EG UK Theory and Practice of Computer Graphics (2006)
M. McDerby, L. Lever (Editors)

Curvature-Based Segmentation for Sketch Understanding

Wentao Zheng, Zhiyu Liu and Zhengxing Sun

State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China

Abstract

Segmentation is known as an important and fundamental task in sketch understanding, by which free hand drawing
is processed into primitive geometric units such as line segments, arcs, etc. Usually, two types of information are
used in segmentation: drawing speed and curvature. This paper first analyzes the necessity of drawing speed and
curvature, then concludes that curvature is better for segmentation, and drawing speed is harmful to later steps
in sketch understanding. To provide a fast and robust method for segmentation, we device a window-controlled
relative curvature calculation method which is immune to ink noise. Based on the method, our segmentation
approach adopts a two-step strategy which shows satisfying experimental results.

Categories and Subject Descriptors (according to ACM CCS): D.2.2 [Design Tools and Techniques]: User inter-
faces H.5.2 [User Interface]: Input devices and strategies 1.3.6 [Computer Graphics]: Interaction techniques J.6

[Computer Aided Engineering]: CAD

1. Introduction

Sketching with pen and paper is widely used in designing
works. This is mainly because sketching is a natural, con-
venient way that a person expresses his intention. It simpli-
fies conceptual design activities through abstract models and
let designers focus on critical issues rather than intricate de-
tails. During the past years, some systems, such as [HLOO],
[LMO1], [LNHLO1], [LLG*03], have been proposed to pro-
vide users sketch-based interfaces for conceptual designing
works. However, limitations still exist, such as the constrains
of drawing habit these systems have made to users.

The difficulty of providing a natural sketch-based inter-
face is handling the ambituity of sketch, e.g. a rectangle
can be drawn by different styles (Figure 1). To resolve the
ambiguity of sketch, the process of sketch understanding is
usually divided into two phases: early processing and pars-
ing [GKSS05] [KS04] [SSDO1]. Early processing focuses
on translating messy free hand drawing into certain kinds of
primitive geometric units, such as line segments, arcs, and
ovals etc. Parsing focuses on recognizing composite sym-
bols from primitive geometric units.

Early processing usually contains the following steps:
e Ink sampling: sampling users’ drawing

(© The Eurographics Association 2006.

[

Figure 1: Two types of rectangles

e Noise reduction: reducing or eliminating noises in users’
drawing.

e Ink segmentation: segmenting users’ drawing into several
fragments.

e Primitive symbols generation: converting segmented frag-
ments into primitive symbols.

The major task in early processing is ink segmentation.
During the past years, researchers have been working on
this issue, and provide some practical solutions, such as
[SSDO1], [Sta04], [CDO04]. Till now, solutions for parsing
are still complex and fragile in practical use, which demands
that ink segmentation should be solved in an easier, faster
and robuster way.

This paper introduces a new method for ink segmentation
in sketch understanding. We first analyze the necessity of us-
ing drawing speed and curvature in segmentation, and con-
clude that segmentation with drawing speed would have bad

delivered by

www.eg.org

-G EUROGRAPHICS
: DIGITAL LIBRARY

diglib.eg.org

http://www.eg.org
http://diglib.eg.org

158 Wentao Zheng, Zhiyu Liu & Zhengxing Sun / Curvature-based segmentation for sketch understanding

effect on later steps in sketch understanding. In order to use
curvature as a key to accomplish segmentation, a window-
controlled method for calculating relative curvature is pro-
posed, which is immune to ink noise. Based on the method,
a two-step strategy is introduced as a solution to ink segmen-
tation. The effect of our approach is shown in experiments.

Comparing to previous segmentation methods, our ap-
proach has the following advantages: (1) geometric charac-
teristic (curvature) is used as a key to accomplish segmen-
tation task, imitating human’s perception of sketch; (2) our
segmentation algorithm is noise immune; (3) the approach
we proposed can be adopted into many situations, includ-
ing those without drawing time sampling equipment; (4) our
approach is easy to implement with low time complexity

(©(n)).

The rest of this paper is organized as follows: in Section 2,
we first go through some related work done in sketch under-
standing; in Section 3, we describe the task of ink segmen-
tation; in Section 4, we give an analysis on the necessity of
drawing speed and curvature in segmentation; in Section 5,
we introduce our approach of curvature-based segmentation;
in Section 6, we show experimental results and analyze our
method’s advantages and weaknesses; Section 7 gives a con-
clusion to this paper and presents some future works.

2. Related Work

An earlier work in sketch understanding is done by Sta-
hovich [Sta97]. He presents a program called SKETCHIT,
that transforms a single sketch of a mechanical device into
multiple families of new designs. To “interpret” a sketch,
the program first determines how the sketched device should
work, then derives constraints on the geometry to ensure it
works that way. The program is based on qualitative configu-
ration space (qc-space), a novel representation that captures
mechanical behavior while abstracting away the particular
geometry used to depict this behavior. The program employs
a paradigm of abstraction and resynthesis: it abstracts the
initial sketch into qc-space then maps from qc-space to new
geometries.

Later then, Landay and Myers [LMO1] presents another
sketch-based designing system named as SILK. It is an in-
formal sketching tool that combines many of the benefits
of paper-based sketching with the merits of current elec-
tronic tools. With SILK, designers can quickly sketch an
interface using electronic pad and stylus, and SILK recog-
nize widgets and other interface elements as the designer
draws them. Four primitive components — rectangle, squig-
gly line, straight line, and ellipse — can be recognized by
their system.

It is the first time that Sezgin et al. [SSD0O1] emphasize
the importance of early processing in sketch understanding.
It introduces a system capable of using multiple sources of

information, including drawing speed and curvature, to pro-
duce good approximations of freehand sketches. Users can
sketch on an input device as if drawing on paper and have
the computer detect the low level geometry, enabling a more
natural interaction with the computer, as a first step toward
more natural user interfaces generally, and toward earlier use
of automated tools in the design cycle in particular.

Stahovich [Sta04] presents a technique for segmenting
pen strokes into lines and arcs. The technique uses pen speed
information to help infer the segmentation intended by the
drawer. To begin, a set of candidate segment points is identi-
fied. This set includes speed minima below a threshold com-
puted from the average pen speed. It also includes curvature
maxima at which the pen speed is again below a threshold.
The ink between each pair of consecutive segment points is
then classified as either a line or arc, depending on which fits
best. Finally, a feedback process is employed, and segments
are judiciously merged and split as necessary to improve the
quality of the segmentation. Formal user studies were con-
ducted, and the system was observed to perform accurately,
even for new users.

Cates and Davis [CD04] propose a graphical model based
approach to early sketch processing. Small areas of a sketch
corresponding to features such as corners and straight seg-
ments are considered individually, and a likely labeling for
such features is found by incorporating some context in or-
der to improve on labels computed with only local informa-
tion. Results from applying their approach to the problem of
detecting corners show an improvement.

Based on early processing, some high-level works have
also been done to provide flexible systems for multi-domain
sketch understanding. Alvarado el al. [AODO2] present an
architecture to support the development of robust recog-
nition systems across multiple domains. Their architecture
maintains a separation between low-level shape information
and high-level domain-specific context information, but uses
the two sources of information together to improve recogni-
tion accuracy.

Hammond and Davis [HD03] create LADDER, the first
language to describe how sketched diagrams in a domain
are drawn, displayed, and edited. The language consists of
predefined shapes, constraints, editing behaviors, and dis-
play methods, as well as a syntax for specifying a domain
description sketch grammar and extending the language, en-
suring that shapes and shape groups from many domains can
be described. Shape groups describe how multiple domain
shapes interact and can provide the sketch recognition sys-
tem with information to be used in top-down recognition.
Shape groups can also be used to describe “chain-reaction”
editing commands that effect multiple shapes at once.

(© The Eurographics Association 2006.

Wentao Zheng, Zhiyu Liu & Zhengxing Sun / Curvature-based segmentation for sketch understanding 159

3. Task of Segmentation

Before describing the details of our work, we should intro-
duce the definitions of some important concepts in sketch
understanding.

Definition 1 A stroke S refers to a sequence of sampled
points py,p2,..., pn between succesive pen-down and pen-
up events.

Free hand drawing is usually sampled as a number of
strokes.

Definition 2 The segmentation of a stroke
S = {p1,p2,.-.,pn} is a procedure SEG in which the
points sequence {pj,...,pn} is divided into several
fragments at some points py,, py,, pr (1 < fi <n).

Definition 3 The Feature points refer to py,ps,,ps (1 <
fi < n) in Definition 2.

A general method of segmentation can be described in
Figure 2. The fundamental problem in segmentation is how
to find out the feature points where the stroke should be seg-
mented.

detecting

Stroke Feature Points

feature points

lusing points to segment

Fragments

Figure 2: Process of segmentation

4. Curvature or Speed

We have mentioned that the major problem in segmentation
is how to find out the feature points. To solve this problem,
two types of information are frequently used: drawing speed
and curvature.

Using drawing speed to find feature points is based on
the observation that people usually slow down their drawing
speed when drawing through turning area, and keep a con-
stant speed when drawing through straight area. The works
in [SSDO1] and [Sta04] both use drawing speed information
to find feature points. Using curvature to find feature points
is based on the observation that points with larger curvature
usually separate the ink into several fragments.

Drawing speed represents temporal information of sketch,
curvature represents spatial information of sketch. Feature
points can be determined by either of them, or both of them.
However, which of them is more important to sketch under-
standing? Do we need both of them to detect feature points?
To answer these questions, we should first look into the pro-
cess of sketch understanding.

Sketch understanding is known as a process that makes

(© The Eurographics Association 2006.

computer recognize all the information contained in sketch.
The information in sketch is usually expressed by a num-
ber of symbols with particular shapes which make them eas-
ily distinguished by human. A person could understand the
meaning of sketch because he recognizes all the contained
symbols. And the reason why he is able to recognize con-
tained symbols is because he knows the geometric structures
of them. Therefore, to make computers understand sketch as
human do, we consider curvature to be more important than
drawing speed, because curvature has more to do with the
geometric structure of a symbol than drawing speed does.

In addition, some other reasons also support our choice of
using curvature in detecting feature points:

e Drawing speed is unreliable. It could vary tremendously
when drawing a straight line. Even in the situation of
drawing a right angle, the drawing speed may stay un-
changed. Another factor that makes drawing speed unre-
liable is different drawing habit of different people.
Figure 3 shows some situations when speed-based seg-
mentation fails to find feature points correctly. The left
graph shows an example of losing a feature point; the right
graph shows an example of extra feature points found.

i —,

Figure 3: Failures of using drawing speed to find feature
points

e Using drawing speed is less adaptable than using cur-
vature. To calculate the drawing speed at one point, we
should record the time when this point is being drawn.
It makes speed-based segmentation method only usable
in only on-line sketch understanding, where ink is sam-
pled instantly. While curvature-based segmentation can
be used in not only on-line sketch understanding, but also
off-line sketch understanding.

The challenge in curvature-based segmentation is how to
eliminate noises in strokes. Some works such as [SSDO1]
suggest using both drawing speed and curvature in segmen-
tation, then merging the results of speed-based segmentation
and curvature-based segmentation. In our approach, only
curvature is used because we have developed a relative cur-
vature calculation which can eliminate the negative effect of
noises.

5. Approach

In this section, we introduce our curvature-based method for
ink segmentation.

5.1. Noise-Immune Relative Curvature

In curvature-based segmentation, how to calculate the cur-
vature of a sampled point is the most fundamental work.

160 Wentao Zheng, Zhiyu Liu & Zhengxing Sun / Curvature-based segmentation for sketch understanding

In sketch understanding, as a result of the complexity of
parsing, algorithms in segmentation should be fast, robust,
and effective. Therefore, curvature calculation should pos-
sess the following characteristics:

e Fast: it works with low time complexity.

e Effective: it is able to distinguish feature points from nor-
mal points easily.

e Robust: ink noise should have little effect on the result of
curvature calculation.

We device a window-controlled relative curvature calcu-
lation fomula which meet the forementioned three require-
ments. Given a stroke S = {py, p2,...,Pn}, our formula can
calculate the relative curvature at each point p;(1 <i < n)
by giving a parameter k:

itk
Y Dis(pj,li—ki+k)

r(pink) = = (1)

prlpik) Len(li—gi+k)

In the formula 1, k refers to window size, [; ; refers to the line
segment between points p; and p;, the geometric meaning of
functions Dis and Len are shown in Figure 4.

Dis(p;, li—k,i+k)

Pi—k+1
Pi—k
Len(li—gitk)

Figure 4: lllustration of formula p;

Figure 5 illustrates the comparisons between our relative
curvature and approximate curvature for some strokes (ar-
rows indicate where these strokes start). In each subgraph
(Figure 5(a), 5(b), 5(c)), the left graph is relative curvature
for each point p; calculated by formula 1 with k = 3, the right
graph is approximate curvature calculated by MATLAB.

From the comparisons, we conclude that:

e The time complexity of calculating p,(p;,k) for a stroke
is about ®(k - n). If k is unrelated to n, the time complex-
ity is linear. Apparently, our window-controlled relative
curvature calculation is fast.

e In the turning area, p,(p;, k) is relative larger than in the
straight area, which ensures the determination of feature
points. Therefore, our window-controlled relative curva-
ture calculation is effective.

e From the graphs of approximate curvature, we see that
ink noise will effect the value of curvature, which re-
sults too much feature points detected. However, in the
graphs of p,(p;,k), noise is smoothed out. It shows that
our window-controlled relative curvature calculation is
robust.

-

—-
0.8
15
06
— H
z £ 04+
05+ 2 00
Eo2
0 o0
T T 7 T T T T T T
0 20 10 60 80 0 2 10 60
Point index (i) Point index (i)
(@
4
0.2-]
34
0.15]
— 2 =
g £ 01
19 £ 005
é
0-| o
T T T T T T T T T T
0 20 0 60 0 0 20 3 40 50
Point index (i) Point index (i)
—
12
2]
-
154 08
PR ; 0.6
< £ 0.4
0.5 K
“ 024
0 o
T T 7 T T T T T T T
0 20 10 60 0 0 20 10 60 0
Point index (i) Point index (i)
©

Figure 5: Comparison between relative curvature (with k =
3) and approximate curvature

5.2. Finding Feature Points

With relative curvature p,, we can find feature points by
specifying a threshold Ay, (k is the window size). In Figure 6,
the points whose p; is larger than threshold are considered
as feature points.

The algorithm of finding feature points is described in
Algorithm 1. For convenience, it is named as procedure
FindFP, satisfying P = FindFP(S,k, A), in which P is the
set of feature points, S = {p1,p2...,pn}. The procedure
from line 1.7 to line 1.11 ensures that if a sequence of con-
tinuous points from py to p, are all feature points, only the
central point py(,)/) 18 treated as feature point. The rea-
son is obvious: after specifying threshold /i, there could be

(© The Eurographics Association 2006.

Wentao Zheng, Zhiyu Liu & Zhengxing Sun / Curvature-based segmentation for sketch understanding 161

0 20 10 60 0
Point index (i

Figure 6: Filtering feature points by specifying a threshold
(red line)

more than one point whose p, exceeds /i at the area where
the segmentation should be operated. An example is shown
in Figure 7.

input : Sampled points {p1, p2,..., pn}, window size
k, threshold Ay,
output: Feature points set P

() k=1 (b) k=3 ©) k=9

Figure 8: How k effects FindFP

e The threshold /; is used to determine which point should
be chosen as a feature point. To make the result effec-
tive, Ay should be assigned according to window size k.
In experiments, we have found that the average value of
pr(pi, k) of a stroke becomes larger when k grows. There-
fore, if Ay, is not assigned large as k grows, the result fea-
ture points may be more than we expect. Figure 9 shows
how k effects the average value of p,(p;, k).

11 P« ¢;
12 P —0;
13 for each pi(n—k <i<k)inSdo
14 if p(p;) > hy, then
15 ‘ P. —P-U{pi};
1.6 else
17 if P. # ¢ then
18 now Pe = {pu,...,pv};
19 P — PU{P[(utv) /21 }5
1.10 Pe — ¢;
111 end
112 end
113 end

Figure 9: How k effects average value of pr(pi,k)

From the above analysis, we find that function P =

Algorithm 1: Finding feature points in a stroke

Pl(utv)/2]

Pu

Figure 7: Points satisfying pr > hy at a segmented area

In function P = FindFP(S, k, /1), the output feature points
set P depends on two parameters: window size k, and thresh-
old hy. We analyze how k and &, effect the output P.

e The window size k determines how many points are in-
cluded to calculate the relative curvature of a point p;. The
2 X k points (including former k points and later k points)
compose a context where p,(p;, k) is calculated. If k = 1,
then some noisy points may have bad effect on FindFP
(see Figure 8(a)); If k is very large, some strokes such as
Figure 8(c) can not be segmented correctly, because the
relative curvature is based on a large context which is not
sensitive to small area.

(© The Eurographics Association 2006.

FindFP(S,k,) has the following properties:

o If k is small, the returning P contains points at relative
sharp angles; if k is large, the returning P contains points
at round angle.

e To find out feature point effectively, /i should be assigned
according to the value of k. If k grows larger, /i should be
assigned larger.

5.3. Segmentation

With the feature points set P = FindFP(S,k,), we can seg-
ment stroke S into |P| + 1 fragments by the points in P. This
method is called one-step segmentation. However, based
on the properties of FindFP, we conclude there is not such
a window size k and its threshold 4 that enable all fea-
ture points be found. If k is assigned small, we could lost
points at round angle; if k is assigned large, we could lost
those at sharp angle. A practical compromise is doing seg-
mentation twice, the first time with a smaller k and the sec-
ond time with a larger k. The process of our segmentation
strategy is described in Algorithm 2. We first use a smaller
threshold k; to find all the feature points at shape angles, and
use these points to separate the stroke into several candidate
fragments; these candidate fragments are then re-segmented

162 Wentao Zheng, Zhiyu Liu & Zhengxing Sun / Curvature-based segmentation for sketch understanding

using a larger threshold k; to find the feature points at round
angles.

input : A stroke S = {p1,p»,...
k1, k>, threshold hkl 7hkz
output: Segmented fragments F = {f1, f2,...,fm}

21 F — ¢

22 P« FindFP(S,ky,hy,);

23 use P to segment S into several fragments
FQ = {S[,...,St};

24 for each S; in Fy do

2.5 P — FindFP(Si,kz,hkz);

,Pn}, window size

2.6 use P; to segment S; into several fragments F;;
2.7 F—FUF;;
28 end

Algorithm 2: Two-step segmentation

6. Experiments

We have tested three kinds of curvature-based segmentation
on 9 hand drawn strokes (these 9 strokes are frequently used
in many works on segmentation):

e the first experiment uses one-step method with k =3, i, =
0.6.

e the second experiment uses one-step method with k =
9,h =3.

e the third experiment uses two-step method with k; =
3,hy, = 0.6 and kp = 9,hy, = 3.

We also introduce two statistic criteria to evaluate segmen-
tation results:

e precision: the proportion between the number of expected
feature points found and the number of all feature points
found.

e recall: the proportion between the number of expected
feature points found and the number of expected feature
points.

Figure 10 shows a set of free hand drawing sketches, in
which expected feature points are marked as a small oval
manually. Figure 11-13 show the results of forementioned
experiments, in which feature points are marked as red point.
Table 1 gives a statistical analysis on the experimental re-
sults.

ki | hy, | ko | By, precision recall

3106 | - — | 96.1% (73/76) | 97.3% (73/75)
9 3 - — | 80.0% (44/62) | 41.3% (31/75)
3106/| 9 3 | 94.9% (75/79) | 100% (75/75)

Table 1: Statistical analysis

From the figures and the table, we find that:

e Our two-step segmentation method do find out all the ex-
pected feature points (100% recall)

et
= 6L

@11

Figure 10: Hand drawn strokes with marked 75 feature
points

AT
= 0

(d

(9] ()] ®

Figure 11: Results of one step segmentation with k =3, h; =
0.6 (76 feature points found)

®

O]

e Our window-controlled relative curvature calculation is
noise-immune (Figure 11(h), 12(h), 13(h)).

e One-step segmentation with larger window size k = 9
produces unacceptable result, which demonstrates that
smaller window size should be used at first in our two-
step segmentation method.

However, some limitations still exist:

(© The Eurographics Association 2006.

Wentao Zheng, Zhiyu Liu & Zhengxing Sun / Curvature-based segmentation for sketch understanding 163

SVEIENS
= 0L (.

(d

(2 () ®

Figure 12: Results of one step segmentation withk =9, h, =
3 (62 feature points found)

e
b (o
o

Figure 13: Results of two-step segmentation with k; =
3,h, = 0.6 and ky =9, hy, = 3 (79 feature points found)

(a)

(d

(2)

e Two-step method has higher recall than one-step method,
but the price is lower precision. It means that more
non-feature points are found by two-step method (Fig-
ure 13(g)).

e Some global noises can not be eliminated by smaller win-
dow size (Figure 11(e)), but can be eliminated by larger
window size (Figure 12(e)).

(© The Eurographics Association 2006.

These limitations might be caused by our naive strategy
of merging smaller window size and larger window size
segmentation — segmentation upon segmentation. A more
complex merging strategy could produce better result.

7. Conclusion

This paper introduces a new method for ink segmentation in
sketch understanding. We first argue that drawing speed is
not necessary for segmentation, and it would have bad ef-
fect in some cases. Then we introduce our approach for seg-
mentation, in which a window-controlled method is deviced
for calculating relative curvature. Based on the method, we
propose a two-step strategy for ink segmentation which is
proved effective by experimental results.

In experiments, we discover that although our approach
can find out all the expected feature points with 100% recall,
precision is decreasing. We also notice some global noises
can not be eliminated in our approach. We will work on these
issues to provide a better solution for segmentation in sketch
understanding.

References

[AODO2] ALVARADO C., OLTMANS M., DAvis R.: A
framework for multi-domain sketch recognition. AAAI
Spring Symposium on Sketch Understanding (March 25-
27 2002), 1-8.

[CD04] CATES S., DAvis R.: New approach to early
sketch processing. In Making Pen-Based Interaction In-
telligent and Natural (Menlo Park, California, October
21-24 2004), AAAI Press, pp. 29-34.

[GKSS05] GENNARIL., KARAL.B., STAHOVICHT. F.,
SHIMADA K.: Combining geometry and domain knowl-
edge to interpret hand-drawn diagrams. Computers &
Graphics 29, 4 (2005), 547-562.

[HD0O3] HAMMOND T., DAVIS R.: LADDER: A language
to describe drawing, display, and editing in sketch recog-
nition. Proceedings of the 2003 Internaltional Joint Con-
ference on Artificial Intelligence (1JCAI) (2003).

[HLOO] HoNG J. I., LANDAY J. A.: SATIN: A toolkit
for informal ink-based applications. In Proceedings of
the ACM Symposium on User Interface Software and
Technology (2000), Toolkits and Techniques for Pen and
Video, pp. 63-72.

[KSO4] KARA L. B., StaHoVICH T. F.: Hierarchical
parsing and recognition of hand-sketched diagrams. In
UIST (2004), pp. 13-22.

[LLG*03] LIY.,LANDAYJ. A., GUAN Z., REN X., DAI
G.: Sketching informal presentations. In Proceedings
of the 5th International Conference on Multimodal Inter-
faces (ICMI1-03) (New York, Nov. 5-7 2003), ACM Press,
pp. 234-241.

164 Wentao Zheng, Zhiyu Liu & Zhengxing Sun / Curvature-based segmentation for sketch understanding

[LMO1] LANDAY J. A., MYERS B. A.: Sketching inter-
faces: Toward more human interface design. /EEE Com-
puter 34,2 (2001), 56-64.

[LNHLO1] LINJ., NEWMAN M. W., HONG J. I., LAN-
DAY J. A.: DENIM: an informal tool for early stage web
site design. In Proceedings of ACM CHI 2001 Conference
on Human Factors in Computing Systems (2001), vol. 2 of
Interactive video posters, pp. 205-206.

[SSDO1] SEzZGIN T. M., STAHOVICH T., DAVIS R.:
Sketch based interfaces: Early processing for sketch un-
derstanding. Workshop on Perceptive User Interfaces, Or-
lando FL (2001).

[Sta97] STAHOVICH: Interpreting the engineer’s sketch:
A picture is worth a thousand constraints. In Reasoning
with Diagrammatic Representations II (1997), AAAI Fall
Symposium, pp. 31-38.

[Sta04] StAHOVICH T. F.: Segmentation of pen strokes
using pen speed. In Making Pen-Based Interaction Intelli-
gent and Natural (Menlo Park, California, October 21-24
2004), AAAI Press, pp. 1-7.

(© The Eurographics Association 2006.

