
EG UK Theory and Practice of Computer Graphics (2007)
Ik Soo Lim, David Duce (Editors)

GPU-Based Wind Animation of Trees

Jo Skjermo †

Norwegian University of Science and Technology. Department of Computer And Information Science.

Abstract

This paper present a simplified approach to wind animation of natural looking tree stems and branches. The

presented approach is composed from several earlier works by a number of authors, each adapted to increase its

suitability for processing on a Graphic Processing Unit (GPU). The outlined approach uses two passes through

the GPU. The first pass samples from a simple wind force simulator based on sine sums. It then animates the

parameters and the control points defining each branch using the sampled force, taking advantage of the parallel

nature of GPU’s. The second pass uses a previously presented GPU-based deformer to generate and render actual

models of each branch, using the animated control points.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Line and Curve Genera-
tion I.3.7 [Computer Graphics]: Three Dimensional Graphics and Realism

1. Introduction

When rendering trees for use in real-time computer appli-
cations an approximation using billboards has often been
used [JAK00] [MNP01]. However, this approach will not
produce adequate results when the virtual observer is close
to the viewed object. In [CCH05] and in the commercial
product SpeedTree [Spe], polygon meshes are exchanged by
texture billboards based on the distance to the virtual ob-
server. Thus, interactive rates can be achieved even when
using polygon meshes when close to the observer.

Historically, there has been a number of proposed meth-
ods for generating both static and animated polygon meshes
for visualization of tree stems and branches. When using
a tree generator such as L-systems [LP90], polygon cylin-
ders were often used for each segment of a branch, some-
times stitched together with spheres in branching points.
In [Mai02], a coarse polygon mesh model for a tree was gen-
erated by the rules of an L-systems, that was further refined
using Catmul-Clark subdivision [CC78]. A similar approach
was developed to be used with a predetermined centerline
definition in [FFKW02], and further refined in [SE05].

In [Blo85], Bezier curves were used to define a centerline
of a branch. A polygon mesh was then generated by sweep-
ing a reference frame along this centerline, while changing

† Jo.Skjermo@idi.ntnu.no

the radius. Parametric tree descriptions were first introduced
in [Hon71], and further developed in [WP95] where a poly-
gon mesh representing a branch was generated by stitch-
ing together cylinder segments whose appearance was de-
fined by parameters. In [Skj06], the tree generation meth-
ods in [WP95] was used together with a GPU-based sweep-
like deformer loosely based on the Bezier curves approach
of [Blo85].

To animate wind in both L-systems and parametric tree
generators, constantly regenerating the whole tree model for
each change in the wind force field has usually been needed.
One approach to decouple the wind animation from the tree
generator is to animate a tree as if each tree was a rigid body
system [GCF01]. Such methods are however computation-
ally expensive and more complex then needed for simple
animations.

The presented approach simulates wind using simple sine
sums. Historically, sine sums have mostly been used to simu-
late waves on water surfaces as shown in [IVB02]. However,
as generating forces from sine sums maps easily to the paral-
lel approach used on modern GPU’s, it has lately also been
used to simulate wind forces in grass animation as seen in
chapter 1 of [Pha05]. The approach also makes heavy use of
methods developed for General-Purpose computation on the
GPU (GPGPU). In these methods, the the parallel nature of
GPU computation is exploited to gain huge speedup at a low
cost, as shown in [OLG∗05].

c© The Eurographics Association 2007.

http://www.eg.org
http://diglib.eg.org

2. Overall Approach

The proposed approach generates fully shaded and textured
tree stems and branches with wind animation using the GPU.
The approach uses two passes through the graphic pipeline,
one pass to update the position of the branches control
points, and one pass to generate, deform and finally shade
the branches. Figure 1 shows the approach from an overall
perspective.

Figure 1: The overall approach.

2.1. Tree Description and Data Storage

The basis for the aproach is a parametric description of each
branch of a tree based on the method of Weber and Penn
[WP95]. The individual branches of a tree are positioned,
oriented and fully described by a generated set of parame-
ters. A tree consists of several levels of branches, where the
main stem is level 0, the branches growing out of the stem is
of level 1, and so on.

The tree generator defines a cubic Bezier curve to de-
scribe the overall shape of each branch. But it also uses a
set of other parameters that describes different aspects such
as radius, flare, bulges and taper. The generation of the con-
trol points for the Bezier curve defining a branch are simple
translations and rotations using angles and lengths from the
tree generator (as if generating a branch with only 3 seg-
ments and no radius starting at the origin with the first seg-
ment along the x-axis).

The control points of the branch before it is positioned
and oriented into the tree is then stored for use in our wind

animation algorithm, before finally being transformed and
rotated into its initial position in the tree model. This final
location and orientation is used as the starting point of the
animation.

All the Bezier control points generated by the tree gen-
erator (also the control points of the unpositioned branches)
are stored in textures. For a single branch, control point P0
is stored in texture 0, control point P1 is stored in texture 1,
and so on for all 4 control points. The branches are sorted
by their parent branch and stored in a swizzle pattern, to in-
crease locality when doing dependent texture lookup of par-
ent branches control points. The texture address of the parent
of a branch is also stored in a texture, to enable dependent
texture lookups.

3. The Deformer

The secound part of the approach is the deformer. The de-
former is however presented first, as methods developed for
the deformer are used in the wind animation shader. The de-
former shader used here was first presented in [Skj06].

The deformer is basically a vertex program deformer,
as described in [FK03]. The deformer basically generates
branches using the parametric method of Weber and Penn
[WP95], from where the branch defining equations were
adapted. The deformer works on each input vertex in three
steps - input (simple grid mesh) to unbent branch, unbent
branch to bendt branch and finally finding the needed sur-
face coordinate system for the present vertex. The overall
approach of the deformer can be seen in figure 2.

Figure 2: a) Input vertices. b)Deform to unbent branch. c)

Deform to bent branch. d) Shaded branch. From [Skj06].

In addition to the values of the input grid mesh (υ, θ and
the texture coordinates for the color texture), the deformer
also requires some other input. The values for these inputs
are the same for all vertices of a specific branch, and they
therefore only need to be set once per branch (as setting input
values is the same as setting states in the OpenGL pipeline).

c© The Eurographics Association 2007.

Jo Skjermo / GPU-Based Wind Animation of Trees30

3.1. Deformer - Input Polygon Mesh to Cylinder

The first step is to deform the vertex parametric grid given
as a Vertex Buffer Object (VBO) into a cylinder as shown in
equation 1.

x = υ

y = sin(θ)radius

z = cos(θ)radius (1)

Where υ defines the present position along the length of
the cylinder, θ defines the present position’s angular position
on the cylinder, while radius define the radius of the cylin-
der. Using the υ and θ values given as input from our vertex
buffer object, one can find the corresponding position on the
cylinder’s surface, given the cylinder’s radius.

3.2. Deformer - Cylinder to Branch

The cylinder is further deformed by varying the radius as υ

and θ changes, to give the cylinder the shape of an idealized
unbent branch.

This part of the deformer is defined by four functions,
ftaper, f f lare, fbulgesand flobes, giving the radius of an unbent
branch.

The formulas used here are derived from [WP95]. For all
the formulas, θ is the angular position, while υ is the position
along the centerline defined to be between 0 and 1, as shown
in equation 1

3.2.1. Taper, Flare, Bulges and Lobes

The ftaper function (equation 2) controls how fast the final
radius goes toward 0. Here t is the amount of taper (how fast
the branch end goes toward 0). r is the original radius of the
branch. Some examples can be seen in figure 3 a), with t = 1,
t = 3 and t = 10.

ftaper(υ) = r(1−υt) (2)

The f f lare function (equation 3) adds an increased ra-
dius near the base of a branch, and is mostly used when the
branch is in fact the main stem of a tree. Here f is the f lare

parameter, defining the amount the branch should flare out
near the base. Some examples can be seen in figure 3 b),
with a flare of 0, 0.1 and 0.33 (using ftaper with t = 1)

f f lare(υ) =
f

100
(100(1−8υ))+1 (3)

The fbulges function (equation 4) defines a sin-curve added
to the surface radius, along the direction of the branch cen-
terline. This can be used to generate bulges based the defined
frequency and amplitude. Here bn is the number of bulges
(frequency), and bd is the depth of the bulges (amplitude).

Some examples can be seen in figure 3 c), with 5 bulges of
depth 0, 0.05 and 0.1 (using ftaper with t = 1).

fbulges(υ) = 1+bd sin(bn2πυ) (4)

The flobes function (equation 5) basically does the same
as the fbulges function, but on the radius, as defined by the
angle around the branch’s centerline. Here ln is the number
of lobes (frequency), ld is the depth of the lobes (amplitude),
and lt defines how fast the lobes fades away (0 for no lobes
near the tip, 1 for full magnitude). Some examples can be
seen in figure 3 d), with 7 lobes of depth 0 and taper 0, depth
0.2 and taper 0, depth 0.2 and taper 1 (using ftaper with t =
1).

flobes(υ,θ) = 1+ ld sin(lnθ)(1−υlt) (5)

Figure 3: a)Taper, b)Flare, c)Bulges, d)Lobes, showing the

effect of different control values

3.2.2. Deformed Cylinder

Using ftaper, f f lare, fbulgesand flobes, to define the radius in
equation 1, the deformer that generates an unbent branch is
defined as the result of three functions, one for each axis, as
shown in equation 6.

c© The Eurographics Association 2007.

Jo Skjermo / GPU-Based Wind Animation of Trees 31

fu = υ

fv = sin(θ) ftaper(υ) f f lare(υ) fbulges(υ) flobes(υ,θ)

fw = cos(θ) ftaper(υ) f f lare(υ) fbulges(υ) flobes(υ,θ) (6)

3.3. Deformer - Branch to Bent Branch

After applying the ftaper, f f lare, fbulgesand flobes functions, a
surface of an unbent branch of length 1 is described.

The last step is to deform this surface along the cubic
Bezier curve given by the Bezier control points defining a
branch. This is done using the generalized de Casteljau ap-
proach to 3D free form deformation defined by Chang and
Rockwood [CR94].

3.3.1. Generalized de-Casteljau Approach to

Deformation

The generalized de-Casteljau approach is a function φ[p,q] :
R3 → R3 defining an affine transformation from parametric
space into affine space, as defined in equation 7.

φ[p,q]









u

v

w

1









=









qx − px sx tx px

qy − py sy ty py

qz − pz sz tz pz

0 0 0 1

















u

v

w

1









=









x

y

z

1









(7)

Where p and q are two control points (for the first itera-
tion), while s and t are handles defined for the line segment
between p and q. The generalized de Casteljau approach can
be seen as an iterative approach to deform space around a
Bezier curve. Also, if the handles are unit vectors orthogo-
nal to the line defined by Pi and Pi−1, and each other, for the
first level of iteraton, and zero vectors for all following lev-
els, the space will be warped with the most natural bending.
This is the method used in the presented branch deformer.

3.3.2. Handle Definition and Surface point

As the control points for a cubic Bezier curve are given to
the GPU vertex program, only handles are needed to use the
generalized de Casteljau approach. Handles can be gener-
ated using Ken Sloan’s approach for a moving frame on a
Bezier curve as described by Jules Bloomenthal in [Gla90].

Basically, using the four control points P0, P1, P2 and P3,
together with a given unit vector O in the parent branch’s di-
rection (at the branching point), Sloans approach gives us the
reference frames at position P0, P1 and P2 as seen in equation
8.

L0 = normalize(P1 −P0)
L1 = normalize(P2 −P1)
L2 = normalize(P3 −P2)

S0 = L0χO,T0 = S0χL0

T1 = S0χL1,S1 = L1χT1

T2 = S1χL2,S2 = L2χT2

(8)

Applying the generalized de Casteljau deformation using
the fu, fv and fw from equation 6 as u,v and w in equation
7, gives us the final deformed branch that follows the given
Bezier curve. Calulating a point on the surface for a given υ

and θ can be done using equations 9.

R0
0 = lerp(P0,P1,u)+S0v+T0w

R0
1 = lerp(P1,P2,u)+S1v+T1w

R0
2 = lerp(P2,P3,u)+S2v+T2w

R1
0 = lerp(R0

0,R
0
1,u)

R1
1 = lerp(R0

1,R
0
2,u)

R2
0 = lerp(R1

0,R
1
1,u)

(9)

R2
0 gives the final world position for the present vertex

defined by a u and θ value.

3.4. Shading and Texturing

To add lighting and textures to the deformed branch, the tan-
gent and binormal (and a normal) at each surface point must
be found. This also enables us to use texture normal map-
ping to add even further detail to a branch surface. A method
to generate a tangent and binormal (for normal generation)
on the parametricly defined surface, suitable for use in GPU
programs, was presented in [Fer04].

Given f (x,y,z) = (fx, fy, fz) the Jacobian matrix is de-
fined as shown in equation 10

J(x,y,z) =









∂ fx

∂x
∂ fx

∂y
∂ fx

∂z
∂ fy

∂x

∂ fy

∂y

∂ fy

∂z
∂ fz

∂x
∂ fz

∂y
∂ fz

∂z









(10)

If the unit tangent and binormal vectors T and B are given
on the surface before deformation, multiplying these vectors
with the Jacobian will give the deformed tangent and binor-
mal. Also, one can calculate a deformed unit normal N by
using:

n‘ = normalize[(J(x,y,z)tχ(J(x,y,z))b)]

Using this approach, one first takes the partial derivatives

c© The Eurographics Association 2007.

Jo Skjermo / GPU-Based Wind Animation of Trees32

with respect to u and θ of the equations for each axis in equa-
tion 6. This gives a tangent and a (estimated) binormal on the
surface of the cylinder deformed to an unbent branch. Multi-
plying the calulated tangent and binormal with the Jacobian
of the de-Casteljau deformation, will give the tangent and bi-
normal on the final deformed surface, and can then be used
to generate a TBN matrix to be used for further fragment
computations. How to calulate the Jacobian for the deformer
is shown in [Skj06].

4. Sums of Sine Based Wind Animation

In this section the approach for using sums of sine to ani-
mate the branches of our tree models is presented. A set of
parameters defines (at most four) sine waves that simulates
a wind environment. One can sample the sine-waves using
the position of the tip of each branch as basis for calculat-
ing the results of the sine-wave equations. The values found
are summed, and used as a force to bend a branch from its
original shape by moving the control points of a branch.

The control points being moved by the wind force are the
original control points of a branch, before the branch was
positioned and oriented into its poisition in a tree. Usually,
one would calculate the position to attach a branch into the
tree by first calculating for level 0, then for level 1 and so on.
However, for each branch being positioned, the method pro-
posed simply position and orient the branch onto its parent
branch from the last animation step. With this simplification,
all the updating of the branches control points can be calcu-
lated in parallel on the GPU on a per branch basis.

From a implementation based point of view, the whole
animation process, including the sine-sum based wind force
sampling, is implemented as a single fragment shader. The
fragment shader needs the control points of the present
branch, the parameters to attach the branch to its parent, the
sine-wave control parameters, and finally the control points
of the parent branch as input values. The output is the four
new control points of a branch (and a orientation vector O).

The fragment program uses the OpenGL extension for
Multiple Render Targets (MRT) to write four textures in the
same execution. This makes it possible to update all four
control points of a branch in a single fragment program.
The results are written to 4 textures in a ping-pong fashion,
meaning we are switching between two groups of four tex-
tures for reading and writing (as the output from last anima-
tion step is used as input to the present step).

4.1. The Sum of Sine Force Approximation

The animation uses forces generated by using sums of sine.
As in chapter 1 of [Fer04], the state of a single sine-wave i

is a function of the position (x,y), and time (t), as shown in
equation 11.

Wi(x,y, t) = Ai sin(Di · (x,y)wi + tϕi), (11)

where Ai is the amplitude, Di is the waves direction on the
horizontal plane, wi is the frequency (that relates to wave-
length as w = 2π

wavelength , and ϕi is the phase constand de-

scribing the waves speed as ϕ = speed × 2π
wavelength .

When simulating waves on water, one usually sums the
set of sine-waves for a given position to generate a height of
the position one is interested in, as shown in the sum of sine
equation (equation 12).

H(x,y, t) = ∑(Ai sin(Di · (x,y)wi + tϕi)). (12)

However, wind is a directional force and height is not
needed. The force can be obtained by multiplying the state
Wi(x,y, t) of a wave i with its given (normalized) direction
Di, and then sum the resulting vectors using equation 13.

Fwind(x,y, t) = ∑(Di(Ai sin(Di · (x,y)wi + tϕi))). (13)

The actual implementation does however use an improved
version of the force-generating sine-sum equation, that gives
more control over the sharpness of the peaks and width of the
troughs of each wave, as seen in equation 14.

Fwind(x,y, t) = ∑(Di(
Ai

l

(

sin(Di · (x,y)wi + tϕi)

2

)k

)),

(14)

where l is the length between two control points, and the
power constant k adds extra control over the wave as de-
scribed in chapter one of [Fer04]. As the exponent k is raised
above 1, the peaks of a sine sharpens, and the valleys flatten.

Using the sums of sine as presented means that we are
sampling from a (horisontal) 2-dimentional wind field. The
generated force is also in this plane. The shape of the land-
scape or any objects in the scene does not influence the wind
in any way.

4.2. Positioning and Orientating the Branch

The first step is to get the original control points of a branch
without any wind influence and before it has been positioned
and oriented into the tree. These values are stored in texture
memory, and does not change during any step of the anima-
tion process.

The original control points for the branch without any
wind influence must be positioned and oriented onto its par-
ent branch. This position and orientation is described by a
set of parameters from the tree generator (and the param-
eters describing the parent branch itself). It is important to

c© The Eurographics Association 2007.

Jo Skjermo / GPU-Based Wind Animation of Trees 33

note that one uses the control points of the parent branch
from last animation step, to calculate the position and orien-
tation of a branch for the next animation step:

P0p, P1p, P2p, P3p are the control points of the parent
branch, and O is the given parents orientation vector of the
parent branch (used to generate handles for the parent). υ

is the parametric position for P0, on the parent branch, θ

is the angle around the centerline and α is the angle to ro-
tate "down". P0, P1, P2 and P3 are then the original unbent
Bezier control points of the present branch in its final posi-
tion and orientation.

To find the attachment position of a branch (basically,
where P0 should be positioned), we simply find the posi-
tion on the Bezier curve defined by its parent branch control
points, using the position parameter υ along the curve.

The rotation itself is done by first finding the derivative of
the parent branch Bezier curve, at the present branches at-
tachment point υ, giving a vector U along the parent’s direc-
tion. By using θ with the generalized de Casteljau approach,
as described in 3.3.2, a point on the parent branch sweep
surface in the horisontal direction the branch should grow is
found. The point found is used together with position P0 of
the branch to define a vector V .

Using cross products of the (normalized) vectors U and
V , enables us to find 3 perpendicular vectors. These vectors
defines a coordinate system on the parent branch, that is used
when attaching the branch to it. The unbent original branch
is attached into the coordinate system, then rotated down by
the angle α , as seen in figure 4.

Figure 4: Position and orientate a branch onto its parent

branch

4.3. Bending the Branch

When the original control points defining the overall shape
of a branch are positioned and oriented to theire positions in
the tree, we can move individual control points to bend the
branch.

As a branch’s bending is defined by the four control points
of a Bezier curve, we can bend it using the approach devel-
oped for bending branches in the movie Shrek [Pet]. The
approach first calculates a bend factor for each control point
of a branch, and then move each control point from its orig-
inal position. A simple version of a bend factor is calculated
for each control point as shown in equation 15.

bi = b

(

i

n−1

)

. (15)

Where b is a vector representing the bend factor for the
whole branch, i is the present control point, and n is the total
number of control points of a branch.

The force calculated from the sine waves is used as the
bend factor b. Also, to ensure that a branch looks like grow-
ing out of it’s parent branch, the start of a branch should be
static compared to the parent (at control point P0), making
that only control points P2 and P3 are actually updated.

This means that control points P2 and P3 of the origi-
nal unbent branch, after it has been positioned and oriented
into it’s position, can be updated to simulate bending from
the simulated wind. From visual inspection, equation 15 has
been tuned as shown in equation 16, to produce the bend

factors for control points P2 and P3.

b3 = F
1.8

b2 = F

(

1

3

)1.8

(16)

Control points P2 and P3 can now be bent using the cal-
culated bend factors as shown in equation 17, where bi is the
bend factor of control point Pi. Figure 5 shows the calcula-
tion for one control point.

Pi
′ = Pi−1

′ +
(Pi −Pi−1)+bi

| Pi −Pi−1 |
. (17)

Figure 5: a) Position and orientate a branch onto it’s parent

branch ,b) Updating the position of a control point, figure

recreated from [Pet]

c© The Eurographics Association 2007.

Jo Skjermo / GPU-Based Wind Animation of Trees34

The resulting control points after applying the animation
are written to four textures using MRT. These textures are
then used as input to the Deformer GPU program (but also
used as input to the next animation step).

5. Results

Some examples showing the branch deformer using normal
textures and lighting can be seen in figure 6, while figure 7
shows a snapshot from a test application animating a scene
with over a 100 highly detailed trees with wind animation.

Figure 6: From left: shaded branches with texturing and

lightning, shaded branch with different parameters, the stem

of a cacti, the start of a stem. From [Skj06]

Figure 7: Screenshot from test application, animating wind

in forrest scene

Some performance results of drawing trees using both the
deformer and wind animation GPU shaders can be seen in
figure 8, for different number of branches (and vertices).

For the wind animation shader step, the size of the tex-
tures used, fully determines the update speed. For a Nvidia

Figure 8: Frames per secound for different number of VBO

branchs per secound

7900GTX GPU, using 256x256 textures the wind anima-
tion shader calculates at 600 iterations per secound, applying
wind animation to more then 65k branches in parallel (when
not drawing to the screen with the deformer shader pass).
When using 512x512 textures, the wind animation calculates
at 180 iterations per secound.

When calculating the position and orientation of a branch,
the original control points of a branch (before they where po-
sitioned into the tree) are used for the present branch. For the
parent branch (the branch one attaches the present branch
onto), one uses the control points from the last animation
step. This means that this method for positioning and orient-
ing a branch introduces an error, as the animation actually
lags behind one animation step for each structural level we
move out in the tree structure.

As the branches usually gets smaller the further out in the
tree structure one goes, the error one gets using the parent
branch from the last animation step, could easily become
unacceptable. However, when the generated wind forces are
kept relatively small, the movement between each animation
step is not large enough for a observer to actually notice this
error, especially when keeping the branch oscillation speed
low.

Defining the parameters for a sine wave that gives a good
wind effect in the animation can be hard, especially as the
parameters influence each other. One should also note that
changing a parameters defining a sine wave during run-
time will introduce an abrupt change in the wind animation.
These problems can be handled by defining a set of param-
eters that yields good wind animation effects, and blend the
impact of a wave out before blending in a new sett of wave
parameters.

The wind animation can handle a lot more branches
then the deformer part. This stems mostly from the fact
that there is more surface vertice positions beeing calulated

c© The Eurographics Association 2007.

Jo Skjermo / GPU-Based Wind Animation of Trees 35

then branches animated. Also, texture fetches in the vertex
shaders are not optimized on earlier graphic cards, and there
are more fragment shader computation units then vertex
fragment computation units. On the newest graphic cards,
like the Nvidia 8800 series, there is however no real differ-
ence between fragment and vertex computation units, so the
load between the vertex deformer and the fragment wind an-
imation shades should in theory be a lot more balanced. This
will be tested in the near future.

References

[Blo85] BLOOMENTHAL J.: Modeling the mighty maple.
In SIGGRAPH ’85: Proceedings of the 12th annual con-

ference on Computer graphics and interactive techniques

(New York, NY, USA, 1985), ACM Press, pp. 305–311.

[CC78] CATMULL E., CLARK J.: Recursively generated
b-spline surfaces on arbitrary topological meshes. Com-

puter Aided Design 10, 6 (1978), 350–355.

[CCH05] CANDUSSI A., CANDUSS N., , HÖLLERER T.:
Rendering realistic trees and forests in real time. Euro-

graphics journal, Computer Graphics Forum 24 (2005),
73–76. EG Short Presentations.

[CR94] CHANG Y. K., ROCKWOOD A.: A generalized
de casteljau approach to 3d free-form deformation. In
Proceedings of the 21st Annual Conference on Computer

Graphics and Interactive Techniques, SIGGRAPH 1994

(1994), SIGGRPAH, ACM Press, pp. 257–260.

[Fer04] FERNANDO R. (Ed.): GPU Gems. Addison-
Wesley Profesional, 2004.

[FFKW02] FELKEL P., FUHRMANN A., KANITSAR A.,
WEGENKITTL R.: Surface reconstruction of the branch-
ing vessels for augmented reality aided surgery. Analysis

of Biomedical Signals and Images 16 (2002), 252–254.
(Proc. BIOSIGNAL 2002).

[FK03] FERNANDO R., KILGARD M. J. (Eds.): The Cg

Tutorial: The Definitive Guide to Programmable Real-

Time Graphics. Addison Wesley Professional, 2003,
pp. 218–226.

[GCF01] GIACOMO T. D., CAPO S., FAURE F.: An in-
teractive forest. In Eurographics Workshop on Computer

Animation and Simulation (EGCAS) (sept. 2001), Cani
M.-P., Magnenat-Thalmann N., Thalmann D., (Eds.),
Springer, pp. 65–74. Manchester.

[Gla90] GLASSNER A. (Ed.): Calculation of Reference

Frames along a Space Curve. Academic Press, 1990,
pp. 567–574. By Jules Bloomenthal.

[Hon71] HONDA H.: Description of the form of trees by
the parameters of the tree-like body: Effects of the branch-
ing angle and the branch length on the shape of the tree-
like body. Journal of Theoretical Biology (1971), 331–
338.

[IVB02] ISIDORO J., VLACHOS A., BRENNAN C.: Ren-
dering ocean water. In ShaderX (2002), Wordware Pub-
lishing, pp. 347–Ű356.

[JAK00] JAKULIN A.: Interactive vegetation rendering
with slicing and blending. In In Proceedings of Euro-

graphics 2000 (2000). Short Presentations.

[JPM00] JIRASEK C., PRUSINKIEWICZ P., MOULIA B.:
Integrating biomechanics into developmental plant mod-
els expressed using l-systems. Plant biomechanics

(2000), 615–624.

[LP90] LINDENMAYER A., PRUSINKIEWICZ P.: The Al-

gorithmic Beauty of Plants. Springer-Verlag, 1990.

[Mai02] MAIERHOFER S.: Rule-Based Mesh Grow-

ing and Generalized Subdivision Meshes. PhD
thesis, Technische Universitaet Wien, Technisch-
Naturwissenschaftliche Fakultaet, Institut fuer Comput-
ergraphik, 2002.

[MNP01] MEYER A., NEYRET F., POULIN P.: Interactive
rendering of trees with shading and shadows. In In Pro-

ceedings of the 12th Eurographics Workshop on Render-

ing Techniques (2001), Springer-Verlag, pp. 183–Ű190.

[OLG∗05] OWENS J. D., LUEBKE D., GOVINDARAJU

N., HARRIS M., KRÜGER J., LEFOHN A. E., PURCELL

T. J.: A survey of general-purpose computation on graph-
ics hardware. In Eurographics 2005, State of the Art Re-

ports (Aug. 2005), pp. 21–51.

[Pet] PETERSON S.: Visual effects in shrek. Sil-
icon Valley ACM SIGGRAPH, http://silicon-
valley.siggraph.org/MeetingNotes/Shrek.html.

[Pha05] PHARR M. (Ed.): GPU Gems 2. Addison-Wesley
Profesional, 2005.

[SE05] SKJERMO J., EIDHEIM O. C.: Polygon mesh gen-
eration of branching structures. In SCIA, Image Analysis,

14th Scandinavian Conference, SCIA 2005, Joensuu, Fin-

land, June 19-22, 2005, Proceedings (2005), Kälviäinen
H., Parkkinen J., Kaarna A., (Eds.), vol. 3540 of Lecture

Notes in Computer Science, Springer.

[Skj06] SKJERMO J.: A gpu-based branch deformer. In
Proceedings of the 22nd spring conference on Computer

graphics (2006), Comenius University, Comenius Univer-
sity, Bratislava, pp. 120–127.

[Spe] Tree modeling and rendering middleware. Commer-
sial product, http://www.speedtree.com.

[WP95] WEBER J., PENN J.: Creation and rendering of
realistic trees. In SIGGRAPH ’95: Proceedings of the

22nd annual conference on Computer graphics and in-

teractive techniques (New York, NY, USA, 1995), ACM
Press, pp. 119–128.

c© The Eurographics Association 2007.

Jo Skjermo / GPU-Based Wind Animation of Trees36

