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Abstract

Global illumination rendering in real-time for high-fidelity graphics remains one of the biggest challenges for
computer graphics in the foreseeable future. Recent work has shown that significant amounts of time can be
saved by selectively rendering in high quality only those parts of the image that are considered perceptually
more important. Regions of the final rendering that are deemed more perceptually important can be identified
through lower quality, but rapid, rasterisation rendering. By exploiting this prior knowledge of the scene and
taking advantage of image space based algorithms to concentrate rendering on the more salient areas higher
performance rendering may be achieved. In this paper, we present a selective rendering framework based on
ray tracing for global illumination which uses a rapid image preview of the scene to identify important image
regions, structures these regions and uses this knowledge to direct a fraction of the rays traditionally shot. The
undersampled image is then reconstructed using algorithms from image processing. We demonstrate that while
this approach is able to significantly reduce the amount of computation it still maintains a high perceptual image
quality.

Categories and Subject Descript@scording to ACM CCS)I.3.7 [Computer Graphics]: Three-Dimensional Graph-
ics and Realism

1. Introduction allocation. The problem of these algorithms is, however,
that they mainly use linear interpolation which is unable
to produce high quality images from very sparse samples.

fidelity representations of complex objects and space. How- Thls can be improved by using smarter reconstruction algo-
L : S P rithms [FIP02.
ever, existing global illumination applications suffer from
expensive computational cost thus precluding them from  Calculations are typically computationally much less ex-
rendering complex scenes in real time. Recently, a substan- pensive compared to intersection tests in the object space.
tial amount of research has been done to find ways to im- Thus many image processing based techniques have been
prove this performance. used by global illumination algorithms with some good suc-
cess PP99CSSD94KW93]. However, these algorithms de-
pend solely on image processing techniques and thus neglect
the substantial amount of knowledge about the scene which
can be obtained from the object space.

Global illumination, using ray tracing techniques, is well
known as being effective for creating accurate and high-

Sampling strategies identify important areas of the scene
and focus computational effort on these reducing overall
computational costGuo98 BWGO03 LDCO054. Typically,
such algorithms generate some formno&p before the ac-
tual rendering process and use this map to guide the sam- In this paper we present a novel framework which com-
ple allocation, for examplegDL*05,LDCO6]. Prior knowl- bines both the object space based rendering strategies, with
edge of the scene can help produce a reasonable sampldmage space based reconstruction algorithms. First of all we
generate a quick scene preview on a GRIDCO05h and
from this we produce an edge map as the guide for our sam-
T Email: yang@cs.bris.ac.uk pling strategy. We have modified the lighting simulation sys-
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temRadiancewith a quadtree structure to organize the sam- ples. Many approaches such 8NG03 use linear interpo-
ples. lation to produce the desired images. The cost of ray inter-
section tests for ray tracing is far more expensive compared
with image space reconstruction. Therefore it's worth ex-
ploring optimal reconstruction algorithms for under-sampled
images.

The rest of the paper is structured as follows. In Section
2 we discuss related previous work in both selective render-
ing and reconstruction algorithms. In Secti®we describe
our framework and the implementation of the algorithm. In
Section4 we evaluate our framework with both timing and Wavelets have a great reputation for good quality of re-
visual perception metrics and present the results. Finally, in construction, Piertrek P99 presented an approach to
Section5 we conclude and suggest possible future avenues reduce variance in Monte Carlo integration based on the

of research. wavelet densities. Christensetal.[CSSD94 used wavelet
analysis to provide an efficient solution method for global
2. Previous Work illumination with glossy and diffuse reflections. Generally

. i . . . speaking, wavelets could be an ideal solution for sparsely
In this section we discuss related work in sampling strategy sampled image reconstruction, however, the wavelet ap-

Ipr sellect!\t/s renderers and previous research on reconstruc-proach is not a suitable approach for our current renderer
ion algonthms. due to the high computational cost.

Knutssoret al. [KW93] presented a reconstruction algo-
rithm by building a certainty map. This represents the cer-
Ray tracing based selective renderers are able to concentrat&ainty value of each pixel and interpolates surrounding pixel
rays to the areas of importance and consequently save sig-yalues from the information derived from this certainty map.

2.1. Selective Rendering

nificant amount of computational resources. This algorithm is termed as Normalised Convolution and is
Mitchell [Mit87] was the first to use perceptual techniques an extremely efficient approach for non-uniformed sparsely
for their ray tracer. Painter and SloaR$89 used a Kd- sampled image reconstruction. Furthermore, this algorithm

tree for storing samples and identifying where the next sam- is easy to implement and can easily be done in a separate
ples should be shot for their progressive and adaptive ray- Pass from the rendered image.

tracing based renderer. Myszkowskiys98 used a visual
difference predictorpal93] to identify when to stop render-
ing in their progressive global illumination renderer. Gato
al. [Guo9g demonstrated a sparse sampling algorithm to re- An overview of our framework can be seen in Figiréhe

duce the number of rays needed to be shot to gain speed.framework is composed of five stages. The first step uses
However human visual system is highly sensitive to ob- a rapid image generation using rasterisation on fast graph-
ject silhouettes and shadow edges. This approach is proneics hardware to produce an image estimate. The subsequent
to producing blurred and aliased outcomes because of lack step is to identify the more salient parts of the image using
of discontinuity information. Aredge-and-Point(EPIpased an image-space algorithm also performed on graphics hard-
rendering algorithm was subsequently developed to exploit ware. The next step structures the important regions based on
both advantages of sparse sampling and edge detection al-image-space subdivision of the saliency map. These regions
gorithms BWGO03. They rasterised akdge-and-Pointim- are then used to direct where the selective renderer should
age to illustrate the location of the discontinuities in the ob- shoot the rays. Finally an image reconstruction technique is
ject space and interpolate the image from the information used to produce a final image.

about edges in a sub pixel precision accuracy level. éee
al. [YPGO]] extended the saliency malKN98] to combine
motion for their selective renderer. Catetral. [CCWO03
used task distractors for driving their selective renderer.
Longhurstet al. in [LDC054 and [LDCO06] presented an ap-
proach to produce a quick preview of the scenes on a GPU, 3 1. |mage preview and guideline image

and then use this preview as the guideline for a selective ren- ) ) o

derer. They also exploited the edge information to overcome IMage preview produces basic scene descriptions such as
aliasing problems in global illumination. This approach still ~ direct lighting information, basic shadow, color and shape
uses a relative large number of samples. We will compare Of the objects. The preview is calculated on modern graph-
this approach with ours in Sectidn ics hardware therefore it is highly efficient. Once the image
estimate is produced, a number of image space algorithms
may be used to capture the salient features. For instance, an
edge map can be used for antialiasing purpok&sC54
Linear interpolation algorithms are the most widely used or a saliency map can be used for perceptual based selec-
method to reconstruct high quality images from sparse sam- tive renderer LDC06]. This guideline information is pro-

3. Framework

In the remainder of this section we provide a further
overview of this pipeline for a general selective renderer. In
Sectiord we describe our implementation of the framework.

2.2. Reconstruction methods
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Image Preview

Guideline Image

Subdivision Structure

Selectively Render

Reconstruction

Figure 1: The overview of our framework.
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duced from the previous scene preview also using fast graph-
ics hardware. This information serves as a general guide
for the rendering process and is able to save a significant
amount of time over an equivalent algorithm performed on
the CPU LDCO#].

3.2. Selective rendering

The guideline image is used as an input into the selec-
tive renderer. The selective renderer initially subdivides the
salient features into a two-dimensional data structure using
an image-space subdivision method. Subsequently this data
structure is used to guide the selective renderer and focus
rays onto the important areas.

3.3. reconstruction algorithm

Our framework uses a simple and effective normalized con-
volution for the final reconstruction step. The normalized
convolution consists of two convolutions and one division,

which is efficient and simple. The formula is shown in Fig-

ure2 below.

SRG/CR®G

S: Sparse samples
G: Gaussian filter
C: Certainty map

Figure 2: The formula of Normalized Convolution.

It first convolutes the sparsely sampled image with a
Gaussian filter. One thing worth mentioning here is that the
Gaussian filter needs to be large enough to recover the miss-
ing information in the image. The second step of the algo-
rithm is to build a certainty map for the sparsely sampled
image. It give a certainty value of one if there is a sample in
this pixel/sub pixel and the certainty value will be zero if no
sample exists for that pixel. Then, this algorithm will convo-
lute the certainty map with the same size gaussian filter as
the above to gain a convoluted certainty map. In the end, the
convoluted sparse samples divide the convoluted certainty
map to gain the normalized value for the interpolated image.

4. Implementation

In this section we will describe the implementation details of
the framework. For this paper we us8dapshofLDC05]

to generate the scene preview and then produced the guide-
line information using the edge detector technique from
SnapshofLDCO054]. Subsequently we implemented the sub-
division structure using a quadtree data structure and as a
selective renderer we usapict [LDCO06] based on a
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modified version of the lighting simulation packaBadi-
ance[War94. Finally, we programmed the normalised con-
volution algorithm in Matlab.

4.1. Snapshot and edge map generator

Snapshotis used for our rapid image generation using a
rapid image preview from the scene description on a GPU
using OpenGL. Images produced $papshotre generally
composed of rasterised triangles using point light sources,
FurthermoreSnapshotises further techniques to attempt to  gjgyre 3: The quadtree image(left) and the edge map(right)
simulate high-fidelity rendering. Shadow mappiril[78] for the Cornell Box.

via cubic texture maps are used to simulate shadows from

point light sources. Cubic environment maps are used to pro-

vide approximate specular reflections, and stencil shadow-

ing to accurately account for planar mirroksIp9]. Further- normalized convolution to reconstruct the under-sampled
more similar shaders as those usedRadianceand subse- images. We implemented this part of the framework in Mat-
quently in our selective renderer have been implemented in lab [HHOQ]. Matlab is an optimized mathematical package
Snapshoto generate images more similar to the final image. containing many built in image processing functions which
The complexity ofSnapshotlepends on the scene complex- are extremely fast. The computational time of the recon-
ity in terms of light sources and geometry, however frame struction is almost negligible in Matlab. In the future we plan
rates of upwards of 30fps may be achieved for relatively to implement this part of process on a GPU to improve per-
complex scened PCO6]. Snapshois also capable of identi-  formance similar to that inWWLO05).

fying salient features in an image in one of two ways: either

using an edge detection algorithm or using more complex

saliency mapsIKN98] and importance maps$SPL*05]. In 5. Results

this paper we only use edge detection based on the Sobeltq evaluate the effectiveness of our approach, we tested the
filter since edge areas are more prone to aliasing problems framework with two scenes. We produced three sets of still
and more likely to be perceived by the human visual system. jmages for each scene. The first set are our baseline refer-
Compared with other edge detectors, Sobel filter is effective ences that were computed usisgict  running in non-

at producing clear and thick edges for both objects and shad- sg|ective mode, at one ray per pixel. The second group is

ows. the images we generated using our framework rendered in
gsrpict . The third group where the images rendered in
4.2. Selective renderer srpict  using adaptive rendering that shot one ray at the

corner of a 4x 4 box and depending on the edge map ei-
ther interpolates the result for the intermediate pixels or sub-
divides and recurs the operation until at most one ray per
pixel is shot. DefaulRadiancesettings for global illumina-

tion were used for all images. All three sets of images were

In order to demonstrate the effectiveness of our framework
we have extended the modified versionRédiancesr-

pict to support the image space subdivision by means of a
guadtree. We term our new rendegsrpict . The original
srpict  renderer is a selective adaptive renderer based on . ;
stratified samplinglDCO6]. Thegsrpict  renderer inputs calculateq and rendered on the same machl'ne, Whlc_h has an
the edge map produced napshoand adaptively divides Intel Pentium IV 2.8 GHZ with 1G RAM running on Linux.

the image in order to select locations where to shoot the rays. Scenel. Cornell Box: This is a fairly straight forward
The edge map indicates the areas most likely to suffer from  and commonly used test scene for computer graphics. It
the aliasing problemsysrpict  replaces the stratified sam- demonstrates many effects in physically based rendering
pling algorithm with a quadtree data structure to distribute techniques, such as reflectance and shadows.

a small number of samples in the area where they are most

needed and effective, in this case one for each leaf node of Scene2. Table Test RoomThis is a complex scene con-
the quadtree. A series of detailed comparisons between the taining quite a lot of edge information. We deliberately

two render_erqjsrpict andsrpict ) are provid_ed in Sec_— used this scene to test the effectiveness of the quadtree in
tion 5. A view of quadtree of the Cornell Box is shown in terms of sample distribution and the quality of the recon-
Figure3. struction algorithm.

Table 1 shows the timing information and the number of
rays used for the reference images, garpict and the
The final step of this framework is to reconstruct a high fi- original srpict . The GPU based preview and edge map
delity image from the sparse samples. In our system we used generation is very fast and computational time is negligible

4.3. Reconstruction

(© The Eurographics Association 2006.
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(ca. 0.030 seconds for a size of 750*750 image). Further-
more, the reconstruction takes very little time in Matlab. For
this reason, the timing information for thgsrpict  only
includes the time spent on the quadtree based selective ren-
derer. For the same reason, the timing for the origémal

pict only includes the selective rendering time. The images
rendered in our framework only used between 8%- 15% of
pixels. Our framework gains significant speedups from the
reference images and speedups from adagtipiet

Figure 4 illustrates the resultant images rendered in our
framework and each of the steps.

5.1. Perceptual metrics validation

To further investigate the perceptual quality of the image
produced by our framework, the Visual Difference Predic-
tor (VDP) [Dal93 was used to compare the reference high
quality image with the image from our framework. The VDP
is a computer simulation of the human visual system and
its ability to perceive differences in the images. Primarily
each image is treated individually to remove frequencies that
would not be withessed by a human observer. The remaining
differences are then weighted over both frequency and orien-
tation channel, the metric is designed to highlight differences ;
near and below a just perceivable threshold. To compare our .
framework with the originakrpict , we performed two  —
pairs of VDP comparison for each scene. The first pair is
the comparison between the reference images and the im-
ages generated by adaptismict ; the second one is the
comparison between the reference images and the images
generated bygsrpict . The VDP comparison results for
both testing scenes are show in TaBleThe results show
that the VDP values differ by less than 1%, and therefore

almost imperceptible from the reference images.

6. Conclusion and Future Work

In this paper we have presented a framework which uses a
rapid image estimate coupled with a subdivision structure-
based selective renderer to produce sparse samples and re
construct a high quality image from those sparse samples.
The resulting constructed image created from the sparse ¥
samples using normalized convolution algorithm is of a
h|gh_qua||ty and perceptua”y equiva|ent to the h|gh quahty Figure 4: The images for our test scenes. Left hand side
reference image. Our framework only requires small amount demonstrates the Cornell Box and the right hand side the
of samples (10% samples) to produce this level of quality Room Scene. From top to bottom we show: the rapid image
and significantly speeds up the rendering system. In the fu- preview of the image, the edge map, a visualisation of the
ture, we plan to extend our framework to support saliency generated quadtree, the samples shot and finally the recon-
maps [KN98] and importance map$PL*05], and will ex- structed image.

plore the possibility of using our framework for temporal co-

herence to reuse samples for animations similar to the work

in [DWWLO05]. Furthermore, we will offload more of the

work on the GPU particularly the reconstruction algorithm

on a GPU to gain further speedups.

(© The Eurographics Association 2006.
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Scenes Cornell Box Room Scene
Time | Number of Rays| Time | Number of Rays
Reference images 5.76 262144 | 75.75 262144
Adaptive srpict 1.56 72947 | 54.17 149039
gsrpict 0.44 21445| 10.6 33322

Table 1: Timing comparison for the scenes.

Scenes Cornell Box Room Scene
average VDP erronl the number of error pixels average VDP errol the number of error pixels
Reference images vs. Adaptive srpict 0.22% 0.28% 0.17% 0.62%
Reference images vs. gsrpict 0.84% 0.90% 0.58% 0.37%

Table 2: VDP comparison for the scenes.
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