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Abstract 
Physically-based character animation systems often require complex knowledge of the underlying equations of 
motion. Hence, producing physically-realistic animations can be time consuming with these systems. In this 
paper, we present an approach that automatically searches for kinematics solutions for virtual characters. 
Characters learn their locomotion by evolving body kinematics. We designed two different control architectures 
for the character’s learning process with predefined motion data sets and a feedback system. The first system is 
based on a layer of genetic algorithms (GA) and the second is based on a Reinforcement Learning (RL) 
approach. Animation systems based on these control architectures require little knowledge of the physics 
equations of motions, but can generate physically-feasible motions in real-time through observations of available 
motion data sets, such as previous animations or motion capture data. This animation approach allows 
animators to construct easily realistic body kinematics motion for computer game characters.  Embedded with 
simulated musculature of human body, the system also has applications in sports and physiotherapy for motion 
visualization. The test data also demonstrates the advantages and drawbacks of the two types of control methods. 
 
 

 
1. Introduction 

 
Physically convincing body motions for virtual characters 
are desirable in 3D computer animations and computer 
games. Many research investigations involved the use of 
physically-based modelling and simulation to produce 
realistic animations for virtual characters [ALP04, 
ZMCF05]. As physically-based motion animations are 
computational expensive and real-time solutions do not 
always succeed, motion capture data sets are commonly 
used in animation productions.  With predefined key frame 
animations and fixed sets of motion data, virtual characters 
lack adaptive abilities for dealing with different situations 
in a virtual environment. The attempts made to incorporate 
a layer of physical properties to motion data have the 
inherent difficulty as in physically-based animations 
[ZV03, DYP03]. To overcome the obstacles inherent with 
physical simulations, probability and statistical method 
was applied to learn motion patterns from various captured 
motion data sets [BH00].  

Recent novel approaches to create physically-feasible 
and adaptive character animations use artificial intelligence 
techniques to synthesize the motion controller embedded in 
the character’s skeleton structures [FV93, WT02, E05].  
One approach used evolution algorithms such as genetic 
algorithms [WT02, E05, GT95] and reinforcement learning 

[IBDB01] to generate individual motion behaviours for 
virtual characters. The choice of the algorithm embedded 
in the motion controller for the action-selection mechanism 
is crucial to the results of the animation. It is important that 
the chosen algorithm is able to generate realistic motions 
efficiently. Especially for real-time animations, the design 
of the control architecture plays a major role in gaining the 
performance of the algorithm.  

In this paper, we present two types of motion controller 
for generating virtual characters that can learn and adopt 
body kinematics motions in the similar way that humans 
learn how to perform movements, such as for walking 
based on observation, trial and error. Furthermore,
characters need to have the ability to generate motions that 
are unique and dependent on their experience. As in 
reality, our animation system embedded with the 
controllers generates motions for characters that have 
individual characteristics that distinguish each character 
from others. By incorporating such a type of learning 
behavior, the generated virtual characters are adaptive with 
evolving motion dynamics without the embedded 
underlying equations of motion.  

Section 2 of the paper relates our work to important 
previous work. In section 3, the construction of the 
character animation structure is introduced, which supports 
the underlying control architecture for the adaptive 
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animation.  Section 4 and 5 describe details of two types of 
AI controllers, namely, genetic algorithm controller and Q-
learning controller.  Experimental results on the two 
controllers are shown in section 6 and section 7 concludes 
our work and highlights directions of the future work. 
 
2. Related Work 

 
Synthesizing adaptive motions in the context of learning 
and evolution is based on the construction of a controller. 
A controller makes decisions based upon sensory 
information received or available and evaluates the 
outcome solution through a feedback scheme. Popular 
artificial intelligence methodologies are genetic algorithms 
[HOL75] and reinforcement learning algorithm such as Q-
learning [SB98].   

Genetic algorithms were used to model stimulus-
response pairs for the locomotion of 2D stick figures 
[NM93] and for improving sensor-actuator networks for 
stick figure motion [FV93]. An effective feedback control 
system was able to create virtual creatures with their body 
structures evolving in order to compete with each other in a 
virtual environment [SIM94].  The control system used GA 
to simulate morphologies and the neural systems for 
controlling muscle forces of the virtual creatures. A GA 
based approach was presented for virtual characters to 
learn physically based motion behaviors as an evolution 
process. The skill of the character to complete a predefined 
task can be developed and evolved through the experiences 
of performing the task [WT02]. As a reinforcement 
learning method, Q-learning algorithm was applied to 
generate action sequences for animated characters [SF04]. 
Based on an animation engine, a behavior engine used a 
script generator for selecting motions from a database and 
a characterizer for generating characterized motion by 
using evolutionary computation [NKL*04]. Using genetic 
algorithms, dancing motions for arbitrary songs with dance 
beats were automatically synthesized [ABB05]. A dynamic 
motion synthesis system was proposed to create interactive 
3D characters [BPW93]. 

GA and Q-learning have their own merit and drawback, 
thus when designing an efficient controller for adaptive 
animation, one must consider the merit and drawback of 
GA and Q-learning algorithms. As a controller designed by 
GA is a closed set feedback system that has limited 
external stimulus/response, the principle advantage is the 
efficiency of the simulation. On the other hand, Q-learning 
works by constructing a look-up table that is updated by 
evaluating the task performance of the character. 
Compared with GA, in the Q-learning algorithm external 
stimuli can be easily incorporated into the feedback system 
to generate environmental aware characters.  In the 
following sections, we present the control architecture and 
the implementation of our animation system. We 
constructed two types of controller, using GA and Q-
learning algorithms respectively. In order to gain insights 
into the efficiency of the controllers and to produce robust 

adaptive motion, tests are conducted with body kinematics 
for virtual characters.  

 
3. Character Animation Structure  

 
The animation structure needs to support the underlying 
control architecture. A character animation structure is 
created using a set of kinematic chains starting from the 
root to extremities. Motions of a character are stored as a 
series of transformations taking place in an animation 
sequence.  An articulated body skeleton is represented by a 
total of 17 joints as shown in Figure 1. The joint j1 is the 
base joint and the limbs are animated with rotation 
transformations relative to this base joint. The base joint 
requires a translation and a rotation. The transformations of 
the limbs are stored using a reference frame attached to the 
root of the corresponding kinematic chain (shoulder or 
hip). 

 
 

 
 

Figure 1: Animation skeleton. 
 
 

Each transformation is described with three values, 
corresponding to X, Y and Z axes respectively. The 
movement of the character is described by a set of 
animation frames. The controllers described in the 
following section utilize the skeleton structure by attaching 
a sensory node to each of the joints. Hence, the resulting 
adaptive animation is generated by a connected sensory 
network with feedback evaluation optimized motions. 
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4. Designing the GA Controller  
 
As shown in Figure 2, an evolution control module uses the 
learning algorithm to generate data for the motion 
parameters. The initial parameters are used by the motion 
generation module to calculate the values of 
transformations for each frame. The motion of each 
animation frame is appraised by the evaluation module 
based on the target task. A threshold is defined to estimate 
the error in the motion parameters and a feedback message 
is generated for the evolution control unit. The evaluation 
process is iterated until an optimal motion is found. 

 

 
Figure 2: Control Structure of system flow 

 
 
We design the joints of the skeleton as sensory nodes, 

with bones between these joints linked to form a sensory 
network. In the GA controller, the network is considered as 
a chromosome and the genes of the chromosome hold the 
values of the transformations of the joints.  Each separate 
chromosome constitutes a motion frame.  

The initial set of chromosomes is created randomly and 
using the natural selection scheme of the GA algorithm, 
only the fittest ones are kept after a sorting algorithm. A 
pairing strategy sets the pairs of chromosomes to be the 
parents that will generate offspring chromosomes for the 
proceeding iterations with a mating strategy. To allow the 
algorithm to converge more quickly to an efficient 
solution, a level of exploration is achieved by mutating the 
genes of offspring chromosomes.  

The new chromosomes need to be assigned a cost value 
and the total selection is then sorted. The feedback system 
evaluates the calculated total cost of all the used 
chromosomes. The fittest chromosome is passed to the 
motion generation module. The interaction process stops 

when the value of the cost is below a threshold and the 
motion held by the current chromosome is considered 
acceptable. Otherwise the iteration process continues. This 
feedback scheme is illustrated in Figure 3. 

Different strategies in a genetic algorithm can be used 
[HH98]. When creating the initial chromosomes, it is 
helpful to generate more chromosomes than required and 
keep the fittest ones after the initial selection. We keep 
50% percentage from the initial population. The cost 
function evaluates the learned data as in Equation 1. 

 

 
 

Figure 3: Design of GA process    
 
 

Cl is the learnt data, Co is the original data and Np is the 
total number of genes in a chromosome. Cost is also 
dependent on other outputs such as visual results of the 
motion and resulting body states if a physically based body 
simulation exists. 
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Rank weighted paring is one of the strategies that can 

be used to assign probabilities to the chromosomes by 
taking into account their cost. As shown in Table 1, each 
chromosome has five genes and the chromosome number 1 
has the highest weight. The rank weight Pn is calculated as 
follows: 
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Ng is the total number of chromosomes that have the 
weight above threshold and n is the total number of 
chromosomes in the system. 

 
 

Table 1. Rank Weighted GA pairing. 
n Chromosome Pn Cum. Pn 
1 1.5  2.1  0.4  4.2  2.1 0.4 0.4 
2 1.0  2.6  5.4  3.1  2.6 0.3 0.7 
3 1.2  1.1  3.2  2.4  3.8 0.2 0.9 
4 1.3  3.5  2.5  0.7  5.7 0.1 1.0 
 
 
For the crossover stage of the GA algorithm, points in 

the chromosomes are selected to swap the left and right 
adjusted parameters. In the following example, the left 
index is three and the right is four. The genes are 
exchanged and the offspring chromosomes are generated. 

 
 

Parent Chromosomes 
Parent1 = { p11, p12, p13, p14, p15,….. , p1N } 
Parent2 = { p21, p22, p23, p24, p25,….. , p2N } 

 
Offspring Chromosomes 

Offspring1 = {p11, p12, p23, p24, p15,….. , p1N } 
Offspring1 = {p21, p22, p13, p14, p25,….. , p2N } 

 
 
A Blending method sets values at genes by taking the 

parent’s related genes as in Equation 3. 
 
 
  )1(*][*][][ biMothbiFathiOffsp −+=     (3) 

 
 
where b is the blending rate.  
 
In our GA controller, the mutation rate is set as 0.05. 

Although mutation can frequently generate less valuable 
chromosomes it is the way for the algorithm to explore the 

state space. This is important especially when using small 
populations due to real-time constraints. 

The original animation of a walking sequence is created 
in Maya for the lower part of an articulated virtual 
character. The skeleton of the virtual character comprises 
of six joints: waist, pelvis, left and right hips and knees. 
For each of the joints there are a number of transformations 
on the three world axes X, Y and Z. The walking sequence 
consists of 25 animation frames. Therefore with a sum of 
24 transformations we can represent the walking motion 
data in frames. Specifically for a forward walk, we can 
decrease this number by creating a local world system and 
allowing a translation of the waist along two axes i.e. the z 
and y axes, and one rotation on the x axis for each of the 
hips and knees. This adds up to a total of six 
transformations.  

Each chromosome is designed with genes using per 
frame values of all the transformations so that a 
chromosome has 6 genes as shown in Figure 4. The total 
number of families of chromosomes is 25 representing the 
total number of frames. We create a layer of 25 
consecutively operating chromosome clusters. Each 
chromosome represents a value that adds up to the 
positioning that resulted from the previously accessed 
cluster.   

 

 
Figure 4: Walking motion chromosome  

 
  
The initial population is generated by allowing the 

values to come from a continuous space of a constant 
length. The length of the space is set to the maximum 
increment that occurs in the original motion data set. A 
relatively large initial population is created. Natural 
selection is set at the level of 50% in order to cause no 
influence of unexpected selections to the results of the 
tests. Thresholding is avoided, as it is vague to define a 
function that can modify the threshold value without 
affecting the results of the simulation. 

Figure 5 illustrates a sequence of adaptive process of 
the virtual character generated by our GA controller for the 
described walking motion. The skeleton on the right has 
the original motion data animated in Maya and the one on 
the left learns the motion through the GA controller. The 
number of feedback iterations for the images in Figure 5 is 
1, 3, 5 and 15 respectively. As can be seen, the adaptive 
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character performs close to the original motion data after 
15 iterations. 

 

 

 

 

 
 

Figure 5: Results of GA evolution in walking  
 

Tables 2 and 3 present the test results of using different 
pairing and mating combinations. N is the initial 
population, MI is the maximum allowed iterations and AC 
is the threshold cost value for a chromosome to be 
considered good. The values displayed are the average 
value of 25 trials for each test to ensure a stable outcome. 
With a large number of populations, the best result 
generated by cost weighted function using the blending 
strategy is highlighted in Table 3 as bold values. In 
comparison, with smaller number of chromosomes a 
different pairing strategy is needed to achieve optimal 
solution. 
 

Table 2. GA results for learning to walk. 
N=320, MI = 100, AC = 1.5 

              Mating
Pairing 

Crossover Uniform Blending 

 Steps Cost Steps Cost Steps Cost
Top - Bottom 76.55 1.83 68.01 1.75 25.61 1.40

Random 74.10 1.75 56.37 1.58 28.03 1.33
Rank Weighted 87.70 3.17 75.09 2.54 39.38 1.52
Cost Weighed 76.06 2.00 78.02 2.16 42.70 1.61
Tournament 74.23 1.86 58.95 1.74 32.72 1.48

 
Table 3. GA results for learning to walk. 

N=800, MI = 20, AC = 1.5 
              Mating
Pairing 

Crossover Uniform Blending 

 Steps Cost Steps Cost Steps Cost
Top - Bottom 19.01 2.06 18.70 2.01 13.30 1.42

Random 19.35 2.05 17.60 1.61 15.58 1.65
Rank Weighted 19.68 2.97 17.87 1.83 14.41 1.61
Cost Weighed 18.13 1.79 16.86 1.76 12.61 1.41
Tournament 18.63 1.90 16.16 1.95 13.73 1.50

 
 
5. Designing a Q-Learning Controller    

 
MIT [IBDB01] proposed the use of Q-Learning (QL) for 
adaptive synthetic characters. QL is an off-policy control 
Temporal Difference algorithm that describes a learnt data 
set in a look-up table that is updated by exploration. Drawn 
from our previous experimental results [TGW04], Q-
Learning is chosen for our RL controller for character 
motion synthesis. 

The major issue in the design of the QL system is how 
to represent a state-action space. For the state 
representation, each frame is assigned as a different state. 
Therefore, the state transition is deterministic and each 
state results in the state for the next frame. A set of discrete 
actions is defined representing the modifications in the 
transformation of the joints. To achieve accurate results, a 
real number in the space [0,1] is added to the value in order 
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to mimic the original data set. In this way we are able to 
use a small constant look-up table that helps the optimized 
performance in real time.  

 
 

 
 

Figure 6: Layers of the Q-Learning System   
 
 

The QL comprises of a layer of QL nodes each 
corresponding to the joint transformation as shown in 
Figure 6. For the walking example there are 6 QL look-up 
tables forming the evolving action-selection of the body 
motion for the character. The learned data in these nodes 
represents the motion solution for the virtual character.  

For each of the QL nodes, the algorithm begins at state 
0 and performs exploration and exploitation. When 
selecting an action, the related changes occur to the 
transformation values and the next state (frame) is visited. 
Each state holds a specific vector of values that are the 
transformation parameters. The Q-values are updated using 
Equation 4: 

 
Qt+1(Si, a) = Qt(Si, a) + α*δ*E(Si, a) (3) 

 
Here, α is the learning rate, δ is the Temporal 

Difference (TD) error and E(Si, a) is the eligibility traces 
value of the corresponding state-action pair. The TD error 
occurs when evaluating the condition of the resulting state 
and checking if the action was beneficial for the system or 
not. It is calculated as follows: 
 

),(*),( 1 aSQaSQr ii −⋅+= +γδ  (5) 
 

In (5) r is the reward, γ is the discount factor, Si+1 is the 
new state and a* the action chosen by the greedy policy. 

In the animation system, the number of states is 25 that 
being equal to the number of frames. For the translations 

we use a set of 11 actions presenting the values of 
translation on the axis. For the rotations we use a set of 40 
actions. Figure 7 shows the final learned solution for the 
adaptive character on the left compared with the motion of 
the original designed character on the right. 

 The parameters of the QL algorithm can change the 
performance. Based on results of our previous research we 
set the values of the learning rate α to 0.1 and the discount 
factor γ to 0.9. After 20 iterations with 20 steps per 
iteration, the algorithm converges to learn the walking 
cycle but with less accurate values for some 
transformations.  We gradually increased amount of steps 
and when equal to 40, the learning character performs with 
much high accuracy at all attempted trials.  

 

 
 

Figure 7: Results of QL evolution in walking 
 
 

6. Experimental Results 
 
In order to compare the two algorithms we measured the 
required time for the two different systems to learn the 
same animation data set. 

In Table 4 we compare the elapsed real-time of Q-
Learning and GA controllers. For the genetic algorithms 
the results in the previous section are used for the choice of 
pairing and mating methods used for the GA controller. As 
can be seen, the QL controller performs within an equal 
amount of time as the GA with a population N=500. 

 
 

Table 4. Elapsed time for the two algorithms. 
Method Parameters Elapsed 

Real-Time (ms) 

QL 20 iterations, 
40steps 

3620 

GA N=500 3520 
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The rate of learning of the two methods can be seen in 

Figure 8. In the flowchart we illustrate the error of the 
algorithms per iteration step. The error is defined as the 
numeric distance of the learned data compared with the 
original data. As shown in Figure 8.a, the GA system 
performs with more accuracy from the early steps of the 
simulation. QL starts with a big error and although it 
improves its performance through elapsed iterations, the 
accumulated error at the end of the 20 steps is 50% higher 
than that of the GA system. The values of the error on the 
20th step are 62 for GA and 96 for QL. 

Using the presented methodologies, we can generate 
walking movements that are based on the reference motion, 
but each one holds individual characteristics in movement, 
same as these that humans can adapt when learning to 
walk. 

 
Error in Learned data compared to original data
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Figure 8: Performance comparison of GA and QL 

controllers   
 
 

7. Conclusion 
 
We presented two types of control architecture for 
generating physically-feasible motions for virtual 
characters. Our system is capable of real-time animations 
for complex body kinematics without encoding the 

expensive physics equations of motion.   We conducted 
experiments on the use of the two proposed methods to 
gain insights into the most efficient and optimal control 
method for adaptive motion animations.  

Despite the GA controller being more efficient than the 
QL controller, the inherent reinforcement learning scheme 
of QL may be suitable for some applications that requires 
direct external feedback.  From the test results, both 
controllers can search for optimal motion solutions for 
real-time applications. Within a constant amount of time, 
the GA control architecture shows more accurate motions 
than the results of QL.  

Future work includes an investigation in incorporating 
sensory and muscle nodes into the skeleton design to 
achieve biomechanical feasible motions for virtual 
characters.  Example applications of such characters can be 
found in sports and physiotherapy for motion visualization. 
Moreover, it will be beneficial to create adaptive characters 
that can learn from hidden data by using visual 
information. Also further research can occur on the 
performance of the models as well. Amongst many 
interesting topics, seeding the population with possible 
good guesses and changing population size from 
generation to generation can also be further investigated.  
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