
Visualisation of DNA - Does the Soul Have a Picture?

M. Middleton and Y. Yue

University of Luton, UK

__

Abstract

Although there has been a great deal of research on DNA, DNA visualisation has been long overlooked. This paper studies

current techniques for 2-dimensional and 3-dimensional DNA visualisation and other relevant areas such as music and

fractals. The paper then presents a new approach to displaying DNA data. An algorithm is designed and implemented with

OpenGL to manipulate and display unique DNA strings. Unique colourings are applied to each part of the string. The output

is customised and offers the option to animate the DNA string over time. The results are examined and future areas of work

recommended.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Display Algorithms

__

1. Introduction

Computer visualisation is a growing area of research, with

advances in higher resolutions, real-time rendering and

application specific simulations. DNA visualisation is an

exciting and complicated part of computer visualisation -

from the recognisable two-dimensional printouts seen in

courtrooms and television programs, to the more common

three-dimensional representation of a corkscrew type

entity. Whilst both of these forms provide acceptable

effects of visualisation and represent the required data well,

little work has been under taking in creating a more

aesthetic visualisation of DNA. As we know, the amount of

information held on human DNA is massive, and if applied

to the correct algorithm, could provide an image, or set of

images, uniquely from the DNA data.

This paper reviews current work on DNA visualisation

and other relevant areas such as music and fractals. The

paper then presents a new approach to displaying DNA

data. An algorithm is designed and implemented with TAO

OpenGL [TAO05] to manipulate and display unique DNA

strings. Unique colourings are applied to each part of the

string. The output is customised and offers the option to

animate the DNA string over time. The results are

examined and future areas of work recommended.

2. A literature review

This review examines the background information required

for DNA visualisation and related research.

2.1 DNA

DNA (Deoxyribonucleic acid) which was first discovered

in 1869 by a German chemist named Friedrich Miescher, is

a substance contained in the nucleus of all cells within a

living organism. Miescher believed that he had discovered

a new biological substance, which he called ‘nuclein’, later

becoming ‘nucleic acid’ because of its acidic properties. It

was 50 years later that another biochemist, P.A. Levene,

determined that DNA consisted of substances known as

‘bases’. These bases can be split into two groups – purines

(adenine (A) and guanine (G)) and pyramidines (thymine

(T) and cytosine (C)) [RJ05].

In DNA, the purines and pyramidines are connected

with hydrogen bonds. It is important to note that a purine

must be bonded with its associated pyramidine – more

specifically, A must be bonded with T and G with C.

These bonds are referred to as base-pairs (bp). The fact that

each purine must be bonded with its associated pyramidine

means that should the DNA be damaged, replication could

repair the damage. The DNA substance obtained from an

organism can contain millions of base pairs (the DNA of

the bacterium N. meningitides contains approximately 2.2

million bp, human DNA in excess of 3 billion bp

[WWFT03]), which when gathered together make up what

is known as a ‘genome’. This sequence is the ‘blueprint’

for the organism in which it is contained. Ridley describes

the enormousness of DNA in a more appealing way in his

book “Genome”:

“This is a gigantic document, an immense book, a

recipe of extravagant length, and it all fits inside the

microscopic nucleus of a tiny cell that fits easily upon the

head of a pin” [Rid00].

The genome for any organism can also be broken down

further into chromosomes, a collection of base-pairs which

can vary in length, from a few hundred bp to several

thousand or million bp. An organism is made up of a set

number of chromosomes (human DNA, for example,

contains exactly 23 chromosomes), and one extra or one

less chromosome can lead to mutations and diseases –

indeed, it is now known that downs syndrome is caused by

the manifestation of an extra chromosome [Rid00].

The Human Genome Project (HGP) which aims to

identify all the genes contained within the human genome,

came about from work carried out by Alfred Sturtevant in

1911. Sturtevant realised that he was able to note down and

map the locations of certain genes of the fruit fly [Hum05].

It is hoped that all the genes in the human genome may be

mapped out – their lengths, locations within the DNA

string and function - and have been able to identify that

EG UK Theory and Practice of Computer Graphics (2006)
M. McDerby, L. Lever (Editors)

c© The Eurographics Association 2006.

http://www.eg.org
http://diglib.eg.org

there are somewhere between 30,000 and 40,000 separate

genes.

2.2 DNA sequencing

DNA sequencing is a technique used to gather the

information contained within a DNA string. The first and

most basic technique for DNA sequencing was developed

by Frederick Sanger in 1975 [Pot96]. Sanger’s technique

involved attaching fluorescent markers to nucleotides,

allowing replication to take place, and running the sample

through electrophoresis gel which sorted the sample and

displayed the nucleotide positions. This gel can then be

analysed with a computer, and the fluorescent marker

positions can be stored. The sequence of marker positions

gives us the raw DNA string sequence. The sequence

would look to the human eye as just a random series of

letters (‘GTCCGATACGTTA…’), but as an entire word,

this sequence contains an immense amount of information.

For example, imagining the human genome to contain

exactly 3 billion bp, which is to be stored as a simple

ASCII text file on a computer hard disk, the file would be

approximately 2.79 Gb in size. This sequence is only one

side of the genome, or half of the base pairs, so a full raw

DNA data string for the human genome will double this

figure, taking it to well over 5.5 Gb of space.

2.3 DNA visualisation

A notable amount of DNA visualisation work has been

used in areas trying to compare DNA strings. For example,

DNA pattern matching is used in forensic science labs for

police forces across the world. One such way is that

developed by Gibbs and McIntyre [GM70], a 2-

dimensional scatter graph like view. It works by comparing

two sequences, and if the sequences match, a dot is placed

at the predefined coordinates on the plot area. If the final

output produces an unbroken diagonal line, it can be

considered a match by the user. Although much work has

been done through the years to improve the accuracy of

this sequence matching, little has been done to make the

output more pleasing to the eye. The sequence of dots can

be confusing at first sight and in the case of forensic

evidence used in court, any doubt must be avoided.

One 3-dimensional visualisation of DNA is the common

double helix view. It displays the base pairs along a line

which resembles a stretched and twisted ladder. This view

is in fact what the structure of a DNA molecule looks like.

The British chemist Rosalind Franklin carried out work

using X-ray diffraction methods to analyse the structure of

a DNA molecule. She suggested the structure to be that of

a helix or corkscrew, and further work by James Watson

and Francis Crick in 1953 confirmed this suggestion

[RJ05]. If there are over 3 billion base pairs in human DNA

[WWFT03], this ‘ladder’ is immensely long and twisted.

Work carried out by Herisson and Gherbi [HG01], looked

into predicting the twists and turns made by the DNA helix,

and analysing the spatial properties of a DNA sequence.

They built on Bolshoy et al’s figures of ‘wedge angles’

(each base pair in the sequence being a wedge) [HG01]. By

analysing the raw string sequence of letters, 2 letters at a

time, the 16 combinations of letters lead to 16 various

angles of trajectory, which the wedge points toward.

Herisson and Gherbi [HG01] created a software tool,

ADN-Viewer, which could display the 3-dimensional

representation of a DNA sequence at various detail levels –

the view can consist of any finite number of base-pairs, and

provides a realistic and accurate view of the physical

structure of the DNA sequence. However, when a large

sequence is displayed as a whole, comparisons between

data sets would be more than difficult, given the volume of

information contained in the view.

Another, more recent, and perhaps more relevant

example of DNA visualisation, is the work carried out by

Wong et al [WWFT03]. Their approach works by feeding

in raw genomic data, and displaying the string on screen as

a sequence of pixels. Each letter representing the purines

and pyramidines is allocated a colour and the string is

literally printed on screen. The result was a flat, almost

random display of pixels of various colours. They then

applied a number of digital imaging techniques to the

images, such as applying a Gaussian blur, and adjusting the

various colour component values. By applying these

techniques, they were able to produce some rather eye

pleasing images – certainly much more pleasing than the

common 2-dimensional dot representation described above.

However, these results did not provide the spatial

information obtained from Herisson and Gherbi’s method –

indeed, Herisson writes: “… it appears essential to design

software tools focused on the representation, visualisation

and interactive exploration of the three-dimensional

information of DNA” [HG01].

It is worth pointing out, that all of the above described

techniques are static images. We have seen that DNA can

be displayed as a 2-dimensional representation as a dot

scatter plot, or coloured pixel array, and the 3-dimensional

visualisation of DNA which resembles its physical

structure. As we know, DNA is made up of an immense

amount of information, so why not add a fourth dimension,

time, based on this information. As DNA data describes

how organisms are created, grow and evolve over time, can

we not create, grow and evolve the visualisations that we

get from the data?

2.4 Other related visualisation

Another relevant area about 2-dimensional and 3-

dimensional visualisations is in the realm of music

visualisation. As online Internet use expands and the

downloading of music becomes more popular, more and

more people are starting to use their computers as media

players. There are several popular media players for PCs:

MS MediaPlayer, RealPlayer and Winamp [Win06]. They

each have their own features, some supporting different or

exclusive file types, and all offer the ability to display

visualisations. The player with the most flexibility towards

these visualisations is Winamp.

Winamp was created by Justin Frankel in 1997

[Win06], starting off as a simple MIDI and MP3 file

player, which has continued to grow by adding more and

more features and options. One such feature is the ability to

program plugins, allowing not only the real-time rendering

of 2-dimensional and 3-dimensional visualisations, which

move and react in time to the current playing media file,

but also the ability to change other areas of the core

program, in a truly object-oriented way. By downloading

M. Middleton and Y. Yue / Visualisation of DNA - Does the Soul Have a Picture?

c© The Eurographics Association 2006.

180

the small software development kit from the homepage,

users can program their own plugins to change the look and

operation of Winamp using C++.

An early 2-dimensional visualisation plugin made

available, was ‘Geiss’, programmed by Ryan Geiss

[Rya06]. It displayed the image of a single 2-dimensional

line, which bounced and reacted to the various frequencies

of the playing music. The effect was similar to an oscillator

with a high release time (or ‘slowed’ effect), which when

viewed over time, seemed to be moving in time with the

sound. By analysing the output frequencies of the playing

sound, the line could be moved, as well as changing colour

or applying a warped effect, all in real-time. The plugin

proved to be popular with Winamp users, with over 3.2

million downloads of its current iteration ‘Geiss 4.24’ to

date, and spawned a number of similar visualisation

plugins by other programmers. Ryan Geiss has continued

to work on a number of other visualisation plugins:

‘Monkey’, which generates an adjustable, moving 3-

dimensional cave based on the sound played; ‘Smoke’,

which generates 3-dimensional smoke, based on the sound

played; ‘Drempels’, a project to allow more customisation

of a Windows desktop; and ‘Milkdrop’, another Winamp

plugin which has a similar function to Geiss. All of these

visualisations display their images based on the current

media file; it could be seen as displaying a moving image,

uniquely based on that media file.

2.5 Fractals

When discussing computer visualisations in relation to

their visual appeal, one of the most fascinating areas is that

of fractals. In terms of computer graphics, the various

geometric methods used to describe an object become a

factor. Euclidean geometry for example describes cuboids,

pyramids, etc. but does not offer an option for natural

objects. “… natural objects, such as mountains and clouds,

have irregular or fragmented features, and Euclidean

methods do not provide realistic representations for such

objects” [HB04].

DNA in its very essence is a natural object and one of

the alternative ways of displaying or applying its data

might be through the use of fractal-geometry methods. A

good way to describe how fractals work is to use the

example of a mountain. When viewed from a distance, a

mountain can be seen to have a jagged edge. If we were to

zoom in on the mountain, a closer view would reveal that

the mountain has a more detailed jagged edge. This

zooming can continue indefinitely, each zoom revealing

more detail, whilst still retaining the detail obtained from

previous zooms. This all seems rather complicated, but the

visual results obtained from fractals, are quite simply

stunning.

Fractals can be obtained by applying a function on an

initial point. We then repeat the function on that point, each

iteration revealing more detail. Depending on the function

used, a number of types of fractal can be obtained; self-

similar fractals, fractals which are made up of varying

sizes of the original object, often used to model vegetation,

such as fern leaves or trees; self-affine fractals which apply

various scaling factors to various parts of the image with

the ability to add random factors, often used to model

terrain, mountains, clouds and so on; and invariant fractals,

created using self-squaring functions, often giving the most

artistic, ‘eye-pleasing’ results [HB04].

The well-known fractal image is the one identified by

Benoit Mandelbrot after researching the effect of a

modified, self-squaring, z2 transformation on a set of points

[HB04]. A series of points were found to not be affected by

the function; these points and their relative positions are

now known as the Mandelbrot set. By applying various

colouring techniques and animation to these points, it is

possible to zoom in on part of the detail of the set and keep

zooming ad infinitum – no detail will be lost and after a

continued zoom period, the user gets the sensation that the

image is simply repeating itself.

2.6 Summary of review

Having reviewed the literature available on the above

topics, a number of facts have become apparent. Whilst the

area of DNA visualisation has been explored to some

extent, there are still a range of options and possibilities

which have not been investigated. It is time that the area of

DNA visualisation was merged with some other

visualisation areas, in order to create newer ways to view

complex data. By merging some techniques from above –

the 2-dimensional scatter graph view for example, with the

theory behind music visualisation and fractals, we could

create an ever-changing image, representing the

information in the DNA. This could be a new and exciting

way of viewing DNA, and offer the chance to show

interesting results.

3. Development of the DNA visualisation algorithm

An algorithm, called DndisplA, has been designed and

implemented. In order to understand how the DNdisplA

algorithm works, it is first necessary to understand how

each DNA string is manipulated.

Within the algorithm, a DNA string is given a width and

height value when it is created. As well as defining the

output resolution of the final visual display, these values

also define how the DNA string will be stored. The DNA

string itself is read and split into individual characters (a

DNAChar). The individual DNAChars are added to a 1-

dimensional array, representing a line of the string (a

DNALine). Each array has a maximum dimension equal to

that of the string width. Finally, an array is declared to hold

a number of DNALines, with a maximum dimension equal

to the height of the DNA string (a DNAString).

Each DNAChar is stored with a number of properties.

Each character is given a colour value, pre-determined by

the character which the DNAChar represents (“A” = Red,

“G” = Green, and so on). Each character is also given a

colour weight value, again, pre-determined according to the

character represented. Finally, each DNAChar is assigned a

position. Once a DNAChar is created, it is added to a

DNALine, and its position updated to reflect its location

within the DNALine array.

DNAChars also house several methods which can be

used to affect changes on the characters colour, or return an

integer value. An important method, is that to apply the

colour weighting to the DNAChar. As previously stated,

each DNAChar is defined with a colour weight; by passing

M. Middleton and Y. Yue / Visualisation of DNA - Does the Soul Have a Picture?

c© The Eurographics Association 2006.

181

this colour weight to another DNAChar, we can discreetly

adjust the colour value by adding the colour weight value

to it. It is also possible to return an integer value which

represents the character itself (“A” = 1, “G” = 2, and so

on).

The appropriate number of DNAChars is added to a

single DNALine. Each DNALine has a number of

properties and methods, which, once again, can be used to

affect changes on the line. The first, and perhaps most

interesting method, is that to generate a search string from

the line. As you may recall, each DNAChar can invoke a

method to return an integer value. By using, for example,

the first five DNAChars in each DNALine, we can return a

string of variable length from a position within that line,

based on the integer equivalents of the first five

DNAChars. This string of a variable length can then be

stored within the DNALine object for later use. Obviously,

different DNALines will generate different strings,

depending on the characters and their integer values used to

generate it.

Another interesting method within the DNALine object,

is the method to translate the DNALine data, using which

we can translate the individual DNAChars along the

DNALine, wrapping the DNAChars to the opposite end of

the array as required. When DNAChars are translated, their

position values are updated to reflect their new position

within the DNALine. Finally, each DNALine can also

invoke a method to find an instance of a string within the

DNALine. All of these methods play a great role in the

sorting method, which is found in the DNAString object

explained below.

The DNAString object is used to house the DNALines

which make up the string. This object houses the main

sorting method used to adjust the string. Each time the

method is called, it is passed an iteration value, which is

equal to the number of times the method has been called

before. The process carried out is quite complicated, but

subsequent iterations of the algorithm will always apply

new changes to the string. Every time the algorithm is

applied, the positions of the DNAChars within the string

are changed. This in turn will ensure that the next time the

algorithm is applied, new search strings will be generated

by each DNALine, in turn resulting in a different resultant

string. The process the algorithm carries out is outlined as

follows (Figure 1).

Figure 1: Pseudo code of the algorithm for DNA visualisation

For example, assume we are given a small DNA string

of 500 characters. We allocate the DNA string a width and

height value (100x5), before reading the individual

characters into DNAChars and adding them to a total of 5

DNALines of length 100. These DNALines are then added

to the final DNAString object. An example DNALine may

be as follows.

DNAChar: G T T A C A A C T G G T A G A G C C

T G G G A A G C T T C G A …

Position: 1 2 3 4 5 6 7 8 9 …

We can now generate a search string using this

DNALine. For the purpose of this example, we can assume

that the character values are as follows: A = 1, C = 2, G = 3

and T = 4. By using, for example, the first three characters,

we can generate a position within the line

A + C + T = 1 + 2 + 4 = 7

We then use, for example, the next 4 characters to

generate a length for the search string

A + G + T + T = 1 + 3 + 4 + 4 = 12

We can now extract the search string from the DNA line

using the position value along with the length value

(starting from position 7, with length 12)

search_string = “A C T G G T A G A G C C”

This search string can now be used to search through

other DNALines for appropriate matches. Where matches

are found, the data can be translated to line up with other

instances of the string. Once the search and translation has

been applied, the colour weights can be adjusted

throughout the string, before re-applying the algorithm on

the next line. As each line is searched and translated, the

characters are constantly switching positions. This results

in a new search string being generated each time the search

string method is applied.

for each (DNALine in DNAString)

 //First we search the current line for the search string from the next line

 //If we find a match, translate data so the matching strings line up

 get current_line

 get next_line //based on iteration value

 get next_line.search_string

 look for next_line.search_string on current_line

 if(matchfound)

 current_line.translate_data()

 //Next apply colour weighting to each DNAChar. Use the colour weights from

 //next_line’s DNAChars

 for each (DNAChar in current_line)

 get current_char

 get next_line_char

 apply current_char.colour_weight using next_line_char
 store result

M. Middleton and Y. Yue / Visualisation of DNA - Does the Soul Have a Picture?

c© The Eurographics Association 2006.

182

4. Testing of the DNA visualisation program

Due to the inherent randomness of DNA, it would be

impossible to run all test cases of DNA with the program.

Also, as little work has been done in this area, there are no

test cases with results can be compared. A number of tests

are run to ensure that the program runs correctly and

produces images unique to a particular string. The same

images should also be produced when the string is reloaded

and the algorithm reapplied. Testing is also carried out to

look for interesting behaviours from the algorithm with

certain preset files.

The tests are conducted on a Pentium 2.6 GHz PC with

1 Gb RAM and an NVIDIA GeForce 5200FX Graphics

card. The test data sets are generated applying certain rules.

Test files are created and used to validate the program. The

test runs and their results are presented below.

4.1 Test on DNA string with random data (100x100)

A 100x100 random data set (TEST_100x100_Randon.dna)

is created by assigning the values (e.g. 1, 2, 3, 4 for A, C,

G, T respectively) randomly to the data items in the DNA

string. In this test, the same DNA string is loaded into the

application twice, and the same number of algorithm

iterations are pre-applied. In each case, four images are

generated - the first two images are represented in point

and line after 100 iterations, and the last two in polygon

after 100 and 217 iterations, respectively (Figure 2). The

images can be compared with their counterparts to ensure

that the same string produces the same output each time.

a) After 100 iterations: With points as the draw style, no

noticeable patterns or areas of interest are apparent

b) After 100 iterations: With linestrip as the draw style,

prominent bands of colour are seen on the right hand side

This test has proved successful; the same image was

produced by the application in all cases. In these tests, the

program is closed and reopened before the second run,

ensuring that it is initialised before each run, showing that

the same file can be reloaded to produce the same output.

c) After 100 iterations: Polygon draw style displays a

bright wheel of colours, with a slight purple tint

d) After 217 iterations: Image with a large yellow triangle

Figure 2: Test on DNA string with random data (100x100)

4.2 Test on DNA string with repeated ‘ACGT’ data

The file (TEST_100x100_ACGT_Repeated.dna) consists

of the DNA string ‘ACGT’ repeated. The test produced

predictable output. Four colours are displayed, which

change during the first 15 iterations, then remain the same

throughout any other iterations. These colours seem to

move across the linestrip (Figure 3a) and polygon (Figure

3b) displays, but no animation is apparent in the point

display (Figure 3c).

a) Point draw

M. Middleton and Y. Yue / Visualisation of DNA - Does the Soul Have a Picture?

c© The Eurographics Association 2006.

183

b) Linestrip draw

c) Polygon draw

Figure 3: Test on DNA string with random data (100x100)

4.3 Test on DNA string with random data (200x200)

This test generates a random DNA string, with a length of

40000 (TEST_200x200_40000.dna). The algorithm is

applied on the string 10000 times, and the display saved.

Then another 10000 iterations is applied and the results

compared with those of the first 10000 iterations. This test

has proved interesting. With the polygon draw style

selected, after no iterations, a simple colour wheel is

displayed (Figure 4a). After the first run of 10000

iterations, an image is produced with a noticeable yellow

triangle towards the centre of the image (Figure 4b). After

20000 iterations, exactly the same image is produced

(Figure 4c). It would appear that the algorithm can only be

run a certain number of times before the same images will

be displayed.

As can be seen in Figure 5, running the algorithm and

adjusting the display settings (such as hiding bases or

changing the background colour) can produce some

interesting results. By hiding bases (Figures 5a and 5b),

areas of interest may be noted – this gives the notion that

the software could be used to compare two strings. As has

been proved, the algorithm gives unique results for every

unique string – assuming we have two identical strings, we

can use display adjustments to help in identifying possible

matches. It is also possible to adjust the background colour

(Figure 5c), giving the user an alternative to the default

black background. Tests are also carried out to see how the

algorithm works as an animation. The results for the

linestrip and polygon animations are less attractive than the

points drawing, though this is expected. As the algorithm

searches through the string for patterns to match, it is

invariably moving some data with each iteration. This

movement is enough to cause a ‘jumping’ effect – there is

just too much movement for the animation to be considered

fluid. Perhaps some form of tweening (morphing between

images) between algorithm iterations could allow these two

drawing styles to work as an animation. However, in

juxtaposition to this, the points drawing style has proved to

be quite acceptable as an animation. Although the data in

the DNA string is still being moved around by the

algorithm, only the colour values are changing (using the

colour weight variables), so the data does not appear to be

moving, rather, the colours seem to blend between each

other.

These tests of the animation also lead to the discovery

of what is perhaps a potential problem. When dealing with

a small resolution string, say 100x100 pixels, the program

is able to process the algorithm quick enough to display a

smoothly moving image. However, as the resolution

increases, the processing time increases exponentially. A

string with a resolution of 200x200 pixels takes

considerably longer to process, and on the computer used,

is not able to provide a smooth animation.

a) Prior to iterations

b) After 10000 iterations

M. Middleton and Y. Yue / Visualisation of DNA - Does the Soul Have a Picture?

c© The Eurographics Association 2006.

184

c) After 20000 iterations

Figure 4: Test on DNA string with random data (200x200)

Whilst these tests are only carried out on a number of

randomly generated or preset DNA files, it would be more

interesting to open a genuine DNA string to see any effect

the algorithm may have on the display. It is also important

to remember that the still figures shown above are static

images, captured during the running of the algorithm. By

running the program, it is possibleto appreciate the effect

of the algorithm over time, particularly the point draw

animation, which produces pleasing displays with flowing

colours.

5. Concluding remarks

The area of DNA visualisation is an interesting and

growing field. In the 50 or so years since Watson and Crick

completed Franklins work on the structure of DNA,

technology has advanced in such a way that the structure of

DNA should be further examined, in every way possible.

As time goes on and more and more is learned about the

various chromosomes and positions of base pairs within

DNA, is it not possible that eventually a program could be

developed to examine some DNA and report any illnesses

or features which may be present? Could a program take a

DNA string, provide a realistic interpretation of the

organism, age the organism and display the result as a

dynamic 3-dimensional model? This research has made an

initial attempt and achieved some results.

It would be inappropriate to compare the results of the

program with other DNA visualisation techniques since

DNdisplA has been designed to create aesthetic images

from DNA data, with the option of viewing the results as a

dynamic moving image, and other techniques focus on

creating a static image.

Whilst working on this research, it has become apparent

that there are a number of aspects could be extended or

worked on further.

The algorithm that has been implemented, focuses on

the colour and colour weighting of each character, but does

not make any changes to a characters position. If the

algorithm were to apply a weight to each character

position, we could see the characters move across the

screen. As well as moving characters around the display, it

could be possible to implement a 3-dimensional display,

where certain characters can be moved closer to or further

from the viewer. The work carried out by Herrison and

Gherbi [HG01] investigated the 3-dimensional trajectory of

DNA sequences; perhaps by combining this work with the

algorithm, a display could be created which will show the

DNA sequence in a new manner.

a) Point draw with hidden bases: certain features noted -

the hole towards the top right

b) Polygon draw by hiding bases

c) Polygon draw: Changing the background colour

resulting in different image

Figure 5: Tests for animation of DNA string

M. Middleton and Y. Yue / Visualisation of DNA - Does the Soul Have a Picture?

c© The Eurographics Association 2006.

185

The program also leads itself to a number of further

developments. The three drawing styles, point, line and

polygon, all make use of the DNA as a 2-dimensional

array, displayed on screen from left to right and top to

bottom. Perhaps the display routine could be changed to

draw the DNA characters in a different order, depending on

the iteration. Whilst the point draw style would exhibit no

changes, the line and polygon draw styles could produce

unique images.

Another area which could be addressed is the initial

colours given to characters – for example, the ‘G’ character

is given a green colour. Perhaps the program could

incorporate the entire DNA string when deciding on a

particular character colour (say, its position in the string, or

its relation to another character). Whilst the algorithm does

examine the DNA string to generate a search string, it only

uses the first five characters of each line; a possible change

could be to incorporate the entire line, or the entire string

when generating a search strings.

Other drawing styles could be introduced in addition to

the three styles used in the program, such as ‘quads’ or a

‘triangle strip’. The final display could also be adjusted –

drawing with points leads to a sharp and crisp image, a sort

of anti-aliasing method could be introduced to try and

blend the colours together across the whole display.

References

[GM70] Gibbs A. J., McIntyre G. A.: The diagram, a

Method for comparing sequences. Its use with amino

acid and nucleotide sequences. Eur. J. Biochemistry

(Sept. 1970), vol. 16, no. 1, pp. 1-11.

[HB04] Hearn D., Baker M.: Computer Graphics with

OpenGL. 3rd Edition, Prentice Hall (2004).

[HG01] Herisson J., Gherbi R.: Model based prediction of

the 3D trajectory of huge DNA sequences. In Proc. 2nd

IEEE International Symposium on Bioinformatics and

Bioengineering (BIBE'01), March 2001, pp. 263-270.

[Hum05] The Human Genome Project:
http://www.genome.gov/10001772/

[Pot96] Potel M. J.: Computer Graphics and DNA

sequencing. IEEE Computer Graphics and Applications

(Nov 1996), vol. 16, no. 6, pp. 14-19.

[RJ05] Raven P. H., Johnson G. B.: Biology. 7th Edition,

McGraw Hill (2005), pp. 284-287.

[Rid00] Ridley M.: Genome. Harper Collins (2000), p. 6.

[Rya05] Ryan Geiss homepage:
http://www.geisswerks.com/

[TAO05] The TAO .NET Framework:
http://www.taoframework.com/

[Win05] Winamp Media Player:
http://www.winamp.com/

[WWFT03] Wong P. C., Wong K. K., Foote H., Thomas J.:

Global visualization and alignments of whole bacterial

Genomes IEEE Transactions on Visualization and

Computer Graphics (July 2003), pp. 365,

M. Middleton and Y. Yue / Visualisation of DNA - Does the Soul Have a Picture?

c© The Eurographics Association 2006.

186

