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Abstract

We propose a hybrid algorithm for isosurface visualization that embraces both polygon rendering and direct
surface rendering concepts. It uses raytracing to achieve high image quality but avoids the associated empty ray
traversal. At the heart of the algorithm is a caching strategy resembling the famous Russian stacking dolls, that
allows the processing of cells of interest from any viewing orientation. We use an optimised interval tree to extract
these cells from the volume. In that respect, we propose two versions, combining grouping of cells and ordering.
In comparison to the classic version of the interval tree, the memory overhead decreases but the increasing in the

query time is marginal.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Picture/Image Genera-
tion. 1.3.6 [Computer Graphics]: Methodology and Techniques. 1.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism.

1. Introduction

Volume visualization aims to generate meaningful and ac-
curate images from volumetric scalar data. The main tech-
niques are volume rendering and isosurfacing. While vol-
ume rendering tries to visualize the volume as a whole, iso-
surfacing looks at the visualization of particular isosurfaces
within the volume.

Within isosurfacing, there are two approaches for generat-
ing images: polygon rendering and direct surface rendering.
In both cases, the main goal is to process/visualize the active
cells, which are the cells in the volume that intersect a given
isosurface. In general, polygon rendering methods nowadays
divide the visualization process into two steps: a preparation
step, usually named as isosurface extraction, where active
cells are located within the volume, and a second step where
a triangle mesh approximation is generated and subsequently
visualized. The main strength of these methods relies on the
use of graphical hardware to visualize the mesh. Although
no triangles are generated for cells that do not contribute to
the isosurface, thousands or even millions of triangles can be
generated, some of them very tiny, flooding current graphical
hardware below interactive rates in these cases. Direct sur-
face rendering methods take a unified approach as the objec-
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tive is to use raytracing for a direct visualization of the iso-
surfaces. The basic idea is to have rays traversing the volume
and computing the intersections that are found. As such, the
visualization process also depends on cells that do not con-
tribute to the final image due to ray traversal.

In this paper, we present a pure software algorithm for iso-
surfacing, built up on the idea of joining strengths from both
direct surface rendering and polygon rendering methods.

The algorithm separates isosurface extraction from its vi-
sualization. As the rendering bottleneck for ray tracing is
empty space traversal, which is similar to the problem of in-
active cells in polygon rendering methods, we can adopt ex-
isting polygon rendering acceleration techniques. Hence, the
isosurface extraction uses optimised versions of an interval
tree data structure to reduce memory footprint. Then the vi-
sualization follows local raytracing to produce high-quality
isosurface rendering.

The visualization is supported by a new view-dependent
caching strategy that allows rapid updates on rotation of
views by treating the dataset as a set of shells from the out-
side in. Indeed, a typical isosurface interaction has an ex-
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traction stage followed by a manipulation phase, and in the
latter, there is no need to re-extract the active cells.

2. Related Work

Isosurfacing was first tackled with polygon rendering meth-
ods such as the Marching Cubes algorithm [LC87]. These
methods start by extracting a polygon mesh from the vol-
ume, representing an approximation to the chosen isosur-
face, and then the polygons are directly rendered using
graphical hardware.

Initially, there was a look-up table for the Marching Cubes
algorithm, establishing a correspondence between cell data
values and triangulation. But some inaccuracies were found
in the process and successive improvements were proposed
to fix the algorithm, for instance, at the level of face and
internal cells ambiguities, as well as accuracy [NH91,Nat94,
LBO3].

Isosurface extraction developed itself as a research area. A
naive algorithm would visit every cell in the volume in order
to verify if the cell is intersected by an isosurface, yielding
to a computational time complexity of O(n), with n being
the total number of cells of the volume. So research efforts
were pursued in order to lower this time complexity.

In 1996, Livnat et al. [LSJ96] introduced the idea of the
span space, a 2D space where each cell is represented by a
2D point (x,y). The x component is the minimum value of
the cell and the y component is the maximum of the cell.
Since the relation minimum < maximum holds, all the cells
can be represented in the line equation y = x or in the sub-
space above it. Using the span space, the problem of finding
the active cells that intersect an isosurface of isovalue g is
equivalent to finding all the points that are within the rect-
angle defined by y > ¢ and x < g. In the original research,
Livnat used a kd-tree to do so. This finding method had a
complexity of O(y/n+ k), where k is the number of active
cells. Later, Livnat updated the algorithm with a lattice sub-
division scheme which has led to a slightly better perfor-
mance [SHLJ96].

Besides the kd-tree, the interval tree is another data
structure suitable to answer query range of data val-
ues [BvKOSO00, Ede80]. Cignoni et al. [CMPS96] were the
first to join the concepts of span-space and interval trees for
active cell location. The interval tree works by processing
each cell as an interval on the real line, being the interval
defined by two values: the cell minimum and maximum val-
ues. The answer to which cells intersect a given isosurface is
answered with a time complexity of O(log(n) +k).

Notice that the rendering time is directly proportional to
the polygons that represent the isosurface, which, by them-
selves, only depend on the active cells. Therefore, cells that
do not intersect the isosurface are not even considered at the
visualization stage. However, in the recent years, the size of

datasets has been growing. Even if there are few polygons
per cell, the number of polygons can reach the order of mil-
lions quite easily. Despite the recent advances in computer
graphics hardware, this amount of polygons can overflow the
capacity of current hardware. Moreover, some polygons can
be smaller than a single pixel after being projected into the
image plane. This implies that the computational effort due
to such polygons is huge considering the small part of the
image they generate.

Direct Surface Rendering has received great attention in
the recent past. The use of raytracing for isosurface render-
ing was first approached by the seminar work of Parker et
al. [PSL"98, PPL*99], where a distributed shared-memory
multiprocessor machine was used to allow interactive frame
rates. Their work showed that raytracing is a practical alter-
native to polygon rendering, especially in the case of large
datasets. Their algorithm consisted of three steps:

1. Traversing a ray through cells which do not contain any
isosurface.

2. Computing analytically the isosurface when intersecting
a voxel that contains the isosurface.

3. Shading the resulting intersection point.

Additionally, optimisations at the level of ray traversal
and at caching behaviour using memory bricking were quite
relevant to achieve interactive frame rates [PSL*98] . The
same authors reported that the bottleneck was in the first
step of the algorithm. As an example, for the Visible Woman
dataset [Erl], ray traversal was accountable for 55% of the
time while visualizing a skin isosurface, and 66% of the time
while visualizing a bone isosurface.

Direct isosurfacing then became available in common
desktop computers. It is the case of the work of Neubauer
et al. [NMHWO2] using an Intel Pentium 4 1900 MHz sin-
gle processor. Their method was particularly designed for
practical applications of post-implantation assessment of en-
dovascular stent placement. Optimisations on their work in-
cluded a faster empty space traversal, data reduction and im-
provement of caching behaviour using a conjunction of min-
max octrees and macro-cells. But they reported only 25%
of the frame time for initialising and tracking local rays, as
opposed to the ray traversal in Parker’s work. We note, how-
ever, that the rays in Neubauer’s work stopped at the first hit
reached so there was no opacity level associated to isosur-
faces.

In 2005, Wald et al. [WHFS05] used an implicit kd-tree
for isosurface raytracing. Besides the use of the kd-tree to
speed up ray traversal, they also used SIMD instructions
for the same ray traversal step and for ray-isosurface in-
tersection calculations. As Parker and colleagues did, they
also reported the dominance of ray-traversal steps. Indeed,
they recognised that traversal steps were much more com-
mon than ray-isosurface intersections, and usually domi-
nated over the time spent on intersections. For example, in a

(© The Eurographics Association 2007.



S. Lopes, A. Lopes & M. P. Santos / Speeding Up Isosurfacing: The Matryoshka Algorithm 99

reported test, about 67% was spent on ray traversal, as op-
posed to only 9% on intersections.

All in all, the bottleneck of isosurfacing using raytracing
lies in the empty ray traversal phase. We should note that
this observation can be a little counter intuitive, as one could
wrongly assume that, when using raytracing in this context,
the bottleneck would be in the ray-isosurface intersection
calculation. We recall that, in this case, traversal steps are
much more common than intersection calculation steps, as
acknowledged by Wald et al. [WHFSO05].

3. Overview of the Matryoshka Algorithm

The isosurfacing algorithm we propose, which envisages the
use of concepts from both polygon rendering and direct sur-
face rendering, consists of three major stages, as depicted in
Figure 1: isosurface extraction, isosurface visualization and
an in-between storage of extracted active cells.

Extracted
Cells
Storage

Isosurface Final
Visualization Image

|sosurface

Volume Extraction

Visualization Algorithm

Figure 1: The different phases of the isosurfacing algorithm.

We are considering structured data volumes and parallel
projection. Isosurface extraction, described in Section 4, re-
lies on the use of interval trees. We will see in Section 5 how
these cells are stored and how they are retrieved in a front-
to-back order, according to the viewing camera. Notice that
isosurface extraction is only done when the user changes the
threshold values of isosurfaces. Each of the active cells ob-
tained in a front-to-back order is processed according to the
pipeline depicted in Figure 2. We now describe the details of
each phase.

Occlusion |,|  Cell AP
| Projaction ™ 1 rsection
Isosurface Visualization Phase

Transformation l |

N .
| Testing = | Shading

Figure 2: Isosurface visualization pipeline.

Transformation. This phase is responsible for obtaining
the corresponding world and camera coordinates. The world
coordinates are obtained by applying the volume’s scales to
the cell’s coordinates. The camera coordinates correspond to
a set of 2D points representing the projection of the 3D cell
in the image plane. Since the original cubic cell has a con-
vex shape, the resulting projection is a 2D convex polygon
having either four or six vertices. In practice, if we consider
all the eight points projected in the image plane, the result-
ing polygon is the convex hull of this set of points. Since we
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are using a parallel projection, the convex hull has the same
shape for every cell. On that basis, we only need to compute
the convex hull for the first cell that is being processed in a
frame and apply this result to the other cells in the frame.

Occlusion testing. A cell is tested in camera coordinates
with the opacity buffer. If all the pixels are already full (a
pixel value in the opacity buffer close to 100%) then the cell
is rejected and the pipeline restarts with another cell. How-
ever, finding the exact pixels of the polygon that are pro-
jected to camera coordinates involves a complete rasteriza-
tion of the polygon. In order to make this phase faster, only
the pixels between the cells camera minimum and maximum
coordinates in x and y are tested. This may lead to unneces-
sary pixel verifications in some cases, but there is no over-
head in projecting the polygon. Also, if it is detected that a
cell does not project to a pixel, it is rejected in this phase.
This particular case can happen when a cell is smaller than
one pixel and ends up being projected in-between pixels.

Cell projection. Here, the polygon representing the cell in
screen coordinates is rasterized. For each of these individual
pixels, we test again in the opacity buffer. The purpose now
is to eliminate from consideration pixels that are already full.

Ray-Isosurface intersection. For the pixels that are not
completely full, we compute the intersections between a ray
and the isosurface inside the cubic cell. In general, this com-
putation requires solving a polynomial of degree 3. To do
so we use the algorithm as shown by Schwarze in [Sch90].
Other faster algorithms may exist [MKW™*04] but their so-
lutions may not be entirely accurate. The intersections in-
side the cell are sorted in a front-to-back order according
to the ray direction. For each of these successful intersec-
tions, we perform shading calculations to add realism to the
final image. For the shading, we estimate the normals from
the volume using central differences. The final colour also
depends on the isosurface color and opacity. Following the
front-to-back reasoning, if the opacity level of a certain pixel
reaches 100%, then no more intersections are performed for
that pixel.

4. Isosurface Extraction

In order to obtain the active cells from the volume, we have
opted for an interval tree data structure. This decision is jus-
tified by its optimal complexity for such query [CMPS96].
As mentioned in Section 2, the interval tree obtains the active
cells for one particular isosurface with a time complexity of
O(log(n)+k), so it is time-efficient. We should stress that, in
the case of scalar data volumes, the term k completely dom-
inates over log(n) as the number of active cells is usually of
the order of hundreds of thousands or even millions.

Nevertheless, an interval tree is also considered as space-
inefficient. In order to overcome such drawback, one should
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think about an hybrid method that uses larger blocks with
the individual cells stored in a sorted order.

4.1. Spatial Complexity of Interval Trees

The properties of the interval tree data structure [BvKOSO00,
Ede80] state that memory requirements for storage are of
the order of O(n). Assuming that the volume’s dimensions
are given by Ax, Ay and Az, then there is a total of (Ax —
1)(Ay — 1)(Az — 1) cells. In the case of eight bit volumes,
the volume’s memory overhead is about (AxAyAz) bytes.
The interval tree holds pointers to the cells in two auxiliary
lists, being each cell referenced by two pointers. Considering
a pointer size of four bytes, the space overhead is of 8(Ax —
1)(Ay—1)(Az—1) bytes. If on top of that we add the loading
of the volume, then the total space usage is of nine times the
size of the volume. This requirement can be prohibitive in
some cases.

4.2. Interval Trees with Cell Grouping

One way of decreasing the memory overhead of the interval
tree is to have a pointer in the two lists representing more
than one cell. The question here is how many and which cells
a pointer would represent. The larger the number of cells a
pointer represents, the smaller the interval tree is. However,
care must be taken since relevant changes in the query pro-
cedure may increase the query time.

Figure 3: A node of an interval tree with cell grouping.

The first approach we have set is to have a pointer to rep-
resent a group of eight adjacent cells. By doing so, the total
size for the entire interval tree would be about 1/8th of the
size of a regular interval tree. Intuitively, it is as if we group
a set of eight neighbour cells into a new bigger cell, and the
interval tree stores these new big cells.

Notice that the groups of eight cells are disjoint. Figure 3
illustrates a node in this new tree: it is basically the same as
the nodes in a normal interval tree, consisting in a value gy
and the two lists / — Left and I — Right. But each pointer
now references a set of eight adjacent cells, and, inside the

group of eight cells, the one with the lowest coordinates is
taken as the representative of the set.

The changes in the construction of the tree are minimal,
requiring only that, when the minimum and maximum of a
cell are obtained, they are actually the global minimum and
maximum of the eight cells as a group. Besides the reduction
of the size of the lists to 1/8th of the regular interval trees’
size, the height of the new tree is also smaller since we are
dealing, for practical purposes, with 1/8 of the number of
cells.

The implementation of the query process is simple, be-
cause, while we are visiting one of the lists, we can stop iter-
ating as soon as we find a group of eight cells that does not
intersect the query value g. Notice that, for each of these big-
ger cells, we still have to check each of the eight composing
cells.

The original tree has a query complexity of O(log(n) +
k), with k being the dominating factor. For this new tree,
the worst case scenario occurs when an isosurface intersects
1/8 of all the cells in the volume in such a way that it only
intersects one cell from each group of eight cells. The term
k then increases by a factor of eight since we must verify all
the eight sub-cells, yielding to a complexity of O(log(n) +
8k). Fortunately, this situation is not frequent with practical
data volumes. The complexity of the query process is then
directly dependent on the factor associated to the k term. It
is rather difficult to estimate the exact value, as it not only
depends on the volume but also on the specific isovalue we
are querying. Section 4.4 provides test results from this new
tree applied on several volumes.

4.3. Interval Trees with both Cell Grouping and
Ordering

With the solution presented above, we can reduce the mem-
ory requirements for a general interval tree by a factor of
1/8. However, the complexity of the query process can be-
come higher as we may have to check more cells. On that
basis, we propose another interval tree, that lies somewhere
in-between the original interval tree and the previous tree,
both in terms of space and query time.

The basic idea is to keep the previous tree but somehow to
speed up the query process. Based on the previous tree, each
pointer to a group of eight cells is stored in two lists: one is
sorted in ascending order by the minimum value of the cell,
and the other one in decreasing order by the maximum value.
If, for each pointer, we have the eight cells sorted by their
minimum or maximum value (depending on the list where
the pointer is stored) then we can reduce the number of cells
that are actually tested. This is the main idea: to maintain the
grouping of eight cells while storing ordering information
for each of these cells. By doing so, the number of visited
cells is lowered in comparison to the previous tree. However,
it is not so easy to give an exact number of the extra cells
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that are tested while comparing with the normal interval tree.
This issue will be addressed in the next section, where the
solutions are tested with different volumes.

The memory requirements of this new tree should be dis-
cussed as extra space is needed in order to keep each group
of cells ordered. Here, for each group of eight cells, we use
a vector of eight numbers indicating its order. Since each
number is between one and eight, only three bits are needed.
Hence, the total number of bits necessary to store the eight
numbers is 24 bits = 3 bytes. The total space overhead of this
interval tree is then the same as in the previous one, but with
three more bytes for each cell pointer. Again, assuming that
the size of each pointer is four bytes, the space overhead for
each cell is therefore 2(4 +3)/8 = 1.75 bytes.

4.4. Tests on Interval Trees

In order to evaluate the two proposed trees, tests were run on
a PC platform with a Celeron 2000 processor and 512Mb of
RAM.

Table 1 shows the results. We have chosen volumes with
different sizes so tests are run under different conditions. All
the volumes are eight bit volumes, publicly available at [vol].
The test consisted of querying the interval trees for all 256
isosurface values.

Figure 4 depicts the sizes of interval trees and respective
query times. Both proposed trees are much smaller than the
original interval tree. Notice that, depending on the avail-
able memory, certain volumes may not fit in memory. This
is more noticeable in the case of a normal interval tree. For
example, the size necessary for storing the Bonsai dataset in
Table 1 is approximately 130Mb for the Normal Tree, as op-
posed to only 16Mb and 30Mb for the trees with grouping
and with both grouping and sorting respectively.

In respect to query times, we conclude that the normal in-
terval tree gives the lowest times, while the tree with only
cells’ grouping presents the slowest times. The approach us-
ing grouping of cells with sorting provides results that lie
somewhere in-between the two other trees.

5. Isosurface Visualization

The interval tree allows an efficient query for the cells that
intersect a given isosurface. Unfortunately, its query results
are completely unordered since this data structure does not
provide any kind of geometrical relationship among the re-
turned cells. The consequences are particularly serious: if
these unordered cells are rendered directly based on ray-
tracing, we may end up with incorrect images. Indeed, the
correct cell processing order in a front-to-back (or back-to-
front) scenario depends on the viewing camera in 3D space.

We now present the Matryoshka data structure, that allows
correct view-dependent visualization.
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Figure 4: Interval trees: size and query times, using the fig-
ures from Table 1.

5.1. Cell Caching: the Matryoshka Structure

With the Matryoshka structure, we pass the resulting cells
from isosurface extraction to the visualization phase in a
form of layers within the volume. This approach slightly re-
sembles the well-known principle behind the famous Rus-
sian stacking dolls (originally known as Matryoshka) where
one doll completely encloses a smaller one and so on.
Worth to mentioning at this point the work of Udupa and
Odhner [UO93] from 1993, where shells of cells of interest
were previously stored in lists, including extra information,
and projected later on.

In our approach, a layer is composed of six planes that
enclose a small volume. These planes are perpendicular to
the three orthographic axes, and there are two for each axis.
For practical purposes, each of these conceptual planes is
simply a list of cells that belong to that plane and that also
intersect the queried isosurface. Figure 5 illustrates the con-
cept. If a plane does not contain any cells it will not even
be taken into consideration. We note that a given layer com-
pletely encloses other layers and may itself be enclosed by a
larger layer. Moreover, cells that can belong to both X and Y
planes are stored in the X plane, cells that can belong to both
X and Z planes are also stored in the X plane, and cells that
can belong to Y and Z planes are stored in the Y plane.

If Ax, Ay and Az are the dimensions of the volume in each
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Table 1:

Test results for the interval trees. Both proposed trees are much smaller than a normal interval tree. The normal

interval tree is the fastest one, the tree with just grouping is the slowest and the tree with both grouping and sorting delivers

in-between times.

DataSet Resolution Number Interval Tree Size Query Time
of Cells (bytes) || (milliseconds)

Normal 42,637,272 8,521.0

Lobster 301x324x56 5,329,500 Grouping of 8 5,443,797 14,221.3
Ordered grouping of 8 9,526,197 9,613.7

Normal 85,083,352 9,287.2

StatueLeg | 341x341x93 | 10.635.200 Grouping of 8 10,635,902 15,240.1
Ordered grouping of 8 18,612,302 10,567.3

Normal 132,653,067 33,607.5

Bonsai 256x256x256 | 16,581,375 Grouping of 8 16,777,948 51,234.9
Ordered grouping of 8 29,360,860 36,605.6

of the three main axes and m the smallest of these three val-
ues, then the total number of layers for the volume is given
by [m/2]. All the layers for a given isosurface can then be
stored in a vector with size [m/2]. The innermost layer,
which is also the smallest one, may be a slightly different
case from the rest of the layers: it can degenerate to be either
a single plane, a single line or a single cell. Nevertheless, this
particular case is dealt with as a general layer, in which most
planes are non-existing.
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Figure 5: In the Matryoshka data structure, a layer is com-
posed of six connecting planes (expanded perspective in the
picture). The black marks represent the active cells con-
tained in the particular plane that are stored.

The construction of the data structure is straightforward:
for each active cell queried from the interval tree, we start
by obtaining the layer to which the cell belongs to. This is
achieved by looking at lower cell’s coordinates, celly, celly
and cell;. Let

e ming be the minimum of the values celly, celly and cell;
e miny be the minimum of the values (Ax— 1) — celly, (Ay —
1) —celly and (Az — 1) — cell;.

The index for the cell’s layer is given by the minimum
value of min; and min;.

Once inside the layer, it is merely a question of inserting
the cell into the appropriate plane, which again can be done
by just considering the cell’s coordinates:

e let xo, X1, Yo, Y1, 20, 21 be the values that define the six
planes of the given layer, that is: X = xo, X = x1, Y =y,
Y=y1,Z=20,Z=1z;

e the appropriate list is given by: if celly = x;, with k equal
to 0 or 1, the list is the one that represents the plane X =
xg. If not, the same thinking is applied for cell, and then
for cell;.

This insertion can be done in constant O(1) time so the
complexity of this construction is O(k), with k being the
number of cells. As for memory requirements, the overhead
is also directly proportional to k, since the layers only con-
tain a list of active cells that are stored once. Also, the inser-
tion of a cell in the layers is merged into the query process of
the interval tree. This allows the cells to be processed only
once, so avoiding the need of a second round if the two pro-
cesses were considered separately.

5.2. Active Cells’ Visualization

In the visualization process, our goal is to process the cells
in a front-to-back order along the direction of a parallel pro-
jection, which corresponds to the viewing direction of the
camera. The question now is how to achieve that with the
Matryoshka-like data structure.

Let us consider a general layer composed of six planes,
as depicted in Figure 5, and let us analyse the relationship
between cells contained in this layer and cells contained in
the innermost layers. In a front-to-back traversal for all cells,
the generic rendering process for the current cells’ layer and
for the next inner layers can be established as follows:

e Process the cells from this layer that possibly occlude
cells from any inner layer.
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e Process the inner layers.
e Process the cells from this layer that are possibly occluded
from cells from any inner layer.

The missing detail here is how to classify the cells from a
layer into occluding and occluded. Along a generic viewing
direction, we can divide the six existing planes of the layer
into two groups: closest to the camera position and furthest
from it. The main idea is to process, first the cells from the
planes closest to the camera, then the inner layers, and fi-
nally the cells from the layers furthest from the camera. In
Figure 5, for example, z=Z1,y=7Y1 and x = X 1 represent
the planes closest to the viewer position in the projection di-
rection, whereas z = Z0, y = Y0 and x = X0 are the planes
furthest from the viewer.

Moreover, there are some details to be taken into account
concerning the planes of the same group. In particular, the
special cells from the plane x = X1 that theoretically could
also belong to the plane y = Y'1 must be treated before any
cells from the plane y = Y'1. Also, the plane z = Z1 must
be the last plane to be considered since some cells from the
planes x = X1 and y = Y'1 possibly occlude some cells from
this plane. Inversely, some cells from the plane z = Z0 may
occlude some cells from the plane y = Y0 that, by itself, may
include some cells from the plane x = X0. So, the correct
rendering sequence for this example would be to process the
cells from the plane x = X1, y = Y1 and z = Z1, then to
process the inner layers, and finally to process the cells from
z=270,y=Y0 and x = XO0.

In conclusion, the algorithm for a given layer / is as fol-
lows:

1. Process the cells from planes X = Xy, Y =Y, Z=7,.

2. If I,y is not the last layer, process the next layer.

3. Process the cells from the planes X = Xy, Y =Yy, Z=
Zkz/ .

where kx, ky, kz are either O or 1, being kx', kx" and kx the
corresponding opposite value.

The viewing camera determines the values for kx, ky, kz,
as they define the closest planes to the camera position. Also,
when processing each plane, we use an auxiliary buffer. This
is necessary because all the cells in each plane need to be
processed in a front-to-back order. Because of this, two pas-
sages are made: one for marking the cells as "drawable"
in the buffer, and another one to process the buffer in the
wanted front-to-back order.

5.2.1. Visualizing Several Isosurfaces

The visualization of more than one isosurface at the same
time, each of them with a particular opacity value associated,
requires one Matryoshka layer for each isosurface. The visu-
alization procedure for each layer is the same as described in
the previous section. But now all the different isosurface lay-
ers are processed concurrently. In particular, for each layer,
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the same corresponding planes for each isosurface are pro-
cessed according to the order described in the previous sec-
tion.

The idea is to use the auxiliary buffer in a more generic
way. Given a set of the same planes corresponding to differ-
ent isosurfaces, all the active cells are marked as drawable
in the auxiliary buffer. Then this buffer is processed follow-
ing an order that depends on the viewing camera. With this,
the cells are correctly processed in a front-to-back order and
with the correct ordering in relation to the cells on the same
layer.

5.3. Tests and Results

The tests were run on an Intel Pentium IV 3.0Ghz desktop
processor with 512Mb of RAM and no hardware accelera-
tion, such as the use of GPU or SIMD instructions. Some
images are depicted in Figure 6.

Table 2 presents results from visualizing several differ-
ent isosurfaces for various practical datasets, using a screen
resolution of 512x512. The isosurfaces were considered to
have an opacity value of 100%.

The indicated times are averages of several computed
frames, from different viewer angles and positions. The
viewing angles were chosen in such a way that there was
always neither a perpendicular nor a parallel arrangement
between the viewing vector and each of the three main axes.
This choice of orientation corresponds to the worst case sce-
nario. Indeed, because we use the ray-isosurface intersection
derived at [PSL*98], when the rays are perpendicular or par-
allel to one of the three principal axes, the resulting polyno-
mial lowers its degree from three to two or even to one.

The times reported here are good at the light of current
state of the art of pure software algorithms for isosurfacing.
Referring to the times reported by Wald et al. [WHFS05],
using no hardware acceleration in terms of GPU or SIMD
extensions, it was reported an average of 3.4 and 3.0 frames
per second for the bonsai and the aneurism dataset, respec-
tively. In our case, Table 2 indicates 2.5 to 5.0 frames per
second for the bonsai dataset and 5.79 to 7.54 frames per
second for the aneurism dataset. Nevertheless we acknowl-
edge that such direct comparisons may not be totally fair.
Indeed, the hardware used is different (as they used a single
dual-1.8 GHz Opteron 246 PC with 6 Gb of RAM) and there
is no indication of isovalues [WHFSO05].

In Table 3 we have considered several isosurfaces with
different opacity values but in the same frame. It highlights
the correct implementation of the algorithm regarding the vi-
sualization of several isosurfaces with different opacity val-
ues.
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Figure 6: From left to right, the aneurism, bonsai, visible male head and stent datasets. The three images with opaque isosur-
faces are from tests mentioned in Table 2, whereas the rightmost image with multiple isosurfaces is from Table 3.

Table 2: Visualization of opaque isosurfaces, one at a time, using a screen resolution of 512x512. The times are averages of

several computed frames, from different viewing orientations.

DataSet Resolution Number of Cells || Isovalue | Number of | Time per Frame
Active Cells (seconds)

Aneurism 256x256x256 16,581,375 56 119,698 0.1725

120 79,282 0.1325

51 310,093 0.4000

Bonsai 256x256x256 16,581,375 74 212,867 0.2575

150 279,648 0.2000

90 1,236,114 1.3875

Stent8 512x512x174 45,173,933 138 1,658,965 1.8925

153 1,004,858 1.3225

173 443,093 0.7300

Visible Male Head | 126x256x256 8,128,125 50 278,856 0.3475

79 336,651 0.2825

6. Conclusions and Future Work

In this paper we have presented a new hybrid algorithm for
isosurface visualization. Besides the visualization stage it-
self, where we use raytracing to achieve an image qual-
ity comparable to those from the usual direct surface ren-
dering methods, our approach also uses isosurface extrac-
tion. This is a well established concept for polygon ren-
dering methods. With this general approach, we are able
to avoid empty ray traversal. Actually, empty ray traversal
is taken as the bottleneck for direct surface rendering algo-
rithms [PSL*98, WHFS05]. Moreover, it is bound to con-
tinue being problematic as the size of real life volumes tends
to increase, so potentially increasing the number of cells that
do not intersect an isosurface.

The algorithm delivers competitive figures regarding real
time performance, when comparing to other pure software
methods under similar conditions. We use a caching struc-
ture resembling the famous Russian stacking dolls. With this
data structure, we correctly process all the active cells for an
isosurface considering any viewing orientation. As for the
memory overhead, it requires only one copy of the active
cells. Worth to mentioning that, in the field of direct vol-
ume rendering using 2D textures [RSEB*00], three copies

of the volume need to be maintained in order to achieve a
correct rendering order from any viewing orientation. The
Matryoshka structure can be considered for volume render-
ing methods in general.

We are planning to provide occlusion tests at the level of
the layer: if one layer is completely occluded in the image
plane, then all the interior layers can be discarded. This will
improve the performance as it may avoid the processing of
some cells. On the other hand, any advances in hierachical
occlusion maps [MJCO02], particularly if adjusted to our con-
cept of layers, can be very useful.

While pursuing our goals for the visualization algorithm,
we also have investigated new methods for isosurface extrac-
tion. We have proposed two new versions of interval trees,
which significantly decrease the memory overhead associ-
ated with such type of data structure. The choice of which
version to use is really application dependent. Interval tree
with grouping yields to less memory overhead, whereas in-
terval tree with both grouping and ordering delivers the low-
est query times. As the volume size increases, these lowest
query times are quite comparable to the query times from a
normal interval tree.

(© The Eurographics Association 2007.
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Table 3: Visualization of isosurfaces with different opacity values but in the same frame. Further tests conditions are the same

as in Table 2.

DataSet Isovalues / Opacities Time per Frame
(seconds)

Stent8 90/20% | 138/40% | 153/40% | 173/100% 10.783

Visible Male Head | 50/20% | 79 /100% - - 0.870

In the future we will use very large datasets to extend the
evaluation of the algorithm. Furthermore, we will investigate
if some of these ideas can be implemented at GPU level.
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