered by another
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agent. As agents fail, performance is degraded, but as long as
there is at least one agent, the visualization will not stop, as
images will continue to be produced, albeit at reduced fram-
erates. Any failing agents are restarted (self-healing), and so
after a delay for initialization (reading the data), the perfor-
mance will increase again.

6. User Interface Layer

In the e-Viz system the visualization application is dynami-
cally created based upon the problem posed by the user and
the hardware and software systems available. In such a sys-
tem it is impossible to always know in advance from what
components it will be composed nor where they may be ex-
ecuting. Yet despite this a user will expect a consistent and
appropriate user interface to be presented that is interactive
and dynamically updated to reflect the changing state of the
application.

6.1. e-Viz Client

e-Viz provides a user interface to running applications
through the e-Viz client. This is a Java application which
parses the skML description file and automatically gener-
ates a user interface that fits with the dynamically created
application. It uses the gViz library [BDG∗04], initially de-
signed to support computational steering of simulations but
now generalised in e-Viz to support general user interactions,
to connect the user interface to the remotely executing com-
ponents of the visualization pipeline. A tabbed interface is
created where each component of the pipeline is represented
as a separate tab and widgets representing its parameters are
placed on its tab. Figure 5(a) shows the user interface created
from the skML in section 5.2.

(a)

(b)

Figure 5: Two images showing the same tab of the user
interface, (a) is using orginal skML from section 5.2 (b) is
generated from the extended skML.

As can be seen from figure 5(a), only text boxes can be
created from this description. With the simple extension of

adding a type attribute to the parameter element of the skML
more appropriate widgets may be chosen. In this example a
type="double" is added for Threshold parameter so the
text typein box can be replaced with a slider that generates a
floating point number (figure 5(b)).

Whilst most elements of a user interface are for input from
the user, some are for output only, e.g., the Current Time
param element from the simulation in section 7.1. Thus
the param element has an interaction attribute whose val-
ues can be steer or view and the e-Viz client will react
accordingly, setting view parameters to be non-editable.

6.2. Reactive User Interfaces

A novel contribution is the ability for the user interface to be
dynamically modified according to a range of external fac-
tors. This is seen as fundamental for the e-Viz approach of
an intelligent visualization environment. The dynamic inter-
face is achieved by a further extension of skML, allowing
run-time modification of the dataflow pipeline and module
parameters. skML contains the basic mechanism for chang-
ing the pipeline at the map and module level, but is not effi-
cient for representing changes to parameters or even capable
of some subtle modifications to the user interface.

The interface can react according to a range of influences:

User Behaviour: It is useful to reduce the cognitive load on
users by dynamically modifying the list of options shown to
users based on their past behaviour. For example if a user
never modifies the decimate parameter for a marching cubes
module then its widget can be hidden from the control panel.

<map id="MCMap" style="left:10;top:10;
color:#d4d4d4">

<module id="2" name="MarchingCubes"
action="modify">

<param name="Decimate" action="hide" />
</module>

</map>

Here we have added an action attribute to the param el-
ement which allows modifications at the parameter level.

Application Behaviour: In computational steering, for ex-
ample, there are typically parameters associated with the set-
ting up of the numerical solution, that must not be changed
during the course of a run. An example might be the grid
size over which the solution is computed; or some parame-
ter defining the problem, such as temperature under which a
simulation is carried out. In contrast, other parameters (such
as frequency of output of results) are changeable at any time.
Thus the interface needs to react in response to information
from the simulation, concerning its present state: for exam-
ple, is it at its initial step or midway through?

<map id="PollSim" style="left:10;top:10;
color:#d4d4d4">

<module id="2" name="Simulation"
action="modify">
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Figure 6: Personalised Interface.

<param name="Grid Size" ac-
tion="disable" />

</module>
</map>

Here we have set the action attribute to be disable to
allow the e-Viz client to display this widget, but indicate that
it is not currently active.

6.3. Personalised Interfaces

It is important to be able to adapt the user interface to the ex-
perience and preferences of individual users. We address this
in two ways in the e-Viz system. Firstly, the user can create a
.evizrc file in which they can record preferences for de-
fault settings. This can also record recently unused widgets
so that a compact version of the interface can be displayed
as an option (as discussed above). Secondly, the user can
provide their own widgets which will then replace the wid-
gets automatically selected by the system. An example of
this is illustrated in figure 6, which shows a further version
of the interface for the pollution demonstrator described in
section 7.1. In figure 6, the original sliders that provide wind
direction control are replaced by a simple 2D compass type
widget plus an elevation control.

6.4. Communication Layer

The e-Viz client must be capable of operating in conjunction
with a wide variety of visualization and simulation software.
Thus it contains, in addition to the user interface presenta-
tion, a communication layer which allows it to connect to
external software. The architecture is shown in figure 7. The
client defaults to using the built-in gViz library for parame-
ter communications, but other mechanisms can also be used.
An interface is provided that allows other users to write plu-
gins to support their own protocols, converting this to the
eViz parameter descritpion before passing it to the client.
These plugins are loaded at run time using directions passed
in the skML RDF description of their module(s). In prac-
tice we have built applications where the communication is
by the gViz protocol itself (see section 7.1), by the Reali-
tyGrid steering library protocol [PHPP04] (where e-Viz was

Figure 7: User Interface Architecture.

used to visualize live data output from a molecular dynam-
ics code) and by a protocol used to communicate between
the e-Viz client and a set of visualization web services in
the NOSCOV system [WBHW06]. Moreover the architec-
ture allows us to support different protocols within the same
running system, using say, gViz connection to visualization
software and RealityGrid connection to simulation software.
This is a further contribution to minimizing the integration
effort to incorporate e-Viz into an existing system.

The architecture diagram also highlights the two ways in
which the user interface can dynamically change. This can
either be in response to a user interaction (for example, mov-
ing a slider) or in response to a message from an application
(for example, changing a parameter from being active to in-
active), or from messages from the e-Viz system.

7. Application

7.1. Environmental Pollution

One of the motivating scenarios for the gViz project
[BDG∗04] was that of an environmental pollution disaster.
In this scenario an accidental release of a chemical has taken
place and it is necessary to compute in faster than real time
the concentrations of the pollutant in the environment to in-
form decisions with respect to evacuation of population cen-
tres. The pollutant is moved under the action of the wind
which may change as time progresses and alter the levels of
concentration in different locations. This scenario is mod-
elled using a PDE based numerical simulation generating
data that is visualized and presented to the user in real time.
The user is able to change the direction of the wind while the
simulation is running and see the effects of these changes as
they are computed. In gViz a number of different visualiza-
tion systems were used as clients, each one requiring a hand
coded user interface to be created.

Figure 8 shows the automatically generated user interface
for the same pollution application. In the e-Viz framework
the system is responsible, using high level directives from
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the user, for generating an appropriate visualization pipeline
and representing this using skML. Using this description
the various components that make up this pipeline can be
launched and connected. This skML description is passed to
the e-Viz client which parses it to dynamically create an ap-
propriate user interface. For each parameter it selects an ap-
propriate widget; the selection is initially based on its type
but can be refined on the basis of special widgetTypes spec-
ified within the skML, or by local user preferences, or by
the nature of the client device. In the application shown in
figure 8 the widget types have been selected based on their
data type. The e-Viz client uses the gViz library to connect
itself to the individual components of the pipeline to send
and receive parameter changes.

In the environmental pollution system’s initial design, the
simulation was embedded as a module in IRIS Explorer with
the data passing directly down the map for visualization.
With this tight coupling, the user interface could be directly
manipulated by the simulation module’s code allowing it to
disable widgets for parameters that were not steerable at cer-
tain times. The next step in the evolution of the demonstrator
moved it into the more generic steering framework of gViz.
This allowed the simulation to be run on a remote high per-
formance machine independent of any visualization system
but removed its ability to manipulate the user interface. By
contrast, in the e-Viz version, skML snippets, (section 6.2)
are used by the simulation component to influence the state
of its user interface to change the state of its initialisation
parameters from active to disabled while running and back
to active upon reset.

8. Discussion

By exploring the Autonomic Computing approach, we have
demonstrated how it could impact on the way that visual-
ization services are implemented and presented to users and
developers. We have taken our proposal of a deployment
model for a visual supercomputing infrastructure [BBC∗05],
and have carried out a thorough analysis of how it could
be achieved with a functional implementation. We presented
the implementation of the infrastructure in figure 2 and sec-
tion 3. Important aspects of the infrastructure include:

• a task simulation engine (provided by SimuVis) for eval-
uating and optimizing visualization task configuration
within our environment;

• a knowledge server which can map user requirements and
data to formal visualization and system pipelines;

• the specification of an abstract pipeline language;
• semantics for ease integration of existing software;
• software agents for monitoring and handling visual tasks;
• reactive user interfaces with dynamic modification based
upon the formal abstract pipeline language;

• and run-time strategies for adaptability.

Using such an infrastructure, we have been able to make
reasoned decisions about a visualization task based upon —

cost, speed, quality and reliability, and thus how to schedule
it over available resources. Other example applications have
already been shown to benefit from this approach [HJ07].

Such scheduling decisions, task simulation, low software
integration costs, and adaptability are going to be increas-
ingly important as we enter a period where increases in pro-
cessing power come through increasing the number of cores
rather than clock speed. The size of scientific data sets can
also be predicted to grow and become even more reliant
on visualization for efficient analysis. The infrastructure we
present here, e-Viz, provides many of the solutions that we
will need.
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