
EG UK Theory and Practice of Computer Graphics (2007)

Ik Soo Lim, David Duce (Editors)

A novel control mechanism for distributed stream rendering

J. T. O’Brien1 and R. S. Kalawsky1

1Department of Electronic & Electrical Engineering, Loughborough University, United Kingdom

Abstract

This paper describes a new control mechanism for distributed rendering. Control mechanisms have previously

been widely used in many fields from autonomous robots to video streaming. Their use in video streaming has

allowed quality-of-service, user orientated, transmission of videos across changing transport networks. We show

how control mechanisms can be applied to distributed rendering to provide responsive, user orientated visualisa-

tions. The control mechanisms are implemented as an extension of Chromium, a stream processing framework for

OpenGL. The system should also be applicable to other stream based render systems with a significant benefit.

The new system allows distributed rendering to be modularised into specialist units that self organise work load

to meet the demands of the user.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Distributed/network

graphics

1. Introduction

Scientific visualisation has become a necessity for under-

standing large data sets generated by scientific instruments

such as telescopes, microscopes, particle accelerators, and

imaging machines [McC88]. Automated data analysis and

reduction can play a role in this process, but understanding

is only currently achieved by human interpretation of the vi-

sualisation.

Interactive visualisation requires a consistent, low latency

representation at a frame rate in excess of 10fps (frames-

per-second). Further more, for a user to feel that a system

is responding interactively, an overall response time of less

than 20ms (between input and screen update) is required

[KOC05].

Providing interactive visualisations of very large data sets

presents a challenging problem. Whilst desktop graphics

have dramatically improved in recent years, few researchers

have sufficient local resources for high-fidelity rendering of

such large visualisations. One example of a visualisation

problem on this scale is the large time-varying Computed

Tomography (CT) scans used in the diagnosis of cardiovas-

cular conditions. The resulting multi-gigabyte data sets re-

quire specialist volume rendering facilities to achieve inter-

active rendering [PHK∗99]. Advances in remote rendering

have sought to provide desktop access to specialist visuali-

sation hardware. However, quality-of-service (QoS) for such

access has not been provided.

Existing remote rendering techniques have focused on

a client-server paradigm, remotely serving rendered im-

ages or scene graph descriptions for display on a local

client. Increasingly, this paradigm has become insufficient

for describing large geographically distributed visualisations

[SB03]. These large visualisation make use of modern dis-

tributed rendering techniques to harness geographically dis-

tributed resources [BTL∗00, Bet00]. Often this is achieved

through custom applications targeted to a particular problem

domain (an example is Visapult [Bet00]). Alternately trans-

parent distributed rendering can be achieved by operating on

the graphical API stream of an application. One such system

is Chromium [HHN∗02], which dynamically links a replace-

ment OpenGL library to the application during initialisation.

Chromium provides a distributed stream rendering frame-

work, where nodes can be configured in arbitrary acyclic di-

rected graphs. However, Chromium is targeted at high-speed

LAN cluster systems, lacking a management system to ef-

fectively operate in wide area networks.

To take advantage of these improvements we have devel-

oped a control framework for distributed stream rendering

that automatically adapts the rendering process to changes

c© The Eurographics Association 2007.

http://www.eg.org
http://diglib.eg.org

J.O’Brien & R. Kalawsky / EG Control Mechanisms

in resource capabilities. We analyse distributed rendering

as an information distribution problem, showing that mod-

ules within a distribution must cooperate to achieve inter-

active rendering. The framework is designed to adjust the

graphical command stream, in this case OpenGL, transmit-

ted to nodes within a distributed network to best match the

resources available according to user preferences on frame

rate, response time and scene quality. The techniques used

should be applicable to any network transport system for

graphical APIs, a test system has been developed using

Chromium. Chromium’s stream processing model makes it

an ideal candidate with which to develop adaptive modules

for our framework.

2. Background

Research into rendering across computer networks has been

largely divided between remote and distributed rendering.

Remote rendering has focused on targeting a visualisation

to network and client resources, whilst distributed rendering

has targeted the efficient distribution of visualisation work-

load across a collection of homogeneous resources.

2.1. Remote Rendering

We define remote rendering as the process of serving ab-

stract visualisation objects (AVO) to a local client. AVOs can

take the form of 2D rendered images or other abstract objects

such as volumetric data or polygon meshes. Transportation

of 2D rendered images encapsulates remote frame buffering,

where a client provides remote terminal access for a user.

One of the first examples of this was VizServer [Oha99],

which permitted remote visualisation of graphics pipes on

SGI machines. The performance of remote frame buffer-

ing is largely governed by the speed at which images can

be transmitted to the client. The use of image compression

[MC00] and video stream compression methods [ESEE99]

have been explored as methods to improve delivery of ren-

dered images. To reduce the number of interaction events

transmitted back to the server, client based GUI components

have been suggested [ESE00].

The transmission of more complex AVOs (including poly-

gon meshes and texture data) is often more bandwidth inten-

sive than transmitting a final rendered image of equivalent

detail. However if the client is provided with sufficient in-

formation about the 3D scene, local 3D scene exploration

can be achieved without further network communication.

Client-side exploration is only possible given sufficient ren-

dering resources. Transmitting AVOs with a level-of-detail

matched to the resource requirements of the client worksta-

tion has been suggested as a solution [Mar00]. Restricted

client based interaction is also possible using image-based

rendering techniques to reconstruct the 3D scene using ren-

dered view points from the server [BTL∗00, Bet00]. Any

changes in parameters governing the generated AVO, made

either by the user or visualisation, require the AVO stored on

the client to be updated. These updates need to occur quickly

to maintain a feeling of interactivity with the visualisation,

which can place high bandwidth requirements on the net-

work.

The application domain of a visualisation can impose re-

strictions on how AVO serving can be achieved, in particular

on the level-of-detail allowed within a visualisation. For ex-

ample medical domains often demand visually lossless ren-

dering. Such requirements may not be constant within a vi-

sualisation. For example, when searching for a region of in-

terest or interactively exploring a visualisation lower quality

representations may be tolerated [ESEE99].

The variety of possible AVOs and differing performance

requirements has meant that AVO serving frameworks have

largely been customised solutions targeted at a particular

application. Developments in distributed stream rendering

presents an opportunity for transparent AVO adaptive sys-

tems.

2.2. Distributed stream rendering

The intensive bandwidth requirements of distributing large

visualisations have led many distributed render system

to favour distributed scene graph approaches [AGMR02,

SWNH03, VBRR02, vdSRG∗02]. Such network bandwidth

problems are also present across the memory bus within

workstations. As a result immediate mode graphical APIs

have developed to provide retained mode components for

managing textures and vertex meshes [WSND03]. The flex-

ibility of providing distribution at this level has many ad-

vantages, not least of which is application transparency, as

demonstrated by Chromium. Chromium represented a gen-

eralisation of the ideas developed in WireGL [HEHE01],

with the goal of aggregating the power of commodity PC

graphics cards without imposing a specific rendering topol-

ogy. As a transportation protocol for OpenGL, WireGL

drew comparison to the stream processing model of imme-

diate mode graphics in which finite resources must operate

on a continuous sequence of primitives [HHN∗02]. Within

Chromium, stream processing nodes consist of two parts:

transformation and serialisation.

The serialisation portion of each node receives one or

more OpenGL streams and output a single OpenGL stream.

A serializer could take one of two forms: client or server.

A node with no input streams was a client and must pro-

duce an OpenGL stream from a standalone application (al-

ready serial). A node with incoming edges was a server and

must manage multiple incoming streams, performing con-

text switching between them. The transformation portion of

each node receives a single stream of OpenGL commands

and output zero or more OpenGL streams. OpenGL stream

transformations were performed by Stream Processing Units

(SPUs). Each node may chain together multiple SPUs, with

c© The Eurographics Association 2007.

140

J.O’Brien & R. Kalawsky / EG Control Mechanisms

each SPU in the chain performing some arbitrary transfor-

mation on the incoming stream and outputting the stream.

An inheritance model was used for the SPUs through a func-

tion lookup table, which allowed child SPUs to implement a

subset of OpenGL commands, those not implemented would

be processed by the parent SPU. A common parent SPU was

the passthrough SPU, which passed all of the OpenGL calls

on to the next SPU in the chain.

Chromium has no inherent facility to monitor the effects

of output from an SPU and no ability to monitor other SPUs

in the network. As a result, transformation behaviour re-

mains static within current SPUs. Such a constraint is suffi-

cient within homogeneous cluster facilities, but is unsuitable

for guaranteeing services in dynamic resource environments.

3. Control Mechanisms

Providing a quality-of-service system for a OpenGL stream

has commonalities with application-layer quality-of-service

(QoS) control mechanisms developed for video streaming.

The objectives of video streaming QoS can be defined as

avoiding congestion and maximising video quality in the

presence of packet loss [WHZ∗01]. These objectives hold

true for distributed rendering, but the factors governing qual-

ity and throughput are more complex. As well as packet loss

(in the presence of lossy UDP based protocols) and network

bandwidth, hardware rendering performance can also have

an effect on both visualisation quality and frame rate. An-

other more imposing consideration is that unlike the frames

of a video stream, rendered frames are not periodic. Frames

are instead triggered by scene changes or display corruption.

Issues such as jitter in video streaming, which are readily de-

termined by the expected arrival period of a frame in a video

stream, are non-trivial in the case of distributed rendering.

Control schemes to meet the two objectives of con-

gestion avoidance and image quality can be classified as

receiver-based, source-based and hybrid control schemes

[WHZ∗01]. Sections 3.1, 3.2, and 3.3 introduce each of

these schemes and present new strategies for their use in dis-

tributed rendering. The classification of receiver and source

helps move distributed rendering beyond the client-server

rendering paradigm. When discussing receiver and source

control strategies in the subsequent sections, these entities

are considered to be nodes in a directed acyclic graph con-

nected by a common edge. Some control mechanisms may

impose certain additional conditions such as the availability

of local rendering resources.

3.1. Receiver-based control

A receiver is responsible for maintaining display quality and

render performance using only receiver-based mechanisms.

In order to avoid confusion between receiver and source

based control mechanisms, the receiver is assumed to termi-

Figure 1: OpenGL stream timing analysis. Synchronisation

between source and receiver is shown as occurring at the

end of each frame.

nate the stream and act as a display client for the application

user.

A receiver has no knowledge of the causes of delays up-

stream as it has no method for determining the expected ar-

rival time of each frame. The delay could be natural, intro-

duced by the sporadic interactions of the user (interaction

latency); or artificial, caused by network or render perfor-

mance. However, the receiver does know the time taken to

render a frame downstream, assuming frame synchronisa-

tion is performed at the end of each frame. This is illustrated

by the timing diagram in Figure 1, which depicts the source

stream acting as a remote framebuffer, locally rendering the

OpenGL frame and using glDrawPixels to transmit the frame

to the receiver.

Under these assumptions, receiver control mechanisms

can take two forms: stream switching and stream filtering.

Stream switching is possible when multiple source streams

are available. These could include a complete AVO stream,

reduced level-of-detail AVO stream, or remote frame buffer;

each reducing scene complexity. Each stream requires ad-

ditional render resources on the server, but when serving

multiple clients of varying resource power such mechanisms

would be cost effective.

Stream filtering involves performing local filtering on the

AVO stream to reduce scene complexity to better match ren-

der resources. Possible AVO reduction methods have a pro-

cessing cost associated with them. OpenGL quality hints

provide information to the OpenGL implementation on the

relative importance of render speed over quality. As sin-

gle API calls, OpenGL hints can be easily filtered from the

application AVO stream, however the effects of such calls

are implementation specific and some OpenGL implementa-

tions will ignore them completely [WSND03]. Other meth-

ods which reduce scene complexity by altering texture or

geometry structures are more costly to perform. The key to

stream filtering at this level is an effective model of how el-

ements of the scene effect overall complexity and how re-

duction methods can be applied. In section 5 we examine a

c© The Eurographics Association 2007.

141

J.O’Brien & R. Kalawsky / EG Control Mechanisms

novel adaptation method, which is cost effective in providing

scalable complexity.

In general, receiver control mechanisms work well for sit-

uations where poor graphic resources sit on a high speed net-

work. The strategies make inefficient use of networking re-

sources as redundant scene complexity is transmitted to the

receiver.

3.2. Source-based control

Within source based control mechanisms, a source node is

responsible for ensuring that nodes downstream receive and

render the OpenGL scene correctly, maximising both render

performance and quality. Assuming that a source node has

no other streams feeding it, then source control mechanisms

are aware of the total time taken to render a frame, including

network delivery, and the current interaction latency (refer

to Figure 1). However, the source control mechanism is not

explicitly able to distinguish between network and receiver

render performance downstream.

Within video streaming there are two basic approaches

for determining network bandwidth: probe based and model

based. A model based approach estimates the network

throughput using a suitable mathematical model of the net-

working protocol, this is commonly used for TCP connec-

tions where information on packet loss and round trip times

are available [WHZ∗01, FF99]. Using a protocol model,

source control mechanisms are able to determine the dom-

inant factor in the observed render time and act accordingly.

Probe based approaches interrogate the network or receiver

to determine the factors creating the observed render time.

Third-party applications can be used to profile network con-

nections to determine network performance during initialisa-

tion [Mar00]. However, changes in network conditions will

not be detected by one time profiling such as this. Within a

render stream, information on network performance can be

obtained through appropriate use of synchronisation barri-

ers.

When a barrier is established within Chromium, the

framework guarantees that all OpenGL commands previ-

ously made have been delivered and executed by all clients

before proceeding. Therefore, the time required to deliver

and execute glDrawPixels can be determined by placing a

barrier directly after the call. This time represents both the

network delivery time and the time to decode and display the

pixels.

Given that the source control mechanism can determine

the dominant factor between transmission and render time,

the control mechanism can employ more powerful strategies

than receiver based mechanisms. A source node is free to

switch between serving a complete or reduce AVO stream

to the client, or act as a remote frame buffer. Acting as re-

mote frame buffer would reduce both network congestion

and client render time for complex dynamic scenes.

When networking performance is the dominant factor,

the source control mechanism is able to employ compres-

sion techniques and level-of-detail strategies to reduce frame

size. As well as compression of pixels, geometry compres-

sion can also be applied [PBCK05].

Source nodes have no method for determining the render

time observed by the receiver, so level-of-detail scaling or

compression cannot accurately be applied to the geometry

or texture of a visualisation scene. However, when operating

as a remote frame buffer it is possible to calculate the de-

compression time of the receiving node, if time symmetric

codecs are used such as JPEG. A source node can exploit this

information to model the decompression time on the receiv-

ing node. Alternately decompression can be performed in

parallel by a separate thread, allowing the receiver to decode

the current frame, whilst receiving the next. A synchronisa-

tion barrier placed after the transmitted pixels would then

allow the source node to determine transmission time for the

pixels.

Source-based control mechanisms allow the graphical

AVO stream to be adapted in response to changing network

conditions. These mechanisms require a complete round trip

on every frame to perform the frame synchronisation neces-

sary in determining networking performance. In high latency

networking environments this constraint would become a

dominating factor in the visualisation performance. A simple

solution would be to only measure bandwidth occasionally

or when a change in frame rate occurs at the AVO source.

However this may further disrupt the user by introducing

jitter into the visualisation. A hybrid control mechanism,

where both source and receiver nodes co-operate, would al-

low modules to measure network performance without the

use of synchronisation barriers.

3.3. Hybrid control

Hybrid control mechanisms can help ensure that all nodes

in a distributed render network have access to detailed in-

formation on transfer and render performance. The previous

sections have demonstrated how a receiving node, acting as

a render client, can observe render performance of the hard-

ware resources present at the node. Similarly, source nodes

attached to the application are aware of how quickly an ap-

plication is generating render frames by measuring the time

between the end and start of each frame. By transmitting

performance and quality-of-service information through the

AVO stream or a separate control stream, all nodes in a dis-

tributed render network are given access to this information

and are better able to adapt the visualisation to available re-

sources.

Each node in a distributed render system contains at least

two pieces of unique information that is not observable from

any other node: the time between the end of a frame and the

start of the next frame, referred to here as the frame latency;

c© The Eurographics Association 2007.

142

J.O’Brien & R. Kalawsky / EG Control Mechanisms

and the time taken between the start of the frame and the end

of the frame, referred to as the render time. By understanding

the role of each node in the system, control mechanisms can

adapt the AVO stream in response to this timing information.

For example, network bandwidth can be determined by sub-

tracting the frame latency and render time observed by the

source node from the frame latency observed by a receiver

(see Figure 1, without frame synchronisation points).

Source nodes cannot simply request information from re-

ceiving nodes downstream through OpenGL calls as this

would interrupt the AVO stream with unnecessary synchro-

nisation points. Alternately, the frame latency and render

time information can be passed back through the network

connections from receiver nodes to source nodes (refer to

Figure 3) as a separate asynchronous control loop.

4. Architecture

The development of a distributed render system capable of

hybrid control requires an efficient feedback loop to relay

information to relevant nodes in a render system. It is im-

portant that message passing occurs asynchronously to the

render stream to avoid introducing round trip delays into the

rendering stream. Care must also be taken to avoid over-

whelming the network and nodes with messages. We pro-

pose a simple publish-subscribe event system to achieve this,

which is discussed in the following section. A number of

modules have been constructed as SPUs to demonstrate the

effectiveness of the system. These are not designed to be

exhaustive as different visualisation techniques will require

specific modules.

4.1. Publish-Subscribe Control Messages

A control message framework was instrumented for

Chromium to facilitate experiments with hybrid control

mechanisms. The framework is designed around a publish-

subscribe system to reduce network load; network traffic is

reduced by only transmitting messages which source mod-

ules have registered an interest in. A typical message ex-

change to subscribe and receive a message is shown in Fig-

ure 2. Each node is assigned a unique ID by the configu-

ration server (Chromium mothership) during initialisation,

the ID is used to specify the receiving SPU to subscribe to,

and allow source SPUs to distinguish the origin of a control

message. A message consists of a unique ID representing the

message type, the ID of the source and destination node, the

length of the message, and the message payload. It is up to

the receiving SPU to unpack and interpret the message pay-

load. Nodes are allocated ID’s in ascending order from the

first source node to the final receiver node. The destination

ID of a message represents the lowest ID of the nodes sub-

scribed to that message type. Such that, the destination ID is

effectively operating as a time to live for the message, rather

than a list of node IDs.

Figure 2: Sequence diagram for subscribing to a message in

the control framework. The command GetMessageIDs can

be used to obtain a list of supported messages at each node,

before subscribing to messages.

A message handling routine runs as a separate thread on

each node in the distributed system to dispatch received mes-

sages to subscribed SPUs. Messages are passed to each SPU

through a callback function, which is specified when the

SPU initiates a subscription. If the destination ID of a re-

ceived message is less than the value of the node’s ID, the

message is relayed to all source nodes attached to the node.

Using this new system, source nodes are able to adjust

the AVO stream in response to rendering and network per-

formance observed by receiving nodes. However nodes not

attached to the visualisation application are still unaware of

how quickly each frame must be delivered to the user; and

none of the nodes have any indication of the relative im-

portance of visualisation quality and speed within the dis-

tributed render system. A quality-of-service extension was

added to the OpenGL API to achieve this. As well as sup-

porting the Subscribe and GetMessageIDs functions (refer

to Figure 2), the following two functions are proposed:

• glRequestedUpdateRateQoS(rate)

• glCurrentInteractionRateQoS(rate)

In order to minimise the impact on network performance,

the parameter for each function is sent as a single byte, rep-

resenting quantised floating point value between 0.0 - 1.0.

The parameter is used to weight the target frame rate against

a user configured maximum. The RequestedUpdateRate in-

forms SPUs down stream of the most important factor within

the current scene: speed or quality. The assumption is made

that quality and speed form a linear continuum of possible

rendering options. A parameter of 0.0 would suggest that

quality is the most important factor; conversely a parameter

of 1.0 would suggest that render speed is of most importance.

This approach is similar to that of glHint [WSND03], but

differs in that a fine granularity of rendering performance

between GL_NICEST and GL_FASTEST is made explicit.

The approach is based around the interaction model used for

determining level-of-detail rendering within VTK [SML98].

c© The Eurographics Association 2007.

143

J.O’Brien & R. Kalawsky / EG Control Mechanisms

Figure 3: Distributed stream rendering architecture. Each

box is a separate module or SPU within the render network.

Dashed lines represent control messages, solid lines repre-

sent the OpenGL stream.

The CurrentInteractionRate acts as a supplement to the

RequestedUpdateRate, and represents the quantised time in-

terval between render frames (interaction latency). The value

allows SPUs to decide the current context of the OpenGL

stream. To illustrate this, consider an adaptive compression

SPU, which adapts image compression to available band-

width, a RequestedUpdateRate of 0.8 would suggest that

speed is of most importance over quality overall. The SPU

can then use the CurrentInteractionRate to decide if speed

is still an important factor in the current context. This makes

the assumption that during periods of slow interaction a long

response time for a higher quality frame is preferable.

The proposed QoS extension allows receiver nodes to bet-

ter optimise AVO rendering based on the requirements and

context of the source. The messages received from nodes op-

erating down stream, indicating the performance of render-

ing hardware and network characteristics, allowing source

nodes to reduce AVO complexity before it is transmitted

down stream. Distributed rendering systems which are self-

organising can now be designed. These systems automati-

cally use both client rendering hardware and server hardware

to provide the best possible interaction.

4.2. Processing modules

Within our controlled rendering system, collections of SPUs

are used to deliver an adaptive render system. Each SPU per-

forms some transformation on the incoming stream based

on input stimulus from control messages and the observed

state of stream. In this way SPUs in the control system have

a close relationship to that of neurons within a neural net-

work and exhibit a basic form of learning by altering their

behaviour over time. For our experiments we have developed

three SPUs: path-switch, compression and scene scaling (re-

fer to Figure 3).

The path-switch module allows the stream to be redi-

rected to new modules when existing down stream modules

have been exhausted. For example, when rendering a large

retained display list, the path-switch module will initially

start by transmitting OpenGL calls straight to the receiver.

Figure 4: A simplified non-programmable OpenGL pipeline

showing possible bottlenecks in the pipeline, adapted from

[WSND03].

The path-switch module switches the stream to perform lo-

cal rendering instead if the receiver becomes incapable of

rendering the frame. This places a higher demand on net-

work bandwidth (rather than on the receiver’s render perfor-

mance) and is achieved by affecting the function dispatch ta-

ble within the SPU. The new QoS hints within the OpenGL

stream are used to determine when this action is appropriate.

Depending on user preferences, a low quality but respon-

sive scene may be preferable over a high-latency network, in

this instance a watchdog routine is placed in the path-switch

module to provide high-quality rendered images during idle

periods.

Compression modules perform compression of polygon

or pixel data. A compression module observes QoS com-

mands within the stream and timing information from the

control channel to calculate available bandwidth and target

compression level. A JPEG based module has been devel-

oped for this purpose. Image compression was chosen over

video compression like MPEG, as this provides the ability to

quickly switch compression methods (i.e. switching between

lossless JPEG-LS and lossy JPEG compression during idle

and interactive periods), and can be encapsulated within a

WireGL stream.

Scene scaling modules dynamically adapt the level-of-

detail of parts of the render stream. Such modules are very

specific to rendering techniques used within the visualisa-

tion. Bottlenecks in the OpenGL pipeline predominantly oc-

cur in three places, as shown in Figure 4. A stream which

is vertex bound can be improved by performing mesh dec-

imation on the vertex mesh supplied for the scene; streams

which are texture or rasterization bound can be improved

by reducing texture and scene resolution respectively. How-

ever, the dominant process in the pipeline must first be deter-

mined, typically this is performed by repeated experimenta-

tion [Spi03]. For automatic stream adaptation to be possible

a more formal process must be taken to determining bottle-

necks. A scene scaling module has been developed to tar-

get direct volume rendering applications. These are predom-

inantly texture or pixel bound, by scaling the image resolu-

tion and texture size render time can be reduced. Resolution

scaling is achieved by reducing the rendering viewport of the

c© The Eurographics Association 2007.

144

J.O’Brien & R. Kalawsky / EG Control Mechanisms

 0
 20
 40
 60
 80

 100

 0 50 100 150 200 250 300 350

Q
u

a
lit

y

Frame Number

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180
B

a
n

d
w

id
th

 (
K

B
/s

)
Quality Adaptation

Figure 5: Compression quality adaptation in response to

changing network conditions.

application and quickly rescaling the rendered image using

texture hardware. A linear convolution filter is used to re-

duce the largest dimension of each 3D texture by a power of

2 (application behaviour is not effected as OpenGL texture

coordinates are normalised to a unit cube).

5. Results

A direct volume rendering application was developed to

evaluate the performance of the adaptive render system. The

application produces a shaded 3D volumetric effect by com-

positing a set of view plane aligned polygons that are tex-

ture mapped through two 3D textures of size (256,256,512).

This is an expensive process and results in a frame rate of

10.3fps at a default resolution of 800x800 on an NVIDIA

GeForce 7600 256MB desktop graphics card. Figures 6 and

7 shows the result of independently varying resolution and

texture size using our scene scale SPU.

Small reductions in resolution size offer little improve-

ment to the frame rate. This is partly due to the overhead

involved in rescaling the rendered image to full resolution.

However, examination of the texture scale graph shows that

the application is initially texture bound, as small reductions

in texture size result in an improved frame rate. Once the

resolution is reduced further, by over a half, the frame rate

begins to improve greatly and continues to improve with re-

duced resolution. Rather than attempt to model the rendering

process, the scene scale module deduces the dominant ren-

dering factor by observing the change in frame rate due to

the previous action taken by the module, alternating between

reducing texture and resolution size to converge on an opti-

mum configuration. During less active periods, indicated by

CurrentInteractionRate, the path-switch SPU transmits full

resolution images from the server.

If the scene scale SPU cannot obtain a suitable frame rate,

the stream switch SPU detects this and switches to source

based rendering. At which point the adaptive JPEG compres-

sion module begins to converge on a compression quality

which matches the available bandwidth (refer to Figure 5).

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 0 100000 200000 300000 400000 500000 600000 700000

fr
a

m
e

s
 /

 s
e

c

Scaled Resolution (pixels)

Resolution scale performance

Figure 6: The effect of resolution scaling on frame rate using

an NVIDIA GeForce 7600 graphics card.

 10

 10.5

 11

 11.5

 12

 12.5

 13

 13.5

 14

 14.5

 0 2 4 6 8 10 12 14 16

fr
a

m
e

s
 /

 s
e

c

Reduction Level

Texture scale performance

Figure 7: The effect of texture scaling on frame rate using an

NVIDIA GeForce 7600 graphics card. Each reduction level

reduces the largest texture dimension by a power of two.

6. Conclusions and Further Work

Providing quality-of-service for distributed stream render-

ing represents an information distribution problem: nodes in

the network understand local resources, but are unaware of

how actions on that stream effect other nodes. We have ad-

dressed this problem using a classic feedback control model,

and shown how this can be used to deliver adapted graphical

scenes for large visualisations.

Our novel use of feedback control loops and quality-

of-service messages moves remote rendering beyond a

client-server paradigm and towards a distributed streaming

paradigm of source and receiver. Specialised modules (pro-

viding compression, path-switching and volume rendering

reduction) are now able to co-operate to target distributed

remote rendering networks to a user needs.

These networks facilitate the connection of multiple

clients to a rendering stream, each presented with a tailored

environment to both user and resource requirements. Where

sufficient client resources are present to render a visualisa-

tion scene, local interaction loops can now be used to provide

very responsive user interaction. We are currently investigat-

ing how these local interaction loops can be applied to our

adaptive render system.

c© The Eurographics Association 2007.

145

J.O’Brien & R. Kalawsky / EG Control Mechanisms

References

[AGMR02] ALLARD J., GOURANTON V., MELIN E.,

RAFFIN B.: Parallelizing pre-rendering computations on

a net juggler pc cluster. Immersive Projection Technology

Symposium (march 2002).

[Bet00] BETHEL W.: Visualization viewpoints: Visualiza-

tion dot com. IEEE Computer Graphics and Applications

20, 3 (2000), 17–20.

[BTL∗00] BETHEL W., TIERNEY B., LEE J., GUNTER

D., LAU S.: Using high-speed wans and network data

caches to enable remote and distributed visualization. In

Proceedings of the 2000 ACM/IEEE conference on Su-

percomputing (Washington, DC, USA, 2000), IEEE Com-

puter Society.

[ESE00] ENGEL K., SOMMER O., ERTL T.: A frame-

work for interactive hardware accelerated remote 3d-

visualization. In Proceedings of EG/IEEE TCVG Sym-

posium on Visualization VisSym’00 (2000), pp. 167–177.

[ESEE99] ENGEL K., SOMMER O., ERNST C., ERTL

T.: Remote 3D visualization using image-streaming tech-

niques. In Proceedings of the International Symposium on

Intelligent Multimedia and Distance Education (1999).

[FF99] FLOYD S., FALL K.: Promoting the use of end-

to-end congestion control in the internet. Networking,

IEEE/ACM Transactions on 7, 4 (1999), 458–472.

[HEHE01] HUMPHREYS G., EVERETT M., HANRAHAN

P., ELDRIGDE M.: Wiregl: A scalable graphics system

for clusters. In International Conference on Computer

Graphics (2001), pp. 129 – 140.

[HHN∗02] HUMPHREYS G., HOUSTON M., NG R.,

FRANK R., AHERN S., KIRCHNER P., KLOSOWSKI J.:

Chromium: a stream-processing framework for interac-

tive rendering on clusters. ACM Transactions on Graphics

21, 3 (2002), 693–702.

[KOC05] KALAWSKY R., O’BRIEN J., COVENEY

P.: Improving scientists’ interaction with complex

computational–visualization environments based on a

distributed grid infrastructure. Philosophical Transac-

tions: Mathematical, Physical and Engineering Sciences

363, 1833 (2005), 1867–1884.

[Mar00] MARTIN I. M.: Arte - an adpative rendering and

transmission environment for 3d graphics. In Proceedings

of the eighth ACM international conference on Multime-

dia (New York, NY, USA, 2000), ACM Press, pp. 413–

415.

[MC00] MA K., CAMP D.: High performance visualiza-

tion of time-varying volume data over a wide-area net-

work. Proceedings of Supercomputing 2000 Conference

(2000).

[McC88] MCCORMICK B.: Visualization in scientific

computing. ACM SIGBIO Newsletter 10, 1 (1988), 15–

21.

[Oha99] OHAZAMA C.: OpenGL Vizserver White Paper.

Tech. rep., Silicon Graphics Inc., 1999.

[PBCK05] PURNOMO B., BILODEAU J., COHEN J., KU-

MAR S.: Hardware-compatible vertex compression us-

ing quantization and simplification. In Proceedings of

the ACM SIGGRAPH/EUROGRAPHICS conference on

Graphics hardware (2005), ACM Press New York, NY,

USA, pp. 53–61.

[PHK∗99] PFISTER H., HARDENBERGH J., KNITTEL J.,

LAUER H., SEILER L.: The volumepro real-time ray-

casting system. In Proceedings of the 26th annual con-

ference on Computer graphics and interactive techniques

(New York, NY, USA, 1999), ACM Press/Addison-

Wesley Publishing Co., pp. 251–260.

[SB03] SHALF J., BETHEL E. W.: How the grid will af-

fect the architecture of future visualization systems. IEEE

Computer Graphics and Applications 23, 2 (May/June

2003), 6–9.

[SML98] SCHROEDER W., MARTIN K., LORENSEN B.:

The visualization toolkit. Prentice Hall PTR Upper Saddle

River, NJ, 1998.

[Spi03] SPITZER J.: Opengl performance tuning. NVIDIA

Corporation, GameDevelopers Conference (2003).

[SWNH03] STAADT O. G., WALKER J., NUBER C.,

HAMANN B.: A survey and performance analysis of soft-

ware platforms for interactive cluster-based multi-screen

rendering. IPT/EGVE 2003.Seventh Immersive Projec-

tion Technology Workshop.Ninth Eurographics Workshop

on Virtual Environments (2003), 70,. Conference Paper;

20; C2004-09-6110B-03301; English; ID: INSPEC (EB-

SCO).

[VBRR02] VOSS G., BEHR J., REINERS D., ROTH M.:

A multi-thread safe foundation for scene graphs and its

extension to clusters. Proceedings of the Fourth Euro-

graphics Workshop on Parallel Graphics and Visualiza-

tion (2002), 33–37.

[vdSRG∗02] VAN DER SCHAAF T., RENAMBOT L.,

GERMANS D., SPOELDER H., BAL H.: Retained mode

parallel rendering for scalable tiled displays. Proc. 6th

Ann. Immersive Projection Technology (IPT) Symposium,

Orlando, Florida (2002).

[WHZ∗01] WU D., HOU Y., ZHU W., ZHANG Y., PEHA

J.: Streaming video over the internet: approaches and

directions. Circuits and Systems for Video Technology,

IEEE Transactions on 11, 3 (2001), 282–300.

[WSND03] WOO M., SHREINER D., NEIDER J., DAVIS

T.: OpenGL Programming Guide: the official guide to

learning OpenGL, Version 1.4. Addison-Wesley Long-

man Publishing Co., Inc. Boston, MA, USA, 2003.

c© The Eurographics Association 2007.

146

