
Visual Analysis of Packing Process for 3D Container

Y. Yue, M. Middleton and J. Liu

University of Luton, UK

__

Abstract
The cutting and packing problem has been encountered in many industrial sectors, and become a research focus

in operations research. Because of its nature, it is a commendable goal to visualise the process of cutting and

packing for analysis and validation of the algorithms. This is even more desirable when working in a 3-

dimensional environment. There have been some visualisation packages for which the working algorithms are

hidden behind the screen. Furthermore, their effectiveness and flexibility are limited in some sense. This

research presents a visual analysis tool for 3-dimensional container loading. A new loading and display

algorithm is devised to suit requirements for container loading. Test results are given with recommendations for

further effort.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Display Algorithms

__

1. Introduction

The cutting and packing problem has plagued many

industries over the years. From warehouses to

manufacturing plants, the ability to optimise a packing or

cutting process can mean the difference between profit and

bankruptcy. Of the many analogies of this problem,

perhaps the easiest to follow is that of packing a car boot.

Assuming we have to transport many items of varying

shapes and sizes using a car, the order and placement of the

items when we load them into the car boot can greatly

affect the total number of journeys required to transport the

items. The ability to plan and visualise the loading process

could save time and effort and present an optimal loading

process, resulting in fewer journeys. The same process

could apply to a warehouse, which is attempting to fill

containers with boxes of varying sizes. The placement of

and order in which the boxes are loaded can greatly affect

the number of containers required to ship an order.

This paper provides a brief description of the cutting

and packing problem and investigates the current graphical

display options available. A visualisation program is

developed to depict and aid the analysis of 3D container

loading. The implementation and test results are presented

along with concluding statements.

2. Visualisation of the cutting and packing process

This section provides a review covering some of the

visualisation options available for the cutting and packing

problem. There are commercially available applications

which can be used to help optimise the process of loading

containers. For example, in the shipping industry, 3D Load

Packer [Ast06] and Cube-IQ [Mag06] are two of the

applications which are discussed in further detail below.

2.1 3D Load Packer

3D Load Packer (3DLP) is a simple application, created by

Astrokettle, which offers a number of functions to aid the

packing process of shipping containers. The software itself

allows the user to specify a single (or multiple) container(s)

and a list of one or more box-shaped objects to pack into

the container(s). Upon starting 3DLP, the user is presented

with a somewhat colourful interface (Figure 1). It is split

into three sections: container selection, box selection and

display of information about the current problem, offering

the options for solution. A number of preset containers and

boxes exist in a built-in database, which can be extended

with the addition of custom containers and boxes.

Figure 1: 3D Load Packer’s packed container view

Once the container and boxes have been selected, the

problem can be ‘solved’ and the optimal packing process is

calculated according to its built-in algorithm. Following

loading, the fully packed container can be viewed on

screen (Figure 2).

EG UK Theory and Practice of Computer Graphics (2006)
M. McDerby, L. Lever (Editors)

c© The Eurographics Association 2006.

http://www.eg.org
http://diglib.eg.org

Figure 2: 3D Load Packer’s packed container view

The packed container view offers by default, a

wireframe 3-dimensional representation of the container,

containing the boxes in their positions calculated by the

packing algorithm. Users are offered a number of

customisation options, giving many flexible types of view;

the container can be rotated and scaled to the user’s desired

position and size, colours can be cycled to assist in the

identification of boxes and boxes can be labelled in

position to aid further the identification process. The user

can also select the number of boxes to be packed – boxes

can be removed and added as per their load order, giving

the user the perceived ability of being able to “watch” the

boxes being loaded in their optimal positions. This process

can also be automated, requiring no user intervention

between steps.

However, its main display is rather confusing. When

displaying a completely filled container, the mishmash of

wireframe boxes can make the identification of boxes

difficult – and the box labels, also displayed in an effort to

help identification, appear to have the opposite effect,

making the display a mix of text and lines and fairly

difficult to look at. It is in this area that perhaps 3DLP fails

to provide the desired visualisation function – the packing

algorithm itself appears to perform remarkably but, when

viewing results, the user is left feeling somewhat confused

and unsure as to what is being shown. Another frustrating

part of this application is that boxes must be added to a

container one at a time, a process which can take quite

some time given the programs non-standard interface. It

can only cope with box-shaped objects.

2.2 Cube-IQ

Cube-IQ, developed by MagicLogic, is a more advanced

application than 3DLP, offering many functions to adjust

the final visualisation and provide the necessary

information. The main program interface (Figure 3) itself is

similar to a Microsoft Office application, and most sections

are instantly recognizable. A small preview window is

provided to show the progress of adding boxes to a

container – this small preview can then be expanded to

provide a more comprehensive view, covered in detail

below. This application also offers the ability to pack

cylindrical and ‘sofa’ shaped objects – obviously aimed at

the shipping industry and the various awkwardly shaped

packages that may need to be shipped.

The main interface is intuitive and clearly labelled,

allowing for the easy set up of one or more containers, each

containing one or more boxes. Box properties, such as

dimensions and colour, can easily be modified, and boxes

can be added in varying quantities. An optimise button

provides access to the packing algorithm, which checks the

various packing options and returns the most efficient

packing order and placement. This result can then be

viewed as a packing plan (Figure 4).

Figure 3: Cube-IQ’s main interface

Figure 4: Cube-IQ’s packed container view

The default packing plan interface provides a colourful,

solid, 3-dimensional representation of the packed

container. Boxes can be added and removed as per their

load order and, by moving the mouse pointer over a box, a

small label will appear identifying the box. Other view

options include the ability to jump to various preset views

– orthographic left, front and top views can be selected, as

can a four-way view looking at the container from all four

corners (Figure 5). Another interesting feature is the

explode option, allowing the boxes to explode beyond the

container, giving an easier impression of how the boxes

will interact with each other in the final packed container

(Figure 6).

Y. Yue, M. Middleton, and J. Liu / Visual Analysis of Packing Process for 3D Container

c© The Eurographics Association 2006.

188

Figure 5: Cube-IQ’s quad view

Figure 6: Cube-IQ’s explode view

Further options include the ability to view the packed

container in wireframe (as per 3DLP), and a ‘ghost’ option

which draws the packed container using transparent

materials, giving the ability to see through and behind

boxes – the results are somewhat disappointing however,

and perhaps as confusing as the wireframe view, if not

more so.

While Cube-IQ provides a graphically-impressive

display of the packed container, access to the individual

box details (such as their position within the container, or

specific load order number) are hidden away separate from

the graphical view. This forced switching between

windows to correlate information between the box list and

graphical view is rather tedious, and something which

should not have been overlooked when the application was

being developed.

2.3 Summary of review

Both 3DLP and Cube-IQ offer similar functions in

differing fashions. 3DLP’s approach is somewhat

simplistic, but this simplicity leads to a smoother and

quicker packing process, resulting in quicker displays of

the packed container. Cube-IQ, conversely, provides extra

functions and usability, at the cost of speed. Both

applications come with hefty price tags, and the underlying

algorithms of the software, which perform the actual

packing optimisation, are closely guarded secrets of the

developers.

3. The cutting and packing problem

The cutting and packing problem affects two separate

areas: cutting applications (such as the manufacturing

industry, where the optimisation of the use of materials is

imperative) and packing applications (such as the shipping

industry, where the use of space is equally imperative). It is

also possible to separate the cutting and packing problem

into two domains: 2-dimensional and 3-dimensional

packing problems. This research examines visualisation in

the 3-dimensional domain.

3.1 3D packing

We shall look at the packing of cuboid shaped objects into

cuboid shaped containers. In the real world, awkwardly-

shaped items, such as cylinders or spheres, may need to be

packed into equally awkwardly-shaped containers.

However, these types of packing problems are too

complicated for this research in terms of the packing and

optimisation algorithms, and we will only discuss the

packing of cuboid shaped objects, i.e. boxes.

When packing a box into a container, a number of

factors must be taken into account. Perhaps the most

obvious factor to consider is whether the box will fit into

the container – that is, the box’s dimensions can be less

than, but no more than the container’s dimensions.

Depending on the box dimensions, it may be possible to

arbitrarily rotate the box, in order to make the box fit. This

process could be seen as mapping the box dimensions to

the different dimensions of the container. A box may be too

tall to pack vertically into a container, but by placing the

box sideways (mapping the box’s height to the containers

length), packing may become possible.

A restricting factor of packing a container is the box

weight. Certain containers may not be suitable for heavy

boxes, and conversely certain containers may not be

suitable for light boxes. Containers may also incur a cost

for use and, of course, multiple containers will increase

these costs further.

Another, often overlooked, factor which can affect the

packing of a container is the way in which it must be

packed. Generally, large shipping containers are packed

from one end – boxes are loaded in one end and placed at

the opposite end of the container. However, it is more than

possible that a container may need to be packed from the

top down, or have some other specific loading

requirements.

3.2 Packing strategies

There are various strategies that can be undertaken when

packing a container. Possibly the most obvious packing

strategy is the first-fit strategy. This strategy will rank

firstly all boxes in decreasing order of volume, or by edge

dimension of the boxes. It will then pack boxes into a

container until the next box will not fit [GR81, JCH00]. At

this point the container is sealed and a new container is

used to continue the packing. This clearly could lead to a

large amount of wasted space – the box selected to pack

which does not fit may be a large box. It is more than

Y. Yue, M. Middleton, and J. Liu / Visual Analysis of Packing Process for 3D Container 189

possible that there may be smaller box(es) that will fit into

the remaining space.

Another strategy can be thought of as a best-fit strategy

[Pis02]. Boxes are also packed in their order of edge

dimension – the largest possible box is packed first,

followed by the largest box that will fit into the remaining

space, and so on. The best-fit strategy is always to find the

best-fit box to be packed into the next remaining space

wherever possible. Depending on the boxes to be packed,

this strategy can lead to better results than the first-fit

strategy.

4. Development of the visualisation program

As discussed previously, visualisation software is available

to help display and analyse the process of packing.

However, these software packages invariably come with

high price tags and working algorithms hidden behind the

screen, and for this reason, it is proposed that a new

software package is created, using a packing algorithm

devised by the authors. The development of this software

package is discussed below.

4.1 Requirements

The software itself will provide an easy interface to allow

the selection of containers and boxes to pack, with the

ability to view a 3-dimensional representation for the

process of packing the container. The 3-dimensional view

should provide the user with the necessary information

required to identify boxes and their loaded positions within

the container.

The visualisation should provide access to a number of

view options, giving the ability to view the packed

container from any angle and zoom in/out as required. The

ability to view the packed boxes and their respective order

should also be given, to aid in the identification of the load

order of boxes.

4.2 The packing algorithm

The main packing algorithm itself requires some

development. For the discussion of development, we

consider the packing of one container, though applying the

algorithm to more than one container should not present a

problem. It is based upon a best-fit strategy.

A given set of n boxes is packed into containers, having

length, width and height (cl, cw, ch). Each box is

characterised by its dimension properties (bi
l, bi

w, bi
h), i = 1,

2, …, n. All boxes are required to meet the following

constraints:

1) The dimensions of boxes must satisfy:

max{(bi
l, bi

w, bi
h)} ≤ max{cl, cw, ch}, i = 1, 2, …, n.

2) Boxes are packed into a container orthogonally that

provides lateral support to the boxes without

overlapping.

3) Overhang is allowed provided the stability of the box

is maintained, i.e. the bottom surface of the box is

sufficiently contained within the top surface of the

box below it.

4) Boxes can only be packed along one edge of the

container, from the far side to the near side and from

the bottom to the top.

5) All boxes can rotate in the three orientations.

The objective is to obtain the maximum volume

utilisation of the container. The algorithm begins by

gathering the properties of the container which is to be

packed - the dimensions of the packing space with packing

boxes, not the container dimensions. This packing space

can be conceived as a large, single space. Once these

properties have been recorded, the algorithm can begin

selecting boxes to pack.

The boxes to be packed into the container, held in a

box-list, in the decreasing order of their volumes, have

several properties: length, width, height, weight and cost.

For the time being, the algorithm will be concerned only

with the dimension properties of each single box (bi
l, bi

w,

bi
h). The algorithm searches through the box-list for the

largest box which will fit into the given space

(remembering to check the various rotations of the box).

The largest box is packed in the direction of its largest

section surface into the given space. Once the largest box

has been identified, it is allocated a position within the

container (in the case of the first box, at the far corner of

the container).

Once a box is packed into the container, the space

available is reduced. It can be conceived that the large,

single space of the container has been split into two

sections. The first section occupies the space that contains

the packed box, having the length of the box, called the

current space (b1
l, cw, ch) and, the other represents the

remainder of the container space ((cl - b1
l), cw, ch) (Figure

7). If any boxes of the same height as, and a similar length

to the first packed box, are found from the box-list, and

packed into the current space on the container floor; then,

the current space is further split into two sections: the

upper remaining space (b1
l, bw, (ch-b1

h)), bw being the total

length of boxes packed, and the front remaining space (b1
l,

(cw - bw), ch) (Figure 8a). Otherwise, the current space is

directly split into the upper remaining space (b1
l, b1

w, (ch-

b1
h)) and the front remaining space (b1

l, (cw – b1
w), ch)

(Figure 8b). The remaining spaces are considered in turn,

in the order of the front, the upper and the right spaces.

b1w

b1l

b1h

cl

cw

ch

Figure 7: The space split of the container

Y. Yue, M. Middleton, and J. Liu / Visual Analysis of Packing Process for 3D Container

c© The Eurographics Association 2006.

190

bw

b1l
cl

cw

ch

a)

b1w

b1l

b1h

cl

cw

ch

b)

Figure 8: The remaining spaces after boxes packed

This procedure of packing and splitting is repeated

iteratively until no further boxes can be packed into any

remaining space.

During the packing procedure, boxes which cannot fit

into the container should be ignored, or added to an

‘unpackable’ list, to be dealt with later on. Some pseudo

code for the proposed packing algorithm is shown Figure 9.

4.3 The implementation

The program is implemented using the C# language,

and the TAO .NET framework [TAO06] to give access to

OpenGL [Ope06] functions. The main form provides

options to select containers and boxes to pack, including

the ability to adjust a box’s dimensions and colour. Boxes

can be added in multiple quantities, as required. Once the

container and boxes have been selected, the program will

solve the packing problem while displaying the process. To

allow visual analysis of the packing process, the program

has incorporated the following features. The packed

container view displays a white wireframe box to represent

the container with a black background. Boxes are

represented by cubes of varying colour, which is scaled to

match the relevant box dimensions. The main display can

be rotated and scaled to give a zoom effect, using the

mouse. Accompanying the display is a list of the currently-

packed boxes. Each box can be highlighted by removing

the surrounding boxes, and boxes can be removed and

added to the container, as per the load order. This process

can also be automated, viewing the container as it gets

packed over time. All of the information remains separate

from the container display, keeping a consistent and clean

feel to the visualisation.

5. Testing of the program

The software has been created and developed as specified

above. The main application interface (Figure 10) provides

the container and box options necessary to specify a

packing problem. Multiple containers can be added to a

problem, and multiple boxes can be added to any container.

The container options (Figure 11) allow the user to select

either a pre-defined container, or enter their own details,

specifying the dimensions.

Figure 9: Pseudo code for the proposed packing algorithm

set_initial_container_list //Initialise with target container

while container has usable space

 get_container_to_fill //Get next container from list

 for each box in boxlist

 find best-fit box //Find best-fit box for container

 pack_box

 partition_remaining_space //Split container into two sections

 add_containers_to_list //Add sections to container list

 for each box in box_list

 find best-fit boxes with the same height

 pack_box

 partition_remaining_space //Split container into two sections again

c© The Eurographics Association 2006.

Y. Yue, M. Middleton, and J. Liu / Visual Analysis of Packing Process for 3D Container 191

Figure 10: The main interface

Figure 11: Container specification

Box options (Figure 12) include the ability to select a

pre-defined box or enter a custom box. The colour of the

box can also be adjusted if necessary (colours are randomly

generated otherwise). Finally, the packed container view

(Figure 13) shows, by default, a side-on view of the packed

container. This view can be rotated and zoomed using the

mouse, giving the ability to view the container from any

angle.

Figure 12: Box options

The view interface itself is very intuitive – rotation of

the container appears fluid and natural. The ability to view

from any angle leads to some practical views of a packed

container (Figure 14). Individual boxes can be highlighted

by selecting the relevant box from the list on the right –

this option actually switches all but the selected box to

wireframe mode, making easy identification of the selected

box (Figure 15). By using the box control buttons, boxes

can be added to the container as they would be loaded,

giving the impression of loading the container over time

(Figures 16-18).

Figure 13: Default packed container view

Figure 14: Rotated packed container view

Figure 15: Highlighted box

The algorithm itself performs admirably given its

simplicity with acceptable results (Figure 19) and in some

case with very encouraging results (Figure 20).

Y. Yue, M. Middleton, and J. Liu / Visual Analysis of Packing Process for 3D Container192

Figures 16-18: Adding boxes by load order

6. Concluding remarks

The software implemented from the algorithm is a

successful venture into the cutting and packing problem.

Although the terminology refers to packing a container, the

same results could easily apply to a cutting process.

Although successful, the results are not entirely optimal,

and the algorithm will require attention in order to achieve

optimisation.

The display of the packed container was an overall

success. The display is not cluttered with box-related

information, and individual boxes can easily be highlighted

as needed. The software gives an equally impressive

impression as the 3DLP and Cube-IQ programs mentioned

previously, without the clutter or confusing options.

Figure 19: Smaller problems give feasible results

Figure 20: Complex problems give questionable results

In all, the software could benefit from some slight

improvement – perhaps redesigning the form layouts to

improve readability, and implementing keyboard shortcuts

for view controls. Another possible area that could benefit

from some attention is that of the box appearance. The

software uses solid colours, generated at random during the

box creation, for shading and representing the box in the 3-

dimensional view. By implementing some textures into the

boxes, the final display could be improved further.

References

[Ast06] AstroKettle.:
http://www.astrokettle.com

[JCH00] Jiang Y. D., Cha J. Z., He D. Y.: Research on

loading rectangular freight into a container. J. of the

China Railway Society (2000), vol. 22, no. 6, pp. 13-18.

[Mag06] MagicLogic.:
http://www.magiclogic.com

[Ope06] OpenGL.: http://www.opengl.org

[Pis02] Pisinger D.: Heuristics for the container loading

problem, European Journal of Operational Research,

(2002), vol. 141, no. 2, pp. 382-392.

[GR81] George J. A., Robinson D. F.: A heuristic for

packing boxes into a container, Computers and

Operations Research (1980), vol. 7, pp. 147-156.

[TAO06] TAO .NET Framework.: http://www.mono-

project.com/tao

Y. Yue, M. Middleton, and J. Liu / Visual Analysis of Packing Process for 3D Container 193

