
EG UK Theory and Practice of Computer Graphics (2007)

Ik Soo Lim, David Duce (Editors)

A Distance Hierarchy to Detect Collisions Between

Deformable Objects

F. A. Madera A. M. Day S. D. Laycock

University of East Anglia, School of Computing Sciences

Norwich NR4 7TJ, UK

Abstract

To detect collisions between deformable objects we introduce an algorithm that computes the closest distances

between certain feature points defined in their meshes. The strategy is to divide the objects into regions and to

define a representative vertex that serves to compute the distance to the regions of the other objects. Having

obtained the closest regions between two objects, we proceed to explore these regions by expanding them and

detecting the closest sub-regions. We handle a hierarchy of regions and distances where the first level contains n1

regions, each one is divided into n2 sub-regions, and so on. A collision is obtained when the distance between two

vertices in the last level of the tree is less than a predefined value ε. The advantage of our algorithm is that we can

follow the deformation of the surface with the representative vertices defined in the hierarchy.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry

and Object Modelling

1. Introduction

Real time interaction in virtual environments for computer

graphics programs requires rapid and accurate collision de-

tection algorithms. Important areas demanding this process

are clothes and surgery simulation, animation, and computer

games. In addition to the object’s motion, which is basically

translation and rotation, a collision detection algorithm is re-

quired to follow the deformation in the objects in order to

accurately compute distances between them.

This work describes an algorithm to detect collisions be-

tween deformable objects by computing the Euclidean dis-

tance between the regions defined in the objects. The al-

gorithm exploits Bounding Volume Hierarchy (BVH) and

feature-based methods to obtain a simple and fast approach

to detect collisions. Due to the intersection tests involved,

only one parameter is required to be updated per region dur-

ing deformation.

The objects are divided into clusters without using a sim-

plification method, that is, the original mesh is held. The ob-

ject’s representations, the trees, are compared in the dynamic

simulation to detect their proximity to each other. Even when

the object is deforming, representative points follow the sur-

face because they are part of the mesh. Unlike the BVH in

which the enclosing primitive should be refitted, our pro-

posal only updates an ε value to guarantee that all the ver-

tices of the cluster are considered.

The algorithm proceeds in three stages. First, in the pre-

computation stage the cluster hierarchy is constructed by us-

ing an octree. Alongside this operation, the representative

vertices are created, which are the central vertices of the re-

gions. Other techniques to divide objects are the Voronoi re-

gions used by Mirtich [Mir98], and the clustered hierarchy

of progressive meshes used by Yoon et al. [YSLM04].

The second and third stages take place in the running of

the simulation. The second part involves the comparison of

the nodes in each level of the tree, using the breadth-first-

search traversal algorithm. The nodes of level h are expanded

if the distance between them is less than εh. This εh is the

greatest distance between the representative vertices, namely

the middle vertex and the other vertices in a cluster.

The third stage of the algorithm commences when the

leaves of the tree are reached. At this point the distance com-

parison takes place between the vertices of the regions in-

volved and not between the middle vertices. This procedure

c© The Eurographics Association 2007.

http://www.eg.org
http://diglib.eg.org

F. Madera & A. Day &S. Laycock / A Distance Hierarchy to Detect Collisions Between Deformable Objects

works by looking for the closest distances among the ad-

jacent vertices of the current vertex. Furthermore we could

use a contact determination routine to obtain the exact col-

lision in one of the six different contact types as shown in

[ESHD05].

The contributions are described as follows: A collision de-

tection method which works with deformable models and

follows the mesh deformation. The algorithm works for

rigid and deformable bodies, and allows quad and triangular

meshes. The most employed computation is the Euclidean

distance, a cheap operation. The method can be adapted to

achieve more levels of the tree and different values of ε to

have faster computations. The algorithm detects collisions in

several regions at the same time, it can be utilised in scenes

with many complex objects and it is independent of the phys-

ical model.

This paper is organised as follows: previous work is de-

scribed in the next section, Section 3 gives details about the

three parts of the method. Section 4 shows the experiments

made to test our algorithm, and finally, in Section 5 conclu-

sions and future work are presented.

2. Previous work

Many algorithms have arisen to detect collisions between de-

formable models, and a recent survey with details about the

most important methods can be found in [TKH∗05]. Be-

sides the motion considered in rigid bodies, the difficult task

in deformable models is to calculate contacts between the

objects as they change shape.

Bounding Volumes are utilised in many applications be-

cause of their ability to represent the shape of objects,

and due to the reduced cost of testing against a bound-

ing volume in comparison to testing against the object it-

self. Spheres have been used in a wide range of applications

since they are easier to represent and are rotationally invari-

ant [SBT06, BO04, JP04]. The advantage of working with

an Axis Aligned Bounding Box (AABB) is its fast overlap

check, which is a simple comparison of its coordinate values

[vdB97, LAM01]. An Oriented Bounding Box (OBB) is an

AABB with an arbitrary orientation, enabling it to enclose

the underlying geometry tightly. However, it does require

a more expensive overlap test [GLM96, GLGT98]. Other

volumes are Discrete Oriented Polytopes [KHM∗98,FF03],

Sphere-Swept Volumes [LGLM00, RKL∗04], and Convex

Hulls [PLM95, EL01].

Feature-based algorithms work directly on the features of

an object. For polygonal meshes, the features are the ver-

tices, edges, and faces of the meshes. A well known collision

detection algorithm based on the tracking of closest features

is the Voronoi-Clip algorithm [Mir98], which operates on a

pair of polyhedra and tracks the closest features. Our method

does not need to find the initial closest pair of vertices be-

tween two objects, and it works on non-convex deformable

objects. Three representative algorithms that work with rigid

convex polyhedra are as follows: firstly, a feature-based in-

cremental method that walks on the boundary of polyhedra

[Mir98,LC91]. Secondly, the Dobkin-Kirkpatrick algorithm

[DK90] starts from the innermost layers of hierarchies and

tracks the closest feature-pair from layer to layer. Thirdly,

the H-Walks [GHZ99] which starts on the boundaries of

polyhedra, walks on the same layers for a few steps, and

then drops to inner layers to take shortcuts.

Agarwal et al. [ABHZ02] presented an algorithm to fill

the space between closest objects in 2D by using pseudo-

triangulations, as a tool to detect collisions. This approach

is inefficient in 3D because of the number of concave areas

presented that would produce slow performance to test ob-

jects. However, this is an interesting method to calculate how

far apart the other objects are. We consider the distances cre-

ated in our method as a filling of the free space, indicating

the closest regions of the objects and then tracking motion

and deformation in every time step.

Some algorithms use a simplification method to decrease

the level of detail of the objects, in order to reduce the num-

ber of primitives on which the collision detection process

is working. Mendoza et al. [MO06] produced multiple ap-

proximations of the object’s surface using a sphere hierar-

chy, and Guéziec [Gue01] handled a refinement process,

using increasingly accurate closest points to compute dis-

tances. Since we are working with the features of the objects,

our method does not need to simplify the models to speed up

the simulation.

3. The Algorithm

Our approach is motivated by the need to achieve a simple

and fast algorithm to detect collisions between deformable

objects. Our proposal was inspired by the work of others;

from the BVH [JP04] we use the hierarchies to cull away

farther vertices and to reduce the number of elements to

work with. From the H-Walk [GHZ99] we have a similar

algorithm to walk around the surface by using the mesh con-

nectivity, and from the work of Argawal et al. [ABHZ02]

we explored the idea of filling the free space to test for close

proximity.

The Euclidean distance between two points x and y,

δ(x,y), is our simple but powerful tool to compute the close

proximity between objects; this operation requires 3 addi-

tions and 3 multiplications to obtain its square value. This

distance carries more information than the detection of a col-

lision because it permits prediction, use of coherence, and

dynamic motion modification. Let P = {O1, ...,On} be a set

of n objects in a scene, where object i, Oi, is represented

by a triangular mesh, whose features are faces, edges, and

vertices. Let Fi be the number of faces, Ei be the number

of edges, and Vi be the number of vertices. The approach

calculates a collision between two objects using these fea-

tures, in particular the vertices; and returns the closest pair

c© The Eurographics Association 2007.

54

F. Madera & A. Day &S. Laycock / A Distance Hierarchy to Detect Collisions Between Deformable Objects

of vertices and faces between them. Let Oi,O j ∈ P be two

objects in motion and vi ∈ Oi and v j ∈ O j the closest points

between them. We say that Oi and O j collide with each other

if δ(vi,v j) < ε(≈ 0+).

3.1. Part I. Preparing the objects

In the first part of the algorithm, the objects’ mesh is divided

into regions as shown in line 1 of the code segment in Figure

1. Let v̄k
i, j be the representative vertex of a region Rk

i, j, called

the middle vertex of region j, level i, object k. Both convex

and concave regions are admissible. The middle vertex is a

vertex of the mesh, closest to the average of the vertices of

the region and it is calculated in line 3 of the pseudocode as

follows.

v̄
k
i, j = min{ δ(avg(v),v) }, ∀ v ∈ R

k
i, j. (1)

Subdivide (Rk
i, j)

0. If Num. vertices in Rk
i+1, j > 30

1. Divide R in 8 equal-sized regions Rk
i+1, j

2. ∀ Rk
i+1, j

3. Compute v̄k
i+1, j

4. Compute ε
k
i+1, j

5. Subdivide (Rk
i+1, j)

6. Compute ε
k
i+1 = max{ε

k
i+1, j}

7. Else return

Figure 1: Pseudocode of the Subdivision algorithm.

We also need an ε, obtained in line 4, to indicate that an

external point is close to a region.

ε
k
i, j = max{ δ(v̄k

i, j,v) } ∀ v ∈ R
k
i, j (2)

To be truly effective we generalise a global ε to represent a

level, as specified in line 6 of the pseudocode.

ε
k
h = max{ε

k
h, j}. (3)

Even when the vertices are moving in a region, ε indicates

that they are kept within εs threshold. This can be shown by

constructing a sphere with centre v̄ and radius ε as pictured

in Figure 2. Although the moving points can cause v̄ to move

out of the centre of the region, the condition is satisfied, be-

cause the vertices are still in the volume of the sphere, and

we do not need to update values. Line 5 follows the subdi-

vision hierarchy, each region Rk
1, j of object k in level 1 is

divided into eight regions Rk
2, j for the second level. This first

part of the algorithm takes O(dlogd(Vi)) time for an object

i, where d = 8; and requires Vi + (1 − 8L)/(1 − 8) nodes

in its tree. Another subdivision method can be used to par-

tition the objects and compute their middle vertices, such

as the multiresolution hierarchy using filtered edge collapse

utilised by Otaduy et al. [LO05] and the Hierarchical mesh

decomposition using fuzzy clustering developed by Katz and

Tal [KT03].

Figure 2: ε is the greatest distance from the middle vertex to

a vertex of a region.

3.2. Part II. Detecting the closest regions between two

objects

Having constructed the subdivision for the objects, we now

have a tree for each, with L levels. The second part of the

algorithm starts when the running simulation takes place.

Since collision detection works between a pair of objects, we

should compare the distances between the middle vertices of

both objects to decide whether to descend to the next level

of the tree for a greater level of detail.

Expand R
k0

i, j,R
k1

i, j ⇐⇒ δ(v̄k0
i, j, v̄

k1
i, j) < εi. (4)

As a consequence, we could have more than one pair of re-

gions expanded in a level, depending on the motion and de-

formation of the objects. The traversal method used is the

breadth-first search. The maximum number of pairs created

in level 1 is 64, but in practice this does not occur, we usu-

ally create less than C1 = 30 per level so that the checking in

the second level is 64C1. The number of checks in the next

level is 64C2, and so on. In this sense, the time complexity

in the second part of the algorithm is O(C) where C is the

maximum number of distances created in a level. This sec-

ond part, that we call DMV (Distance Middle Vertices), is

applied to all levels until the leaves of the tree are reached

at which the third part starts. The pseudocode of the DMV

DMV (Ok0
,Ok1

)

1. ∀ level h expanded in the tree

2. if h is the last level then compute DV(R
K0

h
,R

K1

h
)

3. else if δ(v̄k0

h
, v̄

k1

h
) < εh

4. expand the child nodes

Figure 3: Pseudocode of the DMV algorithm.

algorithm, shown in Figure 3, takes two objects as inputs

and works in a loop to track the levels of the tree. Line 2

states that if the current level is the last one, then the DV

(Distance Vertices) algorithm is called, otherwise there is a

comparison, in line 3, between the distances formed with the

c© The Eurographics Association 2007.

55

F. Madera & A. Day &S. Laycock / A Distance Hierarchy to Detect Collisions Between Deformable Objects

middle vertices of object k0 and the middle vertices of object

k1. If this distance is less than εh then the children should be

expanded. We define two main data structures, numcd which

has information about the pair of objects, and cd for the dis-

tance to be created for each pair. The first data structure is

tested every time step to determine how far apart the objects

are and it needs n(n−1)/2 elements for n objects. Alongside

this structure, we handle specific information relating to each

pair of objects in another data structure, where the distances

are stored. In this structure, called cd, we keep dynamic in-

formation, because the number of distances depends on the

proximity, that comes from the object’s motion. Figure 4 il-

lustrates two objects, where the distances of the regions are

compared. Two pairs of regions are chosen to be expanded

for the next level of detail.

Figure 4: The algorithm DMV working between two objects.

3.3. Part III. Returning the closest pair of features

between two objects

The third part of the algorithm starts when the process gets

to the last level of the tree. Note that in a region Rk
i, j, there

is only one middle vertex v̄k
i, j , while in the last level there

are several vertices vk
i, j , usually less than 32. This algorithm,

that we call DV , starts with a distance δ
k0,k1

L in the last level

L, and tracks the adjacent vertices in order to get the closest

distance. The adjacent vertices of v are its neighbouring ver-

tices, that is, they share a common edge with v. This track-

ing takes O(Q) time, where Q is the number of neighbouring

vertices, normally less than 10. An improvement is made by

starting with the closest distance of both regions.

δ
k0,k1

i, j = min{ δ(vk0
i, j,v

k1
i, j) }. (5)

The DV algorithm is called from the DMV algorithm, and it

is employed to compute the closest distances between the

vertices of two regions. The algorithm starts with a pair

of vertices which are part of a distance, and computes the

distances of their neighbouring vertices in order to get the

smallest distance. We do not need additional data structures

for this operation, since it can work with the original mesh

connectivity. The pseudocode of the DV algorithm is illus-

trated in Figure 5. Contrary to [MDL06b] we do not need

to compute the volumes of tetrahedra to fill the free space,

instead we compute the close proximity between objects.

DV (R
k0

h,i,R
k1

h, j
)

1. Get the closest pair of vertices to start with: vi,v j

2. ∀ neighbours of vi and v j

3. if δ (Neighb(vi),Neighb(v j)) < εh

4. Return this pair: (Neighb(vi), Neighb(v j))

Figure 5: Pseudocode of the DV algorithm.

The input data for the DV algorithm are the regions of

both objects, and it begins by computing the closest vertices.

There is a cycle in line 2 for the neighbours of the current

vertices to make comparisons between their distances. When

a distance is less than εL ≈ 0 then the result is the closest pair

of vertices in both objects. In Figure 6, the DV algorithm is

running between two objects, walking along their surfaces

as they move.

Figure 6: The algorithm DV working over two objects.

4. Experiments

We tested our algorithm on five models whose features are

described in Table 1. Three different experiments were car-

ried out to investigate the performance characteristics of our

proposed method. The program was implemented in C++,

using a 3 GHz Pentium 4 CPU, 1 GB RAM. The objects are

animated using a physically-based method, the Mass-Spring

model described in [MDL06a].

In our first scene, 10 objects are animated during 300

steps, choosing two models, the torus and the pawn. Accord-

ing to eqn. (3) we compute ε to define the closest points to

c© The Eurographics Association 2007.

56

F. Madera & A. Day &S. Laycock / A Distance Hierarchy to Detect Collisions Between Deformable Objects

Object Vertices Faces Edges

Torus 768 1536 2304

Pawn 610 1216 1824

Human 946 1888 40

Cylinder 258 512 768

Tooth 1202 2400 3600

Table 1: Features of example models.

a region for each level of hierarchy. The number of colli-

sions increases as objects become closer, and the simula-

tion is stopped to avoid penetrations. The experiment was

repeated five times with different ε values shown in Table 2,

and the number of collisions reported is illustrated in Figure

9.

Parameters Level 1 Level 2 Level 3

1 20 14 8

2 22 14 8

3 24 14 8

4 30 14 8

5 30 20 10

Table 2: Initial ε values (integer units) in each level for the

first experiment.

The first two runs show less collisions detected because

of a small ε chosen in the first level, which could not de-

tect some closer regions, having an algorithm timing in the

range of 30 ms and 37 ms per time step. The two last runs

report more collisions than there should have, because of a

large ε, having an algorithm timing in the range of 30 ms

and 45 ms. Even when the ε value satisfies eqn. (3), there

are some regions in which this value can be adjusted be-

cause they can not be expanded further, otherwise the ob-

ject would lose its shape. The optimal value was obtained in

the third run, where all the collisions were detected with the

minimum number of nodes expanded, being 76 for level 1,

288 for level 2, and 151 for level 3.

Figure 7 shows two objects employed in the first exper-

iment, with the hierarchical lines indicating how close they

are. Red, green, and blue lines represent the first, second, and

third level respectively. These lines are created in this order,

and when objects are being separated, lines are removed in

reverse order. In the second experiment we used three hu-

mans and one torus, deforming during 200 steps. We chose

a human because it is a difficult object with extremities far

apart from the central body, which makes it more difficult to

compute the ε. This object can be decomposed in its extrem-

ities (head and central body) in order to have more control

over the regions. The torus is also a complex object, because

it has a hole in its centre which needs to be checked for col-

lisions.

Figure 7: Two pawns in the close proximity. Red, green, and

blue lines represent levels 1,2, and 3 respectively.

Parameters Level 1 Level 2 Level 3

1 20,25 15,20 10,10

2 45,35 30,30 10,10

3 25,35 15,30 10,10

4 40,40 25,30 10,10

5 25,45 15,30 10,10

Table 3: Initial ε values (integer units) in each level for the

second experiment. The notation a,b indicate the values for

the human-human collision and for the human-torus colli-

sion.

In the previous experiment the objects were similar in

size, so that we could handle the same values for each level.

In this second experiment the values were different and we

employed an ε value for each type of collision, human-

human and human-torus. From here, we have that the value

for a pair in level 1, of objects 0 and 1 is

ε1 = ε
0
1 + ε

1
1. (6)

The experiment was repeated five times with different pa-

rameters, and the number of collisions reported are illus-

trated in Figure 10 where the optimal value of ε is repre-

sented in the third run, and the algorithm takes about 25 ms

per time step. The simulation is pictured in Figure 8. Note

that the number of collisions reported using the parameters

2 and 3 are the same, that is where the optimal value is speci-

fied. However, the difference lies in the number of expanded

nodes, where the third parameter set is the optimal with a lot

less nodes expanded, that is 5 ms time less than the second

run per frame.

The final experiment used a rigid tooth and a deformable

cylinder, running in 100 steps. These objects were chosen to

investigate the algorithm’s behaviour with convex surfaces.

c© The Eurographics Association 2007.

57

F. Madera & A. Day &S. Laycock / A Distance Hierarchy to Detect Collisions Between Deformable Objects

Figure 8: The second experiment, three humans and a torus

deforming.

The cylinder is a convex object and the tooth is formed by

four convex surfaces on its top. The number of collisions

detected, illustrated in Figure 11, are almost the same even

when the ε values are varied (see Table 4). This is because

the algorithm works on convex regions and not because we

are dealing with a pair of objects. The optimal value took

place in the third set, with 199 collisions reported in 24 ms.

Parameters Level 1 Level 2 Level 3

1 20 15 10

2 25 12 8

3 25 13 10

4 25 15 8

5 30 15 10

Table 4: Initial ε (integer units) values for the third experi-

ment.

There are several factors influencing the performance of

the algorithm: the number of objects, the objects’ starting

locations, the object’s complexity, and the deformations ap-

plied. The most expensive operations are in the deformation

routines because a physically-based method is required to

calculate ordinary differential equations every time step. The

closest features can be calculated easily from the mesh con-

nectivity since the closest vertices were known when the ob-

ject is colliding.

5. Conclusions

This paper presents an algorithm, which computes the dis-

tance between n deformable bodies to obtain the closest re-

gions between them. This is made by employing a hierarchi-

cal representation of the objects and defining representative

vertices to be used in the distance computation. The algo-

rithm is capable of following the shape of the objects dur-

ing deformation, exploiting the mesh connectivity and the

region’s hierarchy.

The algorithm utilises the efficient Euclidean distance to

test collisions between objects by traversing the trees using

the breadth-first-search method. Since we are returning pairs

of features, a contact determination method can be used to

obtain more detail about the collision. Rather than approxi-

mating the geometry of the objects, our proposal exploits the

mesh connectivity and the neighbouring features of the ob-

ject in order to detect collisions between deformable models.

While the sphere bounding volume requires two parameters

to be defined and updated in the running simulation, a 3D

vector for the centre and a float for the radius, this novel

method requires two floats to represent the centre and the

radius of the region. Since the centre or the middle vertex

of the region was computed in the preprocessing stage, the

only parameter to be updated is the radius when object is

deforming.

From observation the experiments bring an optimal ε to be

defined to reduce the number of distances. One drawback is

the accuracy of the algorithm but this is expected to be im-

proved by defining the minimum regions in the object, the

basic primitives to be dealt with. A future objective involves

a comparison between other methods focusing on the inter-

section test, tight fitting, computation time, and the use of

memory; in order to show the comparative performance of

the algorithm proposed.

6. Acknowledgments

We wish to thank to the Universidad Autonoma de Yu-

catan and the Mexican program PROMEP for the funding of

madera’s PhD program. We are also grateful to the reviewers

for their feedback.

References

[ABHZ02] AGARWAL P., BASCH J., HERSHBERGER J.,

ZHANG L.: Deformable free-space tilings for kinetic col-

lision detection. International Journal of Robotics Re-

search 21, 3 (2002), 179–198.

[BO04] BRADSHAW G., O’SULLIVAN C.: Adaptive

medial axis approximation for sphere-tree construction.

ACM Transactions on Graphics 23, 1 (2004), 1–26.

[DK90] DOBKIN D. P., KIRKPATRICK D. G.: Deter-

mining the separation of preprocessed polyhedra: a uni-

fied approach. In Proceedings of the seventeenth interna-

tional colloquium on Automata, languages and program-

ming (New York, NY, USA, 1990), Springer-Verlag New

York, Inc., pp. 400–413.

[EL01] EHMANN S., LIN M.: Accurate and fast proximity

queries between polyhedra using convex surface decom-

position. Computer Graphics Forum 20 (2001), 319–328.

c© The Eurographics Association 2007.

58

F. Madera & A. Day &S. Laycock / A Distance Hierarchy to Detect Collisions Between Deformable Objects

[ESHD05] ERLEBEN K., SPORRING J., HENRIKISEN K.,

DOHLMANN H.: Physics-Based Animation. Charles

River Media Publisher, San Francisco, 2005.

[FF03] FUNFZIG C., FELLNER D. W.: Easy Realign-

ment of k-DOP Bounding Volumes. Tech. rep., Univer-

sity of Technology Muhlenpfordtstr, Institute of Com-

puter Graphics, 2003.

[GHZ99] GUIBAS L. J., HSU D., ZHANG L.: H-walk

: Hierarchical distance computation for moving con-

vex bodies. In Symposium on Computational Geometry

(1999), pp. 265–273.

[GLGT98] GREGORY A., LIN M., GOTTSCHALK S.,

TAYLOR R.: H-COLLIDE: A framework for fast and ac-

curate collision detection for haptic interaction. Tech.

Rep. TR98-032, University of North Caroline, Chapell

Hill, 1998.

[GLM96] GOTTSCHALK S., LIN M., MANOCHA D.:

Obb-tree: A hierarchical structure for rapid interference

detection. In Proceedings on SIGGRAPH 96 (New York,

1996), ACM, pp. 171–180.

[Gue01] GUEZIEC A.: ’meshsweeper’: Dynamic point-to-

polygonal-mesh distance and applications. IEEE Trans-

actions on Visualization and Computer Graphics 07, 1

(2001), 47–61.

[JP04] JAMES D., PAI D.: Bd-tree: Output-sensitive col-

lision detection for reduced deformable models. ACM

Transactions on Graphics (SIGGRAPH 2004) 23, 3

(2004).

[KHM∗98] KLOSOWSKI J. T., HELD M., MITCHELL

J. S. B., SOWIZRAL H., ZIKAN K.: Efficient colli-

sion detection using bounding volume hierarchies of k-

dops. IEEE Transactions on Visualization and Computer

Graphics 4, 1 (1998), 21–36.

[KT03] KATZ S., TAL A.: Hierarchical mesh decompo-

sition using fuzzy clustering and cuts, 2003.

[LAM01] LARSSON T., AKENINE-MöLLER T.: Collision

detection for continuously deforming bodies. In Euro-

graphics 2001, Short Presentations (Manchester, Septem-

ber 2001), Eurographics Association, pp. 325–333.

[LC91] LIN M. C., CANNY J. F.: A fast algorithm

for incremental distance calculation. In IEEE Interna-

tional Conference on Robotics and Automation (1991),

pp. 1008–1014.

[LGLM00] LARSEN E., GOTTSCHALK S., LIN M.,

MANOCHA D.: Fast distance queries using rectangular

swept sphere volumes. In Proceedings of IEEE Inter-

national Conference on Robotics and Automation (ICRA)

(San Francisco,CA, April 2000), vol. 4, pp. 24–48.

[LO05] LIN M. C., OTADUY M. A.: Sensation-

preserving haptic rendering. IEEE Computer Graphics

and Applications 25, 4 (2005), 8–11.

[MDL06a] MADERA F., DAY A., LAYCOCK S.: Collision

detection for deformable objects using octrees. In Theory

and Practice of Computer Graphics (Middlesbrough, UK,

2006), EG.

[MDL06b] MADERA F., DAY A., LAYCOCK S.: The use

of tetrahedra to detect collisions. In Third WorkShop in

Virtual Reality and Physical Simulations (Madrid, Spain,

2006), EG.

[Mir98] MIRTICH B.: V-clip: fast and robust polyhedral

collision detection. ACM Trans. Graph. 17, 3 (1998),

177–208.

[MO06] MENDOZA C., O’SULLIVAN C.: Interruptible

collision detection for deformable objects. Computers &

Graphics 30, 3 (June 2006), 432–438.

[PLM95] PONAMGI M., LING M., MANOCHA D.: Incre-

mental collision detection for polygonal models. In Pro-

ceedings of the eleventh annual symposium on Compu-

tational geometry (Vancouver, British Columbia, Canada,

1995), pp. 445– 446.

[RKL∗04] REDON S., KIM Y., LIN M., MANOCHA D.,

TEMPLEMAN J.: Interactive and continuous collision

detection for avatars in virtual environments. In IEEE

Virtual Reality Conference 2004 (VR’04) (2004), IEEE,

pp. 117–130.

[SBT06] SPILLMANN J., BECKER M., TESCHNNER M.:

Efficient updates of bounding sphere hierarchies for geo-

metrically deformable models. In Third Workshop in Vir-

tual Reality, Interactions and Physical Simulations VRI-

PHYS’06 (Madrid, Spain, Nov. 2006), EG.

[TKH∗05] TESCHNER M., KIMMERLE S., HEIDEL-

BERGER B., ZACHMANN G., RAGHUPATHI L.,

FUHRMANN A., CANI M., FAURE F., MAGNENAT-

THALMANN N., STRASSER W., VOLINO P.: Collision

detection for deformable objects. Computer Graphics

Forum 24, 1 (2005), 61– 81.

[vdB97] VAN DEN BERGEN G.: Efficient collision de-

tection of complex deformable models using aabb trees.

Journal of Graphics Tools 2, 4 (1997), 1– 14.

[YSLM04] YOON S.-E., SALOMON B., LIN M.,

MANOCHA D.: Fast collision detection between mas-

sive models using dynamic simplification. In SGP ’04:

Proceedings of the 2004 Eurographics/ACM SIGGRAPH

symposium on Geometry processing (New York, NY,

USA, 2004), ACM Press, pp. 136–146.

c© The Eurographics Association 2007.

59

F. Madera & A. Day &S. Laycock / A Distance Hierarchy to Detect Collisions Between Deformable Objects

Figure 9: Number of collisions detected in the first experiment.

Figure 10: Number of collisions detected in the second experiment.

Figure 11: Number of collisions detected in the third experiment.

c© The Eurographics Association 2007.

60

