
EG UK Theory and Practice of Computer Graphics (2007)
Ik Soo Lim, David Duce (Editors)

Delivering Effective and Usable Interactive 3D Visualization
on Lightweight Mobile Devices

I.R. Holmes and R.S. Kalawsky

Research School of Systems Engineering, Loughborough University, Loughborough, UK

Abstract
3D visualization has significantly enhanced scientists’ ability to discover important new insights into their data. In
this paper we focus specifically on associated HCI and human factors of remote 3D visualization. We discuss how,
through adopting a user-centered design approach we have successfully engineered the Lightweight Visualization
software system. This exciting HCI innovation has enabled scientists to interact with their own 3D visualization
packages whenever they want and from wherever they happen to be. We describe how this advanced level of ’on
the move’ HCI was achieved by facilitating scientists to interact with their familiar desk-based 3D user interfaces
via affordable, wireless computing devices. In particular, we highlight how the system has initially been employed
within the UK e-Science RealityGrid project to support an extensively used 3D molecular dynamics user interface
on the roaming, handheld PDA. Whilst it is recognized that these types of ’lightweight’ devices possess limited
compute, graphics and memory capability we also identify how Lightweight Visualization has overcome these
serious limitations to effectively deliver usable interactive 3D visualization on the commodity mobile platform.

Categories and Subject Descriptors (according to ACM CCS): H.1.2 [User/Machine Systems]: Human factors H.5.2
[User Interfaces]: Graphical user interfaces (GUI) H.5.2 [User Interfaces]: User-centered design

1. Introduction

The vitally important role that visualization plays in scien-
tific computing has been widely recognized ever since the
late 1980’s [MDB87]. The application and use of 3D visual-
ization in modern fields such as Grid computing [FK99], and
as a component of advanced HCI techniques such as compu-
tational steering [vLMvW97] has dramatically enhanced sci-
entists’ ability to discover important new insights into their
data. We focus specifically on associated HCI and human
factors of remote 3D visualization. In this particular applica-
tion domain, HCI design is an extremely important area that
has, to date, sadly often lagged behind in the drive to simply
serve and project colorful imagery to the user.

In this paper we establish a set of HCI requirements for
remote 3D visualization. We discuss how, through adopt-
ing a user-centered design approach we have successfully
engineered the Lightweight Visualization software system.
Traditionally, in order for scientists to properly interact with
their 3D visualization applications they have often had to be
tied, also sometimes for prolonged periods [KN04], to high-
end graphics workstations. This underlies the basic need for

Figure 1: The RealityGrid PDA Client.

a more flexible and convenient means of supporting 3D user
interaction. Our Lightweight Visualization innovation has
successfully enabled scientists to interact with their own 3D
visualization packages whenever they want and from wher-
ever they happen to be. This could be at any time of the day

c© The Eurographics Association 2007.

http://www.eg.org
http://diglib.eg.org


I.R. Holmes & R.S. Kalawsky / Delivering Effective and Usable Interactive 3D Visualization on Lightweight Mobile Devices

(or night) and from virtually any convenient location; espe-
cially whilst being away from the traditional ’desk’ environ-
ment. We describe how this advanced level of ’on the move’
HCI was achieved by facilitating scientists to interact with
their familiar desk-based 3D user interfaces via affordable,
wireless-enabled computing devices. In particular, we high-
light how the system has initially been employed within the
UK e-Science RealityGrid project to support an extensively
used 3D molecular dynamics user interface on the roaming,
handheld PDA (refer to Figure 1). Whilst it is recognized that
these types of ’lightweight’ devices possess limited com-
pute, graphics and memory capability we also identify how
Lightweight Visualization has overcome these serious limi-
tations to effectively deliver usable interactive 3D visualiza-
tion on the commodity mobile platform.

1.1. RealityGrid

We discuss the design and development of the Lightweight
Visualization system primarily within the context of our
work as part of the UK e-Science RealityGrid project (www.
realitygrid.org). Within RealityGrid, the system has
already achieved considerable initial success by underpin-
ning the Grid-enabled interactive 3D visualization capability
(as part of computational steering) of the RealityGrid PDA
Client [HK06] (refer to Figure 1). The system, and the ac-
companying PDA GUI were both the product of a deep-track
RealityGrid HCI design activity, which was initiated by a
thorough human factors audit [KN04] of the project.

1.2. Related Work

The idea of scientists using lightweight mobile devices to
interact remotely with their 3D visualizations is not an en-
tirely novel concept. Several examples of successfully im-
plemented mobile 3D GUI systems have emerged over re-
cent years. Some of the more prominent instances have in-
cluded OpenGL Vizserver [Oha99]. This system worked on
the basis of intercepting the graphics library calls that a vi-
sualization application invokes on its host computer. Fully
rendered 2D images (frames) were captured from the result-
ing graphics pipeline and served across a network for dis-
play on the user’s remotely connected desktop or laptop PC.
Hence, the user interface hardware did not have to possess
any substantial (expensive) graphics capability in order to
support 3D user interaction. Also, by externally intercept-
ing application calls to the graphics library, the user was not
required to instigate any internal modification to their visu-
alization packages in order to use the system. The Vizserver
GUI could thus by employed to support transparent, remote
3D user interaction with any OpenGL-based application.

A second, significant example of mobile 3D user interac-
tion was demonstrated by the RAVE environment [GAW04].
In this system, ubiquitous 3D user interaction was supported
across a range of high-end as well as low-end user interface

devices, including the lightweight PDA. A particularly no-
table aspect was the system’s capability to support both local
and remote rendering, depending on the indigenous graphics
capability of the user interface hardware.

One final example to highlight is the PDA client [LZS∗03]
that was developed for use with the Chromium [HHN∗02]
cluster-based rendering architecture. This lightweight GUI
capitalized on Chromium’s capability (similar to Vizserver)
to intercept OpenGL calls on a host computer resource. The
user was thus able to interact via the wireless PDA, just as
they would through the Vizserver client with the resulting
graphics stream from any OpenGL-based 3D application.

1.3. HCI Requirements Analysis

The emphasis in remote visualization has, to date, often been
placed upon system capability to project remotely rendered
images onto users’ mobile interface devices. Equal consid-
eration has less often been given to how the user actually
needs to interact with their 3D visualizations. Yet this is a
vitally important HCI design factor that should not be over-
looked. The human factors audit [KN04] that was conducted
as part of RealityGrid identified how the project’s groups
of application scientists needed to interact with their Grid-
based 3D visualizations. The wide range of research activi-
ties within RealityGrid meant that a considerable number of
specialized as well as bespoke 3D user interfaces needed to
be employed; as opposed to the generic solution. This iden-
tified HCI requirement raised two key issues with regard to
supporting lightweight 3D user interaction. Firstly, the sci-
entists’ required 3D visualization GUIs/packages could not
be expected to operate in certain lightweight computing en-
vironments; the PDA, for example. Secondly, even where the
required GUI could be deployed locally, perhaps onto a thin
laptop PC, the sheer complexity or size of the visualization
data (up to terascale simulations in RealityGrid) would be
overwhelmingly too excessive for current lightweight device
technology to render at interactive speeds.

The remote OpenGL approach that was implemented in
Vizserver [Oha99], as well as in the PDA GUI [LZS∗03]
for Chromium offered a partial solution for lightweight 3D
user interaction. This method showed that it could support
ubiquitous mobile user interaction on both the handheld and
the laptop platforms. The benefit of the user not having to
modify their visualization packages in order to employ the
system also made for a compelling argument. However, the
OpenGL solution was found to be deficient within the con-
text of our HCI requirements. It supported lightweight user
interaction with the graphics pipeline, but not the actual un-
derlying visualization data, or the required user interface of
the scientists’ applications. This deficiency raises a problem
for domains such as RealityGrid, where a considerable num-
ber of specialized as well as bespoke 3D visualization user
interfaces are required. The OpenGL solution also presents a
particular issue for HCI models such as computational steer-

c© The Eurographics Association 2007.

132

www.realitygrid.org
www.realitygrid.org


I.R. Holmes & R.S. Kalawsky / Delivering Effective and Usable Interactive 3D Visualization on Lightweight Mobile Devices

ing (the central theme in RealityGrid), where user interaction
via direct control [vLMvW97] is a requirement.

Another important HCI requirement relates to user inter-
action performance. Specifically in terms of remote 3D visu-
alization, a key factor is the amount of latency that is gener-
ated in between the user interacting and subsequently view-
ing the effect within the remotely rendered, served and lo-
cally displayed images. It is commonly regarded [KOC05]
that a consistent response time of around 0.1s is required,
if the user is to have the ideal sensation of real-time in-
teraction with their application. However, remote 3D visu-
alization GUI systems for the PDA, and other user inter-
face devices of similar limited (lightweight) capability have
rarely been able to achieve this level of performance. With-
out the capability to support efficient, and ideally real-time
user interaction, lightweight UIs (in particular the PDA, mo-
bile phone, etc.) may only realistically be regarded as toys,
and not as being the beneficial ’usability improvement’ tech-
nologies for real, everyday scientific application.

2. Lightweight Visualization

The Lightweight Visualization system has been engineered
with the user-centered objective of satisfying the identified
HCI requirements to effectively deliver usable interactive 3D
visualization on lightweight mobile devices. Lightweight Vi-
sualization was primarily designed in response to the find-
ings of the RealityGrid human factors audit [KN04], which
clearly identified the need for a more flexible and conve-
nient means of supporting interactive 3D visualization, as
part of computational steering, in Grid computing environ-
ments. However, it is important to emphasize that our strat-
egy from the outset was to design and build a generic tech-
nology to support lightweight user interaction in any field or
application domain of computer visualization.

2.1. System Architecture

At the heart of Lightweight Visualization is a distributed sys-
tem architecture comprising four distinct software compo-
nents (refer to Figure 2). The user’s desk-based 3D visual-
ization GUI/package is instrumented with a small bespoke
code module, called the LViz Module (refer to Figure 2).
This provides an application interface to the required ele-
ments of the native 3D user interface. The module is respon-
sible for invoking specific user interaction functionality from
within the visualization application. It also captures the re-
sulting graphics output by recording sequences of rendered
2D frames to persistent digital image files on the hard disk.
The module receives requests for user interaction function-
ality, in the form of text-based messages, from a separate
application called the LViz Server.

The LViz Server (refer to Figure 2) deploys onto the same
computer resource as the user’s visualization application. It
communicates asynchronously with the LViz Module over a

local-domain socket. The server is responsible for receiving
user interaction requests from remote clients. Request mes-
sages are buffered within the server, before being forwarded
on for invocation within the LViz Module. The server also
encodes and serves the resulting sequences of rendered 2D
frames back across a network for display within remotely
connected instances of the LViz Client.

Figure 2: Lightweight Visualization Architecture.

The LViz Client (refer to Figure 2) supports the front-end
to Lightweight Visualization. Its GUI is tailored specifically
to suit the user’s individual interaction needs, and/or the user
interface of their required 3D visualization package(s). The
client captures package-specific interaction commands from
the user’s inputs. These commands (user interaction request
messages) are then promptly dispatched across a network to
the LViz Server. The client also processes and displays the
resulting sequences of 2D frames, which are received from
the LViz Server in an asynchronous fashion. All communica-
tion (requests and images) between client and server is me-
diated via a fast and direct TCP/IP socket link.

The final component of the Lightweight Visualization ar-
chitecture is the Registry (refer to Figure 2). This provides
a stateful Web service to which the LViz Server publishes
descriptive detail of scientists’ visualizations. By querying
the Registry, the LViz Client can easily find and dynami-
cally couple to 3D visualization applications (via the LViz
Server), without the user having to memorize and manually
input specific details of remote network endpoints. This as-
pect of Lightweight Visualization was derived directly from
the RealityGrid computational steering system [PHPP05].

2.2. LViz Module

A key HCI requirement specified that application scientists
ideally needed to interact with the user interface from their
own 3D visualization package(s). In the specific case of Re-
alityGrid, the required user interfaces were found [KN04] to
be tightly integrated into the software. This meant that an ef-
fective mechanism had to be devised for supporting users to
easily integrate their own 3D visualization packages into the
Lightweight Visualization environment. The approach that
was implemented to achieve this effect within the Reality-
Grid computational steering environment was to provide an

c© The Eurographics Association 2007.

133



I.R. Holmes & R.S. Kalawsky / Delivering Effective and Usable Interactive 3D Visualization on Lightweight Mobile Devices

API as part of the architecture [PHPP05]. Users could thus
utilize the API to instrument (Grid-enable) their own codes.
This solution worked well for the RealityGrid computational
steering system, but it raised several key issues with regard
to its prospective use in Lightweight Visualization.

In order to utilize the API system, some form of user ac-
cess to the visualization code must be available. This would
not always be practical for the case of Lightweight Visu-
alization, where third-party or commercial 3D visualization
packages needed to be used [KN04]. In addition, the amount
of time and effort that may be expected of the application
scientist (user) to instrument the more complex of visualiza-
tion codes [FCJW04], could discourage or potentially even
prohibit the use of Lightweight Visualization. One final point
is that the Lightweight Visualization system operates on the
basis of supporting tailored lightweight GUIs to required 3D
user interfaces. The user interface can vary considerably be-
tween different visualization packages, so any generic solu-
tion would be deficient in this specific instance.

The approach that we adopted to support easy integration
of scientists’ 3D visualization packages into the Lightweight
Visualization environment was discerned from [vWvLM00].
Here, it was suggested that a partial solution could be found
in modern modular or extensible system architectures. In
RealityGrid, a small bespoke code module had to be writ-
ten [PHPP05] specifically for the modular architecture of
the commercial (closed source) AVS/Express visualization
package. Embedding a bespoke module was the only vi-
able option for instrumenting AVS/Express, which needed
to be used [KN04] by a number of application scientists
in conjunction with the RealityGrid computational steering
system. It was this same bespoke modular/extensible solu-
tion that we have carried forward into the system design of
Lightweight Visualization.

Rather than providing a generic object that the scientist
uses to instrument their visualization code, the remote ar-
chitecture of Lightweight Visualization has been split into
two separate entities: the LViz Server and the LViz Mod-
ule (refer to Figure 2). The server constitutes 99% of the re-
mote functionality, and is a completely generic technology.
Its counterpart module is an abstract entity that, once imple-
mented, provides the remaining 1% of the functionality. The
module adheres to a specific application interface so that it
can communicate correctly with the server component. Ev-
erything else about it is bespoke and tailored specifically to
provide external access to the scientist’s required 3D user
interface. The module can be rapidly engineered in any pro-
gramming language (to suit the 3D application), either by the
user themselves or alternatively by a third party. A number
of pre-implemented ’template’ modules written in a variety
of popular languages have also been included as part of the
initial distribution, and these can be very quickly customized
to suit individual requirements.

For 3D visualization GUIs/packages that support modular

extensibility (AVS/Express, for example), the LViz Module
can be easily configured and embedded as a supplementary
system component. This supports a user-friendly alternative
to the application scientist having to internally modify com-
plex visualization code. The module can also be very eas-
ily configured as a shell script. This provides another user-
friendly option for visualization GUIs/packages that support
user interaction via standard input commands. For 3D sys-
tems where neither modular extensibility nor standard input
commands are supported (bespoke codes, for example), the
option still remains for the LViz Module to be configured in
the package’s native language and compiled into its binary.
It would however also be entirely feasible to implement the
LViz Module, similar to [LZS∗03], as an OpenGL stream
processing unit (SPU) for the Chromium system. This would
not explicitly satisfy the HCI requirement for the scientist to
interact remotely with their visualization user interface, but
it would provide an alternative in the most extreme of cases
where code instrumentation was not a justifiable option.

Figure 3: LViz Module (left) in VMD.

For the initial test case of Lightweight Visualization being
deployed within RealityGrid, the LViz Module was imple-
mented for the well established 3D molecular dynamics vi-
sualization GUI/package: VMD [HDS96] (refer to Figure 3).
VMD was selected as the test package because of its exten-
sive use [FCJW04, JCH05] within the RealityGrid project.
It supported modular extensibility, and thus provided a good
example of how a third-party visualization code (a partic-
ularly complex code in this instance) could be quickly and
easily integrated into the Lightweight Visualization environ-
ment. When VMD was originally instrumented using the
RealityGrid computational steering API, the whole process
[FCJW04] took several researchers working for a consid-
erable amount of time, and proved to be a challenging en-
deavor. In contrast, the LViz Module that was built for VMD
comprised only around two dozen lines of high-level Tcl/Tk
code (1% of functionality). The entire process of developing
the module from scratch and fully integrating VMD into the
Lightweight Visualization environment took one researcher

c© The Eurographics Association 2007.

134



I.R. Holmes & R.S. Kalawsky / Delivering Effective and Usable Interactive 3D Visualization on Lightweight Mobile Devices

working for less than a day. This enforces our decision to
design a split (99%/1%) generic/bespoke solution.

In our initially implemented RealityGrid project example,
the LViz Module provides remote (lightweight) GUI access,
via the LViz Server, to the dedicated 3D molecular dynam-
ics user interface of the VMD package. The module can be
loaded when the visualization is launched, via a command
line argument. It can also be loaded at run-time via the shell,
or alternatively via it’s built in Tk GUI (refer to Figure 3).
In the latter case the module’s GUI is accessed through a
menu option, which we very easily embedded into the native
VMD front-end. Once the LViz Module is up and running,
VMD becomes fully integrated with Lightweight Visualiza-
tion. It can therefore be discovered through the Registry, and
can also begin receiving remotely issued user interaction re-
quests through the LViz Server. This same format would ap-
ply to any 3D visualization GUI/package for which the LViz
Module had been implemented.

2.3. LViz Server

The LViz Server constitutes the primary component (99% of
functionality) of the remote Lightweight Visualization archi-
tecture (refer to Figure 2). It is a self-contained application
that deploys onto the same computer resource as the user’s
3D visualization applications. The LViz Server provides two
essential elements of functionality. Firstly, a message pass-
ing service that facilitates remote clients to communicate
user interaction requests to the 3D visualization. Secondly,
a visualization serving facility that retrieves the rendered se-
quences of 2D frames from the hard disk (courtesy of the
LViz Module), encodes them, and serves them back across a
network for display.

The LViz Server was coded in the JAVA programming
language. JAVA was selected because of its intuitive thread-
ing model, as well as for its extremely useful generic digi-
tal imaging API: JIMI. JIMI supported a uniform interface
to encode and decode rendered 2D frames to and from just
about any digital image format imaginable. This level of
comprehension was essential in order to cater to the vari-
ous native image file formats of different 3D visualization
packages. For example: VMD outputs rendered 2D frames
to the obscure Truevision TGA (TARGA) format.

The visualization serving element of the LViz Server was
a crucial HCI/system design factor. In order to satisfy our
HCI requirements, Lightweight Visualization had to consis-
tently support efficient, and ideally real-time 3D user inter-
action at its thin front-end. In the context of the system’s ini-
tial deployment within RealityGrid [HK06], this meant un-
derpinning fast (interactive) system response times and high
frame display rates on the limited PDA device. Visualization
serving latency was identified [KOC05] as the major fac-
tor impacting upon remote 3D visualization performance.
Thus, within the design of the LViz Server, latency result-
ing from rendered frames being served to the lightweight

client had to be significantly reduced, through image com-
pression, without adversely affecting the user’s interaction
with the system; i.e. without adversely compromising the
user-perceived quality of the locally displayed imagery. We
achieved this via the implementation of an adaptive frame
encoding scheme within the LViz Server (refer to Figure 4).
This scheme was designed to yield a usable/interactive trade-
off between network throughput and local display quality.

Figure 4: Adaptive frame encoding in Lightweight Visual-
ization: lossless (left) / lossy (right).

A HCI design assumption was made that whilst the user
was actively interacting with their 3D visualizations (rotat-
ing models, panning or zooming cameras, etc.) they would
not need to view the resulting imagery at full resolution and
in full lossless quality. Therefore, during active periods of
user interaction, all rendered frames are encoded and served
to the lightweight client at reduced resolution and in lossy
JPEG format (refer to Figure 4). A further HCI design as-
sumption was made that once the user completes their inter-
action (stops rotating the model, for example), they would
then need to analyze the fine detail within the image. Thus,
the final frame in any given sequence of served images is al-
ways encoded at full resolution and in lossless PNG format
(refer to Figure 4). Sequences of encoded frames, along with
preceding user interaction request messages are transmit-
ted between client and server over a fast and direct TCP/IP
socket. TCP/IP was selected primarily because of its speed
in order to satisfy the HCI performance requirement, but also
for its ability to guarantee delivery of network packets.

In addition to adaptive frame encoding, multi-threading
techniques also played a crucial role within the system de-
sign of the LViz Server. The multi-threaded internal archi-
tecture of the server has underpinned several key usabil-
ity features of the system. The server is capable of simul-
taneously receiving user interaction requests from multiple
clients, whilst concurrently forwarding requests to the 3D vi-
sualization (via the LViz Module), whilst also concurrently

c© The Eurographics Association 2007.

135



I.R. Holmes & R.S. Kalawsky / Delivering Effective and Usable Interactive 3D Visualization on Lightweight Mobile Devices

encoding and serving rendered frames. This underpins effi-
cient system performance, which was essential towards sat-
isfying our HCI requirements, as well as supporting a benefi-
cial degree of collaborative user interaction. The LViz Server
also, again through multi-threading, configures its image en-
coder to suit indigenous, individual lightweight device dis-
play properties. Hence, rendered frames are always encoded
and served to the correct resolution and aspect ratio specifi-
cation. This underpins the system capability to support ubiq-
uitous user access via different types of lightweight device
(thin laptop PC, PDA, mobile phone, etc.). Finally, our im-
plementation of multi-threading has also enabled the system
to facilitate lightweight 3D user interaction with a number of
concurrently running visualization applications. This usabil-
ity aspect is supported through a single instance of the LViz
Server, which executes on a shared computer resource. The
server maintains distinct sets of interacting clients for each
active visualization application. This capability also extends
to support heterogeneous 3D visualization packages (VMD
at the same time as AVS/Express, for example).

2.4. LViz Client

The LViz Client (user interface), as with the other architec-
tural aspects of Lightweight Visualization, posed a consid-
erable HCI design challenge. Our HCI requirements speci-
fied that application scientists ideally needed to interact with
the user interface from their own, adopted 3D visualization
packages. However, an assumption was made that the visu-
alization GUIs/packages themselves could not be deployed
locally onto the lightweight device. It was therefore estab-
lished that the best HCI design solution was to create the
illusion of the users’ familiar 3D user interfaces within the
lightweight GUI; therefore supporting the required format
of user interaction. Our derived and practical approach to
achieve this effect was to implement an easily customizable,
object-oriented front-end system (refer to Figure 5).

Figure 5: LViz Client OO GUI system.

Within the LViz Client oo front-end system, a generalized
GUI class (refer to Figure 5) provides all of the essential
’client-side’ Lightweight Visualization user interaction func-
tionality. An instantiated generalized GUI object supports

the retrieval and display of visualization application details
from the Registry. It facilitates the establishment of the net-
work connection to the LViz Server (the user’s selected visu-
alization), along with all subsequent user interaction request
dispatching operations. The generalized GUI also supplies
all of the essential, autonomous capability for receiving and
displaying sequences of remotely rendered 2D frames onto
the lightweight device display screen.

Figure 6: VMD user interface (LViz Client) in the Reality-
Grid PDA Client (left) and the native VMD front-end (right).

From the template of the generalized GUI, a series of spe-
cialized GUIs (refer to Figure 5) can be rapidly constructed.
A specialized LViz Client GUI inherits all of the generic
functionality from the base class. This equips any user inter-
face with the capability to interact with the Lightweight Vi-
sualization environment. All that remains is to simply drag
and drop the required ’knobs and dials’ (input widgets) to
create the illusion of the native visualization user interface
(refer to Figure 6). Each tailored component of the special-
ized GUI (buttons, menus, sliders, etc.) is assigned with a
specific user interaction request message (text string). These
requests will be dispatched to the LViz Server whenever the
user triggers the corresponding interaction event (’clicking’
a button, for example). The practice of inheriting function-
ality from the base class in order to tailor a specialized LViz
Client GUI may at first seem complicated. In reality it is
an extremely quick and straight forward process for anyone
with a modicum of basic skill in using a visual IDE.

To support the creation of the RealityGrid PDA Client, the
oo LViz Client GUI system has initially been implemented
in the Microsoft .NET Framework (C#). This facilitated a
PDA front-end to the VMD package (refer to Figure 6) to
be rapidly constructed within the Visual Studio IDE. In this
instance the specialized LViz Client was tailored with the
required set of menu options, which were representative of
those found within the native VMD GUI (refer to Figure 6).
The display object (PictureBox) was configured so that the
user was able to rotate, pan, zoom, etc. simply by dragging
the PDA stylus across the screen. The client was also con-
figured to incorporate a series of dialog forms that provided

c© The Eurographics Association 2007.

136



I.R. Holmes & R.S. Kalawsky / Delivering Effective and Usable Interactive 3D Visualization on Lightweight Mobile Devices

lightweight user access to some of the more advanced and
required user interaction capabilities of the VMD package.

2.5. Initial Timings

To record initial performance data from our Lightweight Vi-
sualization system, an accordingly adapted version of the
RealityGrid PDA Client was constructed. The GUI was in-
stalled onto a Dell Axim X3i PDA (refer to Figure 4), which
comprised a 400Mhz CPU, 64MB of memory, and a stan-
dard QVGA (240*320) display. The LViz Server and VMD
were hosted onto a standard Linux PC with a 2.0GHz proces-
sor, 256MB of memory, and a commodity GeForce4 graph-
ics card. The Registry and its required elements of the Real-
ityGrid environment, which did not contribute towards the
performance evaluation but were however required, were
hosted onto a separate Linux PC. VMD was loaded with
a molecular structure that comprised approximately 50000
atoms, and is shown in Figures 3 and 4. Networking was
supported via built-in 802.11b Wi-Fi capability on the PDA
device, and a wireless Internet access point on the Lough-
borough University (100Mbps) campus network.

Mean Min Max Variance Std. Deviation
0.229 0.214 0.242 0.04 0.006

Table 1: System response time (lossless)(seconds).

Mean Min Max Variance Std. Deviation
0.16 0.14 0.194 0.089 0.009

Table 2: System response time (lossy)(seconds).

Mean Min Max Variance Std. Deviation
13.28 12.22 14.16 0.09 0.29

Table 3: Frame display rate (fps).

Three performance measurements were recorded, and the
results are shown in Tables 1, 2 and 3. The first two mea-
surements recorded user interaction response time. In both
cases the ensuing latency was measured in seconds, in be-
tween the action of the user issuing an interaction request
from the PDA, and event of the device display screen be-
ing subsequently updated with the corresponding rendered
image. In the first measurement (refer to Table 1) the LViz
Server encoded and served back a single lossless PNG im-
age. In the second instance (refer to Table 2) a single lossy
JPEG was returned. This was so as to factor the adaptive en-
coding capability of the server into the performance evalua-
tion. The third performance measurement (refer to Table 3)
recorded frame display rate on the PDA device. The action of
the user dragging the PDA stylus across the screen to rotate
the model was simulated within the GUI. This triggered the
server side of the Lightweight Visualization architecture to
capture, encode and serve back a sequence of 100 rendered
frames (99 lossy and 1 lossless). The resulting frame display

rate was measured in frames-per-second (fps) as each of the
100 images was received and projected onto the PDA screen.
All three measurements were repeated 100 times in order to
record a representative distribution of performance data.

3. Conclusion and Future Work

The goal of the research that we have presented in this pa-
per was to deliver effective and usable interactive 3D visual-
ization on lightweight mobile devices. We specified several
HCI requirements, which were derived primarily from the
findings of the RealityGrid human factors audit. The appli-
cation scientist needed to interact via the lightweight GUI
with the user interface from their own, adopted 3D visual-
ization package(s). The system also needed to support inter-
active performance at its lightweight front-end, irrespective
of limitation in device hardware capability.

The RealityGrid human factors audit identified that dif-
ferent groups of users needed to interact with different 3D
visualization packages. The Lightweight Visualization envi-
ronment was designed to provide the optimal compromise to
the generic solution, which was found to be deficient in this
particular instance. The majority of the system architecture
(99%) was designed and built as a generic technology, for
use within any application domain of 3D visualization. The
remaining 1% of the system was left open-ended, and could
thus be easily customized or ’tailored’ to suit individual user
requirements.

Special emphasis within our system design was placed
upon minimizing the level of difficulty that would be in-
volved for the user to implement the customizable aspects of
the Lightweight Visualization environment. The LViz Mod-
ule was designed to support quick and easy instrumentation
of any visualization package; especially where modular ex-
tensibility or user interaction via standard input commands
was supported. This was demonstrated in the highlighted ex-
ample of VMD, where only a miniscule amount of effort was
required to integrate this particularly complex visualization
code into the Lightweight Visualization system. The oo LViz
Client GUI system also supported quick and easy ’drag and
drop’ construction of tailored lightweight 3D user interfaces.
This capability was demonstrated in the example of the Re-
alityGrid PDA Client, where a series of input widgets were
simply ’bolted on’ to the PDA front-end in order to rapidly
construct a handheld version of the VMD user interface.

To achieve the ambitious performance aspect of our HCI
requirements, a sophisticated combination scheme of adap-
tive frame encoding and multi-threading was implemented
within the LViz Server. The effect was to significantly re-
duce visualization serving latency within the system, which
was identified as the major factor impacting upon remote 3D
visualization performance. This was confirmed by the con-
sistently good initial timings that we recorded on the extreme
lightweight example of a limited PDA device.

c© The Eurographics Association 2007.

137



I.R. Holmes & R.S. Kalawsky / Delivering Effective and Usable Interactive 3D Visualization on Lightweight Mobile Devices

Our future research is currently focused in several main
areas. The Lightweight Visualization system and the Real-
ityGrid PDA Client will both shortly undergo a thorough
user evaluation within the research groups of the RealityGrid
project. We are also investigating several optimizations to
the system. These will include tying the adaptive frame en-
coder into varying levels of wireless network performance,
as well as developing the oo GUI system for the standard
Linux and Windows laptop/desktop PC platforms. Security
is also a key concern. The RealityGrid PDA Client employed
X.509 certificates to support user authentication and secure
user interaction in the RealityGrid computational steering
environment. This security provision will shortly also be ex-
tended into the Lightweight Visualization system.

Figure 7: Future application of Lightweight Visualization to
support cardiac diagnosis at the Glenfield Hospital.

In addition to our work within RealityGrid, we have also
recently engaged into a collaboration with our local Univer-
sity Hospitals of Leicester NHS Trust Glenfield Hospital.
This collaborative endeavour is extending the user trial of
Lightweight Visualization into the clinical visualization do-
main. For this purpose, a specialized LViz Client GUI for
the PDA has already been constructed (refer to Figure 7).
The PDA GUI is being used, on an evaluation basis, to aid
in a collaborative clinical diagnosis process by supporting a
roaming, lightweight 3D user interface to a stereoscopic car-
diac data (MRI/CT scan) visualization package (refer to Fig-
ure 7). The stereoscopic visualization package was also de-
veloped at Loughborough University, albeit separately from
our Lightweight Visualization system, and is currently also
undergoing a similar, initial evaluation for a prospective fu-
ture clinical trial at the Glenfield Hospital.

References

[FCJW04] FOWLER P. W., COVENEY P. V., JHA S.,
WAN S.: Exact calculation of peptide-protein binding en-
ergies by steered thermodynamic integration using high
performance computing grids. In Proc. 3rd UK e-Science
All Hands Meeting (2004).

[FK99] FOSTER I., KESSLEMAN C.: The Grid: blueprint
for a new computing infrastructure. Morgan Kaufmann,
1999.

[GAW04] GRIMSTEAD I. J., AVIS N. J., WALKER

D. W.: Rave: Resource-aware visualization environment.
In Proc. 3rd UK e-Science All Hands Meeting (2004).

[HDS96] HUMPHREY W., DALKE A., SCHULTEN K.:
Vmd - visual molecular dynamics. J. Molec. Graphics
14 (1996), 33–38.

[HHN∗02] HUMPHREYS G., HOUSTON M., NG R.,
FRANK R., AHERN S., KIRCHNER P. D.: Chromium:
a stream-processing framework for interactive rendering
on clusters. In Proc. ACM SIGGRAPH’02 (2002).

[HK06] HOLMES I. R., KALAWSKY R. S.: The reali-
tygrid pda and smartphone clients: Developing effective
handheld user interfaces for e-science. In Proc. 5th UK
e-Science All Hands Meeting (2006).

[JCH05] JHA S., COVENEY P. V., HARVEY M. J.: Spice:
Simulated pore interactive computing environment. In
Proc. ACM/IEEE Conf. Supercomputing (2005).

[KN04] KALAWSKY R. S., NEE S. P.: e-Science Reali-
tyGrid Human Factors Audit - Requirements and Context
Analysis. Tech. rep., Loughborough University, 2004.

[KOC05] KALAWSKY R. S., O’BRIEN J., COVENEY

P. V.: Improving scientists’ interaction with complex
computational-visualization environments based on a dis-
tributed grid infrastructure. Phil. Trans. R Soc. A: Math-
ematical, Physical and Engineering Sciences 363, 1833
(2005), 1867–1884.

[LZS∗03] LAMBERTI F., ZUNINO C., SANNA A., FIUME

A., MANIEZZO M.: An accelerated remote graphics ar-
chitecture for pdas. In Proc. 8th Int. Conf. on 3D Web
Technology (2003).

[MDB87] MCCORMICK B., DEFANTI T., BROWN M.:
Visualization in scientific computing. Computer Graphics
(SIGGRAPH ’88) 22, 8 (1987), 103–111.

[Oha99] OHAZAMA C.: OpenGL Vizserver White Paper.
Tech. rep., Silicon Graphics Inc., 1999.

[PHPP05] PICKLES S. M., HAINES R., PINNING R. L.,
PORTER A. R.: A practical toolkit for computational
steering. Phil. Trans. R Soc. A: Mathematical, Physical
and Engineering Sciences 363, 1833 (2005), 1843–1853.

[vLMvW97] VAN LIERE R., MULDER J. D., VAN WIJK

J. J.: Computational steering. Future Generation Com-
puter Sytems 12, 5 (1997), 441–450.

[vWvLM00] VAN WIJK J. J., VAN LIERE R., MUL-
DER J. D.: Bringing computational steering to the user.
In Proc. Scientific Visualization Conf. (DAGSTUHL ’97)
(2000), Hagen H., Nielson G. M., Post F. H., (Eds.), IEEE
Computer Society, pp. 304–304.

c© The Eurographics Association 2007.

138


