

Evolving Body Kinematics for Virtual Characters

C. Gatzoulis, W. Tang, W. J. Stoddart

School of Computing, University of Teesside, United Kingdom
c.gatzoulis@tees.ac.uk

Abstract
Physically-based character animation systems often require complex knowledge of the underlying equations of
motion. Hence, producing physically-realistic animations can be time consuming with these systems. In this
paper, we present an approach that automatically searches for kinematics solutions for virtual characters.
Characters learn their locomotion by evolving body kinematics. We designed two different control architectures
for the character’s learning process with predefined motion data sets and a feedback system. The first system is
based on a layer of genetic algorithms (GA) and the second is based on a Reinforcement Learning (RL)
approach. Animation systems based on these control architectures require little knowledge of the physics
equations of motions, but can generate physically-feasible motions in real-time through observations of available
motion data sets, such as previous animations or motion capture data. This animation approach allows
animators to construct easily realistic body kinematics motion for computer game characters. Embedded with
simulated musculature of human body, the system also has applications in sports and physiotherapy for motion
visualization. The test data also demonstrates the advantages and drawbacks of the two types of control methods.

1. Introduction

Physically convincing body motions for virtual characters
are desirable in 3D computer animations and computer
games. Many research investigations involved the use of
physically-based modelling and simulation to produce
realistic animations for virtual characters [ALP04,
ZMCF05]. As physically-based motion animations are
computational expensive and real-time solutions do not
always succeed, motion capture data sets are commonly
used in animation productions. With predefined key frame
animations and fixed sets of motion data, virtual characters
lack adaptive abilities for dealing with different situations
in a virtual environment. The attempts made to incorporate
a layer of physical properties to motion data have the
inherent difficulty as in physically-based animations
[ZV03, DYP03]. To overcome the obstacles inherent with
physical simulations, probability and statistical method
was applied to learn motion patterns from various captured
motion data sets [BH00].

Recent novel approaches to create physically-feasible
and adaptive character animations use artificial intelligence
techniques to synthesize the motion controller embedded in
the character’s skeleton structures [FV93, WT02, E05].
One approach used evolution algorithms such as genetic
algorithms [WT02, E05, GT95] and reinforcement learning

[IBDB01] to generate individual motion behaviours for
virtual characters. The choice of the algorithm embedded
in the motion controller for the action-selection mechanism
is crucial to the results of the animation. It is important that
the chosen algorithm is able to generate realistic motions
efficiently. Especially for real-time animations, the design
of the control architecture plays a major role in gaining the
performance of the algorithm.

In this paper, we present two types of motion controller
for generating virtual characters that can learn and adopt
body kinematics motions in the similar way that humans
learn how to perform movements, such as for walking
based on observation, trial and error. Furthermore,
characters need to have the ability to generate motions that
are unique and dependent on their experience. As in
reality, our animation system embedded with the
controllers generates motions for characters that have
individual characteristics that distinguish each character
from others. By incorporating such a type of learning
behavior, the generated virtual characters are adaptive with
evolving motion dynamics without the embedded
underlying equations of motion.

Section 2 of the paper relates our work to important
previous work. In section 3, the construction of the
character animation structure is introduced, which supports
the underlying control architecture for the adaptive

EG UK Theory and Practice of Computer Graphics (2006)
M. McDerby, L. Lever (Editors)

c© The Eurographics Association 2006.

http://www.eg.org
http://diglib.eg.org

animation. Section 4 and 5 describe details of two types of
AI controllers, namely, genetic algorithm controller and Q-
learning controller. Experimental results on the two
controllers are shown in section 6 and section 7 concludes
our work and highlights directions of the future work.

2. Related Work

Synthesizing adaptive motions in the context of learning
and evolution is based on the construction of a controller.
A controller makes decisions based upon sensory
information received or available and evaluates the
outcome solution through a feedback scheme. Popular
artificial intelligence methodologies are genetic algorithms
[HOL75] and reinforcement learning algorithm such as Q-
learning [SB98].

Genetic algorithms were used to model stimulus-
response pairs for the locomotion of 2D stick figures
[NM93] and for improving sensor-actuator networks for
stick figure motion [FV93]. An effective feedback control
system was able to create virtual creatures with their body
structures evolving in order to compete with each other in a
virtual environment [SIM94]. The control system used GA
to simulate morphologies and the neural systems for
controlling muscle forces of the virtual creatures. A GA
based approach was presented for virtual characters to
learn physically based motion behaviors as an evolution
process. The skill of the character to complete a predefined
task can be developed and evolved through the experiences
of performing the task [WT02]. As a reinforcement
learning method, Q-learning algorithm was applied to
generate action sequences for animated characters [SF04].
Based on an animation engine, a behavior engine used a
script generator for selecting motions from a database and
a characterizer for generating characterized motion by
using evolutionary computation [NKL*04]. Using genetic
algorithms, dancing motions for arbitrary songs with dance
beats were automatically synthesized [ABB05]. A dynamic
motion synthesis system was proposed to create interactive
3D characters [BPW93].

GA and Q-learning have their own merit and drawback,
thus when designing an efficient controller for adaptive
animation, one must consider the merit and drawback of
GA and Q-learning algorithms. As a controller designed by
GA is a closed set feedback system that has limited
external stimulus/response, the principle advantage is the
efficiency of the simulation. On the other hand, Q-learning
works by constructing a look-up table that is updated by
evaluating the task performance of the character.
Compared with GA, in the Q-learning algorithm external
stimuli can be easily incorporated into the feedback system
to generate environmental aware characters. In the
following sections, we present the control architecture and
the implementation of our animation system. We
constructed two types of controller, using GA and Q-
learning algorithms respectively. In order to gain insights
into the efficiency of the controllers and to produce robust

adaptive motion, tests are conducted with body kinematics
for virtual characters.

3. Character Animation Structure

The animation structure needs to support the underlying
control architecture. A character animation structure is
created using a set of kinematic chains starting from the
root to extremities. Motions of a character are stored as a
series of transformations taking place in an animation
sequence. An articulated body skeleton is represented by a
total of 17 joints as shown in Figure 1. The joint j1 is the
base joint and the limbs are animated with rotation
transformations relative to this base joint. The base joint
requires a translation and a rotation. The transformations of
the limbs are stored using a reference frame attached to the
root of the corresponding kinematic chain (shoulder or
hip).

Figure 1: Animation skeleton.

Each transformation is described with three values,
corresponding to X, Y and Z axes respectively. The
movement of the character is described by a set of
animation frames. The controllers described in the
following section utilize the skeleton structure by attaching
a sensory node to each of the joints. Hence, the resulting
adaptive animation is generated by a connected sensory
network with feedback evaluation optimized motions.

c© The Eurographics Association 2006.

C. Gatzoulis & W. Tang & W. J. Stoddart / Evolving Body Kinematics for Virtual Characters204

4. Designing the GA Controller

As shown in Figure 2, an evolution control module uses the
learning algorithm to generate data for the motion
parameters. The initial parameters are used by the motion
generation module to calculate the values of
transformations for each frame. The motion of each
animation frame is appraised by the evaluation module
based on the target task. A threshold is defined to estimate
the error in the motion parameters and a feedback message
is generated for the evolution control unit. The evaluation
process is iterated until an optimal motion is found.

Figure 2: Control Structure of system flow

We design the joints of the skeleton as sensory nodes,

with bones between these joints linked to form a sensory
network. In the GA controller, the network is considered as
a chromosome and the genes of the chromosome hold the
values of the transformations of the joints. Each separate
chromosome constitutes a motion frame.

The initial set of chromosomes is created randomly and
using the natural selection scheme of the GA algorithm,
only the fittest ones are kept after a sorting algorithm. A
pairing strategy sets the pairs of chromosomes to be the
parents that will generate offspring chromosomes for the
proceeding iterations with a mating strategy. To allow the
algorithm to converge more quickly to an efficient
solution, a level of exploration is achieved by mutating the
genes of offspring chromosomes.

The new chromosomes need to be assigned a cost value
and the total selection is then sorted. The feedback system
evaluates the calculated total cost of all the used
chromosomes. The fittest chromosome is passed to the
motion generation module. The interaction process stops

when the value of the cost is below a threshold and the
motion held by the current chromosome is considered
acceptable. Otherwise the iteration process continues. This
feedback scheme is illustrated in Figure 3.

Different strategies in a genetic algorithm can be used
[HH98]. When creating the initial chromosomes, it is
helpful to generate more chromosomes than required and
keep the fittest ones after the initial selection. We keep
50% percentage from the initial population. The cost
function evaluates the learned data as in Equation 1.

Figure 3: Design of GA process

Cl is the learnt data, Co is the original data and Np is the
total number of genes in a chromosome. Cost is also
dependent on other outputs such as visual results of the
motion and resulting body states if a physically based body
simulation exists.

∑
=

−=
Np

i
ol CCCost

0

|| (1)

c© The Eurographics Association 2006.

C. Gatzoulis & W. Tang & W. J. Stoddart / Evolving Body Kinematics for Virtual Characters 205

Rank weighted paring is one of the strategies that can

be used to assign probabilities to the chromosomes by
taking into account their cost. As shown in Table 1, each
chromosome has five genes and the chromosome number 1
has the highest weight. The rank weight Pn is calculated as
follows:

10
51

1

n

n

nNgPn
gN

n

−
=

+−
=

∑
=

 (2)

Ng is the total number of chromosomes that have the
weight above threshold and n is the total number of
chromosomes in the system.

Table 1. Rank Weighted GA pairing.
n Chromosome Pn Cum. Pn
1 1.5 2.1 0.4 4.2 2.1 0.4 0.4
2 1.0 2.6 5.4 3.1 2.6 0.3 0.7
3 1.2 1.1 3.2 2.4 3.8 0.2 0.9
4 1.3 3.5 2.5 0.7 5.7 0.1 1.0

For the crossover stage of the GA algorithm, points in

the chromosomes are selected to swap the left and right
adjusted parameters. In the following example, the left
index is three and the right is four. The genes are
exchanged and the offspring chromosomes are generated.

Parent Chromosomes
Parent1 = { p11, p12, p13, p14, p15,….. , p1N }
Parent2 = { p21, p22, p23, p24, p25,….. , p2N }

Offspring Chromosomes

Offspring1 = {p11, p12, p23, p24, p15,….. , p1N }
Offspring1 = {p21, p22, p13, p14, p25,….. , p2N }

A Blending method sets values at genes by taking the

parent’s related genes as in Equation 3.

)1(*][*][][biMothbiFathiOffsp −+= (3)

where b is the blending rate.

In our GA controller, the mutation rate is set as 0.05.

Although mutation can frequently generate less valuable
chromosomes it is the way for the algorithm to explore the

state space. This is important especially when using small
populations due to real-time constraints.

The original animation of a walking sequence is created
in Maya for the lower part of an articulated virtual
character. The skeleton of the virtual character comprises
of six joints: waist, pelvis, left and right hips and knees.
For each of the joints there are a number of transformations
on the three world axes X, Y and Z. The walking sequence
consists of 25 animation frames. Therefore with a sum of
24 transformations we can represent the walking motion
data in frames. Specifically for a forward walk, we can
decrease this number by creating a local world system and
allowing a translation of the waist along two axes i.e. the z
and y axes, and one rotation on the x axis for each of the
hips and knees. This adds up to a total of six
transformations.

Each chromosome is designed with genes using per
frame values of all the transformations so that a
chromosome has 6 genes as shown in Figure 4. The total
number of families of chromosomes is 25 representing the
total number of frames. We create a layer of 25
consecutively operating chromosome clusters. Each
chromosome represents a value that adds up to the
positioning that resulted from the previously accessed
cluster.

Figure 4: Walking motion chromosome

The initial population is generated by allowing the

values to come from a continuous space of a constant
length. The length of the space is set to the maximum
increment that occurs in the original motion data set. A
relatively large initial population is created. Natural
selection is set at the level of 50% in order to cause no
influence of unexpected selections to the results of the
tests. Thresholding is avoided, as it is vague to define a
function that can modify the threshold value without
affecting the results of the simulation.

Figure 5 illustrates a sequence of adaptive process of
the virtual character generated by our GA controller for the
described walking motion. The skeleton on the right has
the original motion data animated in Maya and the one on
the left learns the motion through the GA controller. The
number of feedback iterations for the images in Figure 5 is
1, 3, 5 and 15 respectively. As can be seen, the adaptive

c© The Eurographics Association 2006.

C. Gatzoulis & W. Tang & W. J. Stoddart / Evolving Body Kinematics for Virtual Characters206

character performs close to the original motion data after
15 iterations.

Figure 5: Results of GA evolution in walking

Tables 2 and 3 present the test results of using different
pairing and mating combinations. N is the initial
population, MI is the maximum allowed iterations and AC
is the threshold cost value for a chromosome to be
considered good. The values displayed are the average
value of 25 trials for each test to ensure a stable outcome.
With a large number of populations, the best result
generated by cost weighted function using the blending
strategy is highlighted in Table 3 as bold values. In
comparison, with smaller number of chromosomes a
different pairing strategy is needed to achieve optimal
solution.

Table 2. GA results for learning to walk.
N=320, MI = 100, AC = 1.5

 Mating
Pairing

Crossover Uniform Blending

 Steps Cost Steps Cost Steps Cost
Top - Bottom 76.55 1.83 68.01 1.75 25.61 1.40

Random 74.10 1.75 56.37 1.58 28.03 1.33
Rank Weighted 87.70 3.17 75.09 2.54 39.38 1.52
Cost Weighed 76.06 2.00 78.02 2.16 42.70 1.61
Tournament 74.23 1.86 58.95 1.74 32.72 1.48

Table 3. GA results for learning to walk.

N=800, MI = 20, AC = 1.5
 Mating
Pairing

Crossover Uniform Blending

 Steps Cost Steps Cost Steps Cost
Top - Bottom 19.01 2.06 18.70 2.01 13.30 1.42

Random 19.35 2.05 17.60 1.61 15.58 1.65
Rank Weighted 19.68 2.97 17.87 1.83 14.41 1.61
Cost Weighed 18.13 1.79 16.86 1.76 12.61 1.41
Tournament 18.63 1.90 16.16 1.95 13.73 1.50

5. Designing a Q-Learning Controller

MIT [IBDB01] proposed the use of Q-Learning (QL) for
adaptive synthetic characters. QL is an off-policy control
Temporal Difference algorithm that describes a learnt data
set in a look-up table that is updated by exploration. Drawn
from our previous experimental results [TGW04], Q-
Learning is chosen for our RL controller for character
motion synthesis.

The major issue in the design of the QL system is how
to represent a state-action space. For the state
representation, each frame is assigned as a different state.
Therefore, the state transition is deterministic and each
state results in the state for the next frame. A set of discrete
actions is defined representing the modifications in the
transformation of the joints. To achieve accurate results, a
real number in the space [0,1] is added to the value in order

c© The Eurographics Association 2006.

C. Gatzoulis & W. Tang & W. J. Stoddart / Evolving Body Kinematics for Virtual Characters 207

to mimic the original data set. In this way we are able to
use a small constant look-up table that helps the optimized
performance in real time.

Figure 6: Layers of the Q-Learning System

The QL comprises of a layer of QL nodes each
corresponding to the joint transformation as shown in
Figure 6. For the walking example there are 6 QL look-up
tables forming the evolving action-selection of the body
motion for the character. The learned data in these nodes
represents the motion solution for the virtual character.

For each of the QL nodes, the algorithm begins at state
0 and performs exploration and exploitation. When
selecting an action, the related changes occur to the
transformation values and the next state (frame) is visited.
Each state holds a specific vector of values that are the
transformation parameters. The Q-values are updated using
Equation 4:

Qt+1(Si, a) = Qt(Si, a) + α*δ*E(Si, a) (3)

Here, α is the learning rate, δ is the Temporal

Difference (TD) error and E(Si, a) is the eligibility traces
value of the corresponding state-action pair. The TD error
occurs when evaluating the condition of the resulting state
and checking if the action was beneficial for the system or
not. It is calculated as follows:

),(*),(1 aSQaSQr ii −⋅+= +γδ (5)

In (5) r is the reward, γ is the discount factor, Si+1 is the
new state and a* the action chosen by the greedy policy.

In the animation system, the number of states is 25 that
being equal to the number of frames. For the translations

we use a set of 11 actions presenting the values of
translation on the axis. For the rotations we use a set of 40
actions. Figure 7 shows the final learned solution for the
adaptive character on the left compared with the motion of
the original designed character on the right.

 The parameters of the QL algorithm can change the
performance. Based on results of our previous research we
set the values of the learning rate α to 0.1 and the discount
factor γ to 0.9. After 20 iterations with 20 steps per
iteration, the algorithm converges to learn the walking
cycle but with less accurate values for some
transformations. We gradually increased amount of steps
and when equal to 40, the learning character performs with
much high accuracy at all attempted trials.

Figure 7: Results of QL evolution in walking

6. Experimental Results

In order to compare the two algorithms we measured the
required time for the two different systems to learn the
same animation data set.

In Table 4 we compare the elapsed real-time of Q-
Learning and GA controllers. For the genetic algorithms
the results in the previous section are used for the choice of
pairing and mating methods used for the GA controller. As
can be seen, the QL controller performs within an equal
amount of time as the GA with a population N=500.

Table 4. Elapsed time for the two algorithms.
Method Parameters Elapsed

Real-Time (ms)

QL 20 iterations,
40steps

3620

GA N=500 3520

c© The Eurographics Association 2006.

C. Gatzoulis & W. Tang & W. J. Stoddart / Evolving Body Kinematics for Virtual Characters208

The rate of learning of the two methods can be seen in

Figure 8. In the flowchart we illustrate the error of the
algorithms per iteration step. The error is defined as the
numeric distance of the learned data compared with the
original data. As shown in Figure 8.a, the GA system
performs with more accuracy from the early steps of the
simulation. QL starts with a big error and although it
improves its performance through elapsed iterations, the
accumulated error at the end of the 20 steps is 50% higher
than that of the GA system. The values of the error on the
20th step are 62 for GA and 96 for QL.

Using the presented methodologies, we can generate
walking movements that are based on the reference motion,
but each one holds individual characteristics in movement,
same as these that humans can adapt when learning to
walk.

Error in Learned data compared to original data

 for GA and QL

0

2000

4000

6000

8000

10000

12000

1 3 5 7 9 11 13 15 17 19

Steps-Episodes

Er
ro

r(
C

os
t)

GA

QL

8.a

0

50

100

150

200

250

300

350

400

450

500

Steps-Episodes

Er
ro

r

11 12 13 14 15 16 17 18 19 20

8.b

Figure 8: Performance comparison of GA and QL

controllers

7. Conclusion

We presented two types of control architecture for
generating physically-feasible motions for virtual
characters. Our system is capable of real-time animations
for complex body kinematics without encoding the

expensive physics equations of motion. We conducted
experiments on the use of the two proposed methods to
gain insights into the most efficient and optimal control
method for adaptive motion animations.

Despite the GA controller being more efficient than the
QL controller, the inherent reinforcement learning scheme
of QL may be suitable for some applications that requires
direct external feedback. From the test results, both
controllers can search for optimal motion solutions for
real-time applications. Within a constant amount of time,
the GA control architecture shows more accurate motions
than the results of QL.

Future work includes an investigation in incorporating
sensory and muscle nodes into the skeleton design to
achieve biomechanical feasible motions for virtual
characters. Example applications of such characters can be
found in sports and physiotherapy for motion visualization.
Moreover, it will be beneficial to create adaptive characters
that can learn from hidden data by using visual
information. Also further research can occur on the
performance of the models as well. Amongst many
interesting topics, seeding the population with possible
good guesses and changing population size from
generation to generation can also be further investigated.

8. References

[ABB05] ALANKUS G., BAYAZIT A.A., BAYAZIT
O.B.: Automated motion synthesis for dancing characters,
In Computer Animation and Virtual Worlds 2005, Volume
16, Issue 3-4, Wiley, 259 – 271.

[ALP04] ABE Y, LIU C. K., POPOVIC Z.: Momentum-
based parameterization of dynamic character motion.
Proceedings of the 2004 ACM SIGGRAPH/Eurographics
symposium on Computer animation (August 2004), 173-
182.

[BH00] BRAND M., HERTZMANN A.: Style machines.
Proceedings of the 27th annual conference on Computer
graphics and interactive techniques (July 2000), p.183-
192.

[BPW93] BADLER N. I., PHILLIPS C. B., WEBBER B.
L.: Simulating Humans: Computer Graphics Animation
and Control, Oxford University Press, 1993.

[DYP03] DONTCHEVA M., YNGVE G., POPOVIC Z.:
Layered acting for character animation, ACM Transactions
on Graphics (TOG), v.22 n.3 (July 2003), 409-416.

[E05] ENDORPHIN: NaturalMotion. Siggraph 2005,
http://www.naturalmotion.com/pages/technology.htm.

[FV93] FIUME E., VAN DE PANNE M.. Sensor-actuator
networks. In Computer Graphics SIGGRAPH '93
Proceedings, volume 27, 1993, 335-342.

c© The Eurographics Association 2006.

C. Gatzoulis & W. Tang & W. J. Stoddart / Evolving Body Kinematics for Virtual Characters 209

[GT95] GRZESZCZUK R., TERZOPOULOS D.:
Automated Learning of Muscle-Actuated Locomotion
Through Control Abstraction, ACM Computer Graphics,
Proceedings of SIGGRAPH'95 (August 1995), 63-70.

[HH98] HAUPT R.L., HAUPT S.E.: Practical Genetic
Algorithms, John Wiley, Canada, 1998.

[HOL75] HOLLAND J. H.: Adaptation in Natural and
Artificial Systems, Ann Arbor, MI: The University of
Michigan Press, 1975.

[IBDB01] ISLA D., BURKE R., DOWNIE M.,
BLUMBERG M.: A Layered Brain Architecture for
Synthetic Creatures. In Proceedings of the International
Joint Conference on Artificial Intelligence, Morgan
Kaufmann, 2001.

[NKL*04] NAM S. W., KIM D.H., LEE I.H., CHOI I.,
CHIEN S.I.: Reactive and Characterized Motion
Generation of Virtual Character, In Intelligent systems and
Control, 2004, ACTA press.

[NM93] NGO J.T., MARKS J.: Spacetime Constraints
Revisited, In Proceedings of the 20th annual conference on
Computer graphics and interactive techniques, Siggraph
1993, 335-342.

[SB98] SUTTON R. S., BARTO A.G.: Reinforcement
Learning: An Introduction, MIT Press, Cambridge 1998.

[SF04] SZAROWICZ A., FRANCIK J.: Human Motion
For Virtual People, In International Conference on
Computer Games: Artificial Intelligence, Design and
Education, CGAIDE 2004.

[SIM94] SIMS K.: Evolving Virtual Creatures, In
Computer Graphics Siggraph '94 Proceedings (July 1994),
15-22.

[TGW04] TANG W., GATZOULIS C., WAN T.R.:
Proactive Anticipatory Virtual Characters- An Ethology
Approach. In Proceedings of Applied Simulation and
Modelling (June 2004), 172-177.

[WT02] WAN T. R., TANG W.: Learning by experience -
autonomous virtual character behavioural animation, In
Proceedings of Intelligent Agents for Mobile and Virtual
Media (2002), 89 – 100.

[ZMCF05] ZORDAN V. B., MALKOWSKA A., CHIU B.,
FAST M.: Dynamic response for motion capture
animation. ACM Transactions on Graphics (TOG), v.24
n.3 (July 2005), 697-701.

[ZV03] ZORDAN V. B., VAN DER HORST N. C.:
Mapping optical motion capture data to skeletal motion
using a physical model. Proceedings of the 2003 ACM
SIGGRAPH/Eurographics Symposium on Computer
Animation (July 2003), 245-250.

c© The Eurographics Association 2006.

C. Gatzoulis & W. Tang & W. J. Stoddart / Evolving Body Kinematics for Virtual Characters210

