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Abstract
Four methods for storing a set of points using a computer are currently known: Boundary representations, Con-
structive Solid Geometry, Binary Space Partitioning trees, and Nef polyhedra. We describe a time and space-
efficient BSP-based algorithm for computing the union of a set of solids and compare it with the other solid
representations. The algorithm does not require that the entire tree fit in memory; it only needs to maintain the
path from the root to one node in the tree at a time. We show that the algorithm is practical by providing time and
space statistics. We also show the benefit of using the resulting union solid for computing interactive shadows.

1. Introduction

Modeling systems frequently need to store point sets using
more than one representation, and so algorithms that con-
vert from one representation to another are essential com-
ponents of such systems. Four methods are currently known
for storing solids: Boundary representations (b-reps), Con-
structive Solid Geometry (CSG) trees, Binary Space Parti-
tioning (BSP) trees, and Nef polyhedra (ignoring spatial oc-
cupancy representations as they do not transform). The first
two methods, b-reps and CSG, have been widely studied. A
significant amount of work has recently been done on the
last, Nef polyhedra, particularly in the context of the CGAL
library [Bie95, See01, GHH∗03]. The third method, solid
modeling BSP trees, has generally been considered to be a
special type of BSP trees as used for depth sorting compu-
tation, which has perhaps resulted in too little work done on
the set of solids it captures [Nay90] and on its conversion to
alternative representation schemes [CN96]. We describe in
this paper an algorithm that converts a BSP tree representing
a solid to its boundary representation without requiring that
the BSP tree entirely fit in core memory at any one time. The
most important application to-date of BSP trees to model
solids is their use for Shadow Volume BSP trees [CF89]. To
remain well-grounded in a practical application, we choose
Shadow Volume BSP (SVBSP) trees as the application do-
main, but the details are applicable for an arbitrary BSP tree
modeling a solid. Since shadow volumes arise individually

for each solid in a scene, and since computing the boolean
union operation is easy on a BSP tree [TN87], but difficult on
a b-rep [Män88], it is advantageous to compute the union of
shadow volumes, which results in significant speedups dur-
ing runtime resulting from a reduction in shadow polygon
fillrate [GS05].

BSP trees have the advantage over modeling with either
CSG trees or Nef polyhedra of not requiring the computa-
tion of neighborhoods, which pose a significant implemen-
tation challenge. BSP trees have the mild constraint that they
can only capture regular sets, but that is an acceptable, and
sometimes desirable, constraint in many practical system.

Compared to CSG and Nef representations, a BSP tree re-
verses the roles of interior and leaf nodes. Whereas a Nef
polyhedron can be considered a special type of CSG tree in
which only (open) halfspaces are allowed at the leaves, in a
BSP tree each interior node stores an oriented plane that par-
titions space into two sets corresponding to its two subtrees
and each leaf node stores a boolean flag identifying whether
the convex set represented at the leaf is included in the solid
being modeled.

In what follows we describe SVBSP trees, how the bound-
ary of the union of shadow volumes can be extracted, how
the computation can be carried out while storing only one
path from the root to a leaf, and how to handle robustness is-
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sues that arise during implementation. We conclude by pro-
viding time and space statistics.

2. Extracting the Boundary of a shadow volume BSP
Tree

A shadow volume BSP Tree partitions a scene into shad-
owed and non-shadowed cells [CF89]. The scene is recur-
sively partitioned by oriented planes that pass through the
light source and silhouette edges. Figure 1 illustrates a scene
and its SVBSP tree.

Each path from the root node to a leaf node in the SVBSP
tree describes a unique cell that bounds points that are either
entirely inside shadow or outside shadow. For example the
pathOa−Oh−Oi−O j−Ok− in in Figure 1 describes the
cell containing the points occluded by quadranglehi jk. This
cell is defined by the intersection of the positive halfspace of
Oa and the negative halfspaces ofOh,Oi, O j andOk. Each
leaf node contains points that are either entirelyin shadow
or out of shadow, as defined by the node labels. Once the
tree is constructed, it is possible to query the tree to deter-
mine whether a point lies in shadow, or to generate lists of
illuminated and non illuminated polygons [CF89].
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Figure 1: Two triangles and the shadow volume they pro-
duce are shown on the left. The triangle closer to the light,
abc, remains intact; the triangle below it is split into the two
visible quadrangles de f g and hi jk, as well as the occluded
triangle lnm. The SVBSP tree is shown on the right.

Figure 2: In traditional shadow volumes, shown on the left,
all polygons are quadrangles with two affine and two ideal
(w=0) vertices. By contrast in the set union of the shadow
volumes, shown on the right, some polygons are defined by
four affine vertices.
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Figure 3: Sections in the shadow volumes with and without
the computation of the set union are shown.

3. Out-of-Core Construction of BSP Tree

The new BSP tree consists of 3 node types: ’interior’, ’in’
and ’out’ nodes. The ’interior’ nodes are the nodes defining
a splitter plane and the ’in’ and ’out’ nodes are leaf nodes
indicating volumes in and out of shadow, respectively. The
tree is constructed such that every interior node is guaranteed
to have 2 child nodes.

Interior nodes store a splitting plane, the edgee defining
the splitting plane, a flag indicating whethere is a silhouette
edge, and a set of point intervals alonge that identify the set
of points that remain on the (topological) boundary of the set
captured by the BSP tree. Leaf nodes labeled ’in’ store the
polygon visible from the observer and, optionally, a list of
the polygons thus occluded.

Given a three dimensional scene consisting of convex
polygons a BSP tree is constructed by processing the poly-
gons in front to back order from the observer (using a sec-
ondary BSP tree). A polygon is incrementally inserted in the
initially empty tree. At each ’interior’ node the polygon is
split; the up to two fragments that result are recursively in-
serted in child nodes. The polygon is thus fragmented into
pieces that are either wholly lit or wholly in shadow. Each
fragment that arrives at a leaf node labeled ’out’ is illumi-
nated and is used to extend the tree to describe the shadow
volume produced by the fragment. The tree is initialized to
one node labeled ’out’.

We show that it is not necessary to compute and store the
entire tree before extracting the boundary of the solid de-
fined by the BSP tree. It is sufficient to traverse the tree in
a manner reminiscent of depth-first tree traversal. The solu-
tion can be extracted on the fly and the tree trimmed such
that only a single path from the root node is stored at any
given moment.

Because we keep only one path of the BSP tree in memory
at any given moment the space is now bound by the depth of
the tree, which is at worst linear in the number of edges in
the scene (Figure 18). ThePercolatemethod listed next per-
forms the depth-first traversal and pruning of the BSP tree.

At each interior node the polygon fragment is first split by
the splitter plane (Percolate, line 9). This operation is per-
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Figure 4: Depth first creation of the BSP Tree. (1) The poly-
gons are inserted into the tree, sorted in front to back order.
The first polygon, abc, is visible so the method buildSub-
tree is called to construct a subtree describing its shadow
volume. The rest of the polygons are first split by Oa, then
Ob, then Oc with the resulting fragments filtering to the ap-
propriate subtrees (while maintaining their relative order).
(2) After processing the negative child of Oc, the positive
child is processed. The quadrangle ghi j is the first (and, in
this case, only) polygon at a node labeled ’out’, thus it is
visible and again the buildSubtree method is called to re-
place the leaf node. This subtree is processed then pruned.
(3) After processing and pruning Oa’s negative subtree the
positive subtree is processed, where triangle def creates an-
other subtree.

Percolate(list sortedPolys)
1. if NodeLabel == ’interior’ OR NodeLabel == ’out’
2. list PosPolygons, NegPolygons;
3. if NodeLabel == ’out’
4. BuildSubtree(sortedPolys.front())
5. OutputVisiblePolygon(sortedPolys.front());
6. sortedPolys.popFront();
7.
8. For each Polygon in sortedPolys
9. (PosPoly, NegPoly) = Split(currentPoly, SplittingPlane);
10. if PosPoly != nil and NegPoly != nil
11. Intercept(currentPolygon)
12.
13. PosPolygons.append(PosPoly);
14. NegPolygons.append(NegPoly);
15.
16. OutputSideShadowVolumes();
17.
18. if(positiveChild)
19. positiveChild.percolate(PosPolygons);
20. delete positiveChild;
21. if(negativeChild)
22. negativeChild.percolate(NegPolygons);
23. delete negativeChild
24.
25. if NodeLabel == ’in’ //Polygon is not visible from the light
26. OutputInvisiblePolygons(sortedPolys);

formed by theSplit method, which in addition to producing
the two fragments on either side of the splitter plane, must
also ensure that the fragments have appropriate silhouette
edge status. See Figure 5.

split(Polygon P)
1. PositiveFragment = fragment of P on the positive side of the splitter

plane, nil if no such fragment exists
2. NegativeFragment = fragment of P on the negative side of the splitter

plane, nil if no such fragment exists
3. If P is co-planar with the splitter plane
4. NegativeFragment = P
5. Update Silhouette status of edges in each fragment so they match status of edges in P.
New edges get a non-silhouette status as shown in Figure 5.
6. return(PositiveFragment, NegativeFragment)

Splitter Plane

+

Silhouette Edge Non-Silhouette Edge

Positive
Fragment

Negative
Fragment

Figure 5: Splitting a polygon by a splitter plane.

Whenever a polygon fragment passes through an interior
node containing a silhouette edge, the intercept method is
called (Percolate, line 11). TheInterceptmethod takes the
polygon being processed and uses it to update the interval
set for the node, such that it accurately reflects the segments
alonge that produce bound shadow polygons and those that
produce unbound shadow polygons. The operation of this
function is illustrated in Figure 6. The one-dimensional set
operations (−and∩) must be implemented as regularized
operations, which in practice simply means that no interval
can have coincident extremities. Each node in the tree stores
an intervalI initialized to the two endpoints of the casting
segment. In Figure 6, for example,I is initialized to [a,b].
The initially empty setS incrementally stores the shadow
polygons, such as polygon(L1,s,t,L2) in Figure 6.

Intercept(Polygon P)
1. Edge E = Intersection(P, SplitterSegment);
2. if E is a silhouette edge of P
3. return;
4.
5. Point I1 = Projection of E.source through O onto e
6. Point I2 = Projection of E.target through O onto e
7.
8. if O is between I1 and E.source
9. I1 = Intersection(P, SplitterSegment)
10. if O is between I2 and E.target
11. I2 = Intersection(P, SplitterSegment)
12.
13. Interval β = [Min(I1, I2), Max(I1,I2)]
14. Clamp β to be within e’s endpoints
15.
16. I = I− β
17. K = I ∩ β
18.
19. For each Interval [P1, P2] in K
20. P3 = Intersection(Line(O, P1), P);
21. P4 = Intersection(Line(O, P2), P);
22.
23. S.append(Polygon(P1,P3,P4,P2);

It should be noted that on line 13 of theInterceptmethod
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it is indeed possible to compute the minimum and maxi-
mum values of I1 and I2. Since both values lie on the line
e they can be compared using the one dimensional opera-
tions greater than and less than. To execute these operations
we consider the dominant component of the three defining
the points: x, y and z, the component of largest (absolute)
line slope.

Figure 6: When the intercept method is called for edge e
the interval set is{[a,b]}. After E’s endpoints, s and t, are
projected onto e the interval set becomes{[a,L1], [L2,b]}

Finally, each time a polygon fragment reaches a node la-
beled ’out’, it is visible from the observer, which means a
subtree describing its shadow volume must be built (Perco-
late, line 4). This is accomplished by using theBuildSubtree
method:

BuildSubtree(Polygon P)
Each edge in P is combined with the light source to construct a new set of
splitting planes. These splitting planes are used to build a new subtree, the
root of which (now labeled ’interior’) replaces the current node labeled ’out’.

To extract the boundary of the union of shadow volumes
we require three pieces of information from the tree: the
view, the bounded side polygons, and the unbounded side
polygons, as shown in Figures 2 and 3. The view forms both
the near and far caps (by projecting the view to infinity) of
the shadow volume, while the bounded and unbounded poly-
gons provide the sides of the shadow volume.

The interval set at each node describes the set of points
P one for which the ray OP does not intersect any geom-
etry in the scene, thus each interval in the interval set de-
fines a segment one from which an unbound shadow poly-
gon emerges. The unbound shadow polygon is described by
four points: the two endpoints of the interval, and two corre-
sponding ideal points. Each ideal point is the intersection of
the corresponding ray OP with the ideal sphere.

4. Robustness Issues

4.1. Robust Projection

One particular intricacy of this algorithm is the projection
performed to updatee’s interval in the intercept method. The
complication is illustrated in Figure 7.

e

a k

x

y

t

u

F

l b

O (Light)

Figure 7: The interval resulting from the projection (after
clamping to e’s endpoints) of a and b onto e through O is
[x,u], which incorrectly predicts that for any point P in the
interval [x,u] the ray OP intersects F. The correct interval is
instead[x, t].

The intercept method computes the edgeF , the intersec-
tion of e’s splitter plane and the polygon, and projects it back
ontoe to compute an interval. This interval describes the set
of pointsP one for which the rayOP intersectsF ; the inter-
val describes the segment one from which a shadow volume
emerges and is then intercepted byF (see Figure 7). But the
projection has to be implemented carefully.

If k is the intersection of the line passing byO and parallel
to e with the polygon, and if one ofF ’s endpoints,b, lies to
the right ofk, the rayOy will not intersectF – even though
when we perform the backward projection we get the point
y on e. Effectively the pointk projects to the ideal point on
e and the edgeab does not map to the affine edgexy, but
to its complement, which includes the ideal point. A simple
solution, once this case is detected, is to clip the projection
of any endpoint to the right ofk to the pointt on e. If the
endpoints ofF straddlek, this will give the desired outcome
of ignoring points to the right ofk. If both points project tot,
the resulting interval would be a point, which subsequently
vanishes anyway since we use regularized set operations.

This solution is implemented on lines 8—11 of theInter-
ceptmethod. IfO lies between a point (b) and its projection

c© The Eurographics Association 2006.



J. Fedorkiw, C. Smith, and S. Ghali / Out of core Polyhedral Union

(y), we usel , the point of intersection ofeand the polygon as
the projection point. This intersection point is guaranteed to
be outside the line segmente, thus simulating the ideal point.
If e passes through the polygon containingF in the original
scene,e would be split byP in the secondary BSP tree. So
at worste intersectsP at e’s endpoint. Also, because the in-
terval is clamped to[t,u], the intersectionl will be correctly
clamped tot.

In effect this is a classical projective geometry problem
that is well-known in computer graphics. If we project a
segment through a center of perspectivityO onto a planeπ,
but the endpoints of the segment lie on opposite sides of the
plane passing byO and parallel toπ, it would be incorrect to
assume that the projection is the affine segment connecting
the projections of the endpoints. The projection is instead
the “other” segment joining the two points, which includes
one ideal point. This is the reason it is necessary to clip to a
view volume before performing the projection, which is then
guaranteed to consist entirely of affine points.

4.2. Robust Rendering

A second problem arises when rendering shadows using the
resulting shadow volumes whereby some minor cracks ap-
pear as dots of shadow or of light between shadow poly-
gons. Figure 8 illustrates the problem, which is, once again,
a classical problem in computer graphics: T-vertices. Since
adjacent shadow polygons are rasterized independently, their
common edge will not always be pixel-exact. T-vertices can
be eliminated using two methods depending whether they
are infinite or finite shadow polygons. For infinite shadow
polygons one does not cast the segment provided to infinity,
but builds a segment from each neighbor’s finite points (or
just the segments point if one neighbor is infinite) and casts
this segment to infinity, which guarantees that the points lie
on the same line. In the case of finite polygons, one simply
triangulates the side mesh such that the problem no longer
arises.

O (Light) O (Light)

a′ b′

hg

a b d
e

d

e′a′

a b c d
e

e f e f

c

hg

Figure 8: The two adjacent polygons a-b-b′-a′ and b-c-f-e
may have a crack between them. This results because when
e is scan-converted it may no longer be on the line formed
by b and b′. Similarly f may not be on the line formed by c
and g.

5. Implementation

The algorithm has been implemented in C++ with the help
of the Computational Geometry Algorithms Library. CGAL
made it possible to experiment with various number types.
Using floating point arithmetic makes it possible to pro-
cess only small scenes. Numerical robustness issues quickly
arise when processing other than toy scenes and it is dif-
ficult to solve numerical issues by using epsilons, a popu-
lar technique in computer graphics. We have opted instead
to use the certain and more elegant, but also more expen-
sive, combination of exact number types (rational numbers)
with floating point filters. Only if a floating point operation
is unreliable are rational numbers used to evaluate the ex-
pression. As one would expect, maintaining rational num-
bers defined with varying-length integers consumes signifi-
cant space, which was the original motivation for seeking a
modification to BSP trees that does not require the storage
of the entire tree in memory at the same time.

In addition to implementing the BSP tree we also imple-
mented an application that reads the boundary shadow vol-
ume produced and that renders the scene with shadows. The
results observed are explored in the next section.

6. Regular vs. Concise Shadow Volumes

The recently popular stencil shadow volumes render pixel-
perfect shadows and also produce accurate shadows on
dynamic objects. In traditional shadow volume render-
ing [Cro77] each object in the world casts shadow volumes.

Rendering shadows using shadow volumes involves three
rendering passes: The scene is first rendered using ambient
lighting, then a mask that identifies shadowed pixels is cre-
ated using the stencil buffer. Finally, pixels not masked by
the stencil buffer are re-rendered using full lighting.

To produce the appropriate shadow mask in the stencil
buffer the shadow volumes that fail the depth test are ren-
dered into the stencil buffer. Back-facing shadow polygons
increment the pixel value, while front-facing shadow poly-
gons decrement the value. The number at each pixel indi-
cates how many shadow volumes the pixel is in. If the value
is zero, the pixel is in no shadow volumes, and if it is one or
more, it lies in shadow. See Figure 9.

By using the concise shadow volumes to produce shad-
ows for a scene we minimize the surface area of the shadow
volumes that need to be rendered. As shown in Figure 10
this results in significant improvements in frame-rates for
complex scenes in which shadow volumes interact. In other
scenes where the shadow volume exhibits little interaction,
using concise shadows would be unnecessary (Figure 11).

7. Analysis

We empirically analyzed the time and space requirements for
constructing the BSP tree on two scenes of various complex-
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Figure 9: Rendering shadow polygons into the stencil buffer
is tantamount to casting a ray from infinity through each
pixel and the viewer. As the ray passes through back and
front facing shadow polygons (that fail the Z-test) the value
for that pixel is incremented or decremented. The concise
shadow volumes (right) generate fewer shadow polygons
than the traditional shadow volumes (left).
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Figure 10: Frame rendering time over 2000 frames is com-
pared for the Buildings-40 and Random-1000 scenes using
a fixed camera path.

ity. The first scene consists of two layers ofn parallel scaled
cubes as shown in Figure 12. The second scene consists of
n random cubes as shown in Figure 14. The time diagrams
shown below are determined under filtering and the Gmpq
number type with CGAL.

It is interesting to know the effect of storing a single path
in the tree on the time and so we compared the time for con-
structing both the full and the pruned trees. As can be seen
by comparing Figures 15 and 16, pruning the tree in a depth-
first manner has no significant impact on the runtime.
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Figure 11: Frame rendering time over 2000 frames is com-
pared for the Bricks-100 scene. The two graphs have been
separated because the rendering times are almost identical.

Figure 12: The "Bricks" scene.

Figure 13: The "Buildings" scene.

7.1. Comparison with Nef Polyhedra

An alternative method for computing the boundary of
shadow volumes is possible. CGAL offers an implementa-
tion of Nef Polyhedra that performs boolean operations be-
tween two Nef polyhedra. By constructing a Nef polyhedron
for each shadow volume the boundary of shadow volumes
can be extracted.

The construction of the boundary of shadow volumes us-
ing Nef polyhedra was timed for the Bricks and Random
scene and the results are shown in Figure 19. Figure 20 com-
pares the use of Nef polyhedra and BSP trees, which sug-
gests the superiority of the latter.

8. Conclusion and Future Work

We have described a time and space efficient algorithm that
generates the boundary of a BSP tree without computing the
boundary of individual leaf nodes of the tree. The particular
set of BSP trees we capture is the set of solids representing
shadow volumes resulting from illuminating a scene from a
point source. Many intriguing questions remain open. The
visualization of a Nef or of a BSP solid without computing
their boundary are intriguing questions.

Traditional thinking had suggested that the visualization
of CSG trees can only be performed after extracting their
boundary, but recent work has shown that the visualization
is effectively independent of boundary extraction [HR05].

Figure 14: The "Random" scene.
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Figure 15: Construction time of the BSP Tree.
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Figure 16: Construction time for the non-pruned BSP Tree.
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Figure 17: BSP Tree Size.
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Figure 18: BSP Tree Depth.

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 0

 2
00

 4
00

 6
00

 8
00

 1
00

0

 1
20

0

 1
40

0

T
im

e(
se

c)

Number of Edges

Bricks

 0
 20
 40
 60
 80

 100
 120
 140
 160

 0

 2
00

 4
00

 6
00

 8
00

 1
00

0

 1
20

0

T
im

e(
se

c)

Number of Edges

Random 

Figure 19: Construction time of the shadow volume union
using Nef polyhedra.

At this time it is not known whether Nef or BSP represen-
tations can be visualized without computing the boundary.
Such visualization of a BSP tree could potentially mean that
shadow volumes can be determined using the stencil buffer
without explicitly knowing the boundary of the solid.

Even though BSP trees are one of the more elegant meth-
ods for representing solids and the only one that makes the
implementation of boolean operations a relatively simple
task, they have not been widely adopted, which is perhaps
due to a lack of a general theory of BSP solids. When imple-
menting BSP algorithms, it is necessary to be careful about
predicates such as the sidedness of a point with respect to a
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Figure 20: In this graph with exponential axes it is illus-
trated that the time complexity of constructing shadow vol-
umes using Nef polyhedra grows significantly faster than
that of the BSP tree.
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partitioning plane, but similar robustness issues arise in any
solid modeling algorithm. Two questions need to answered
for the development of such a BSP theory.

The first problem is how one can capture the set of points
lying on the partitioning hyperplane. An intuitive idea is to
store a BSP tree of dimensionn− 1 at every interior node
of ann-dimensional BSP tree, but the details have so far not
been worked out. The second problem is the computation of
the boundary of an arbitrary BSP tree. It has been shown that
the boundary of individual leaves can be coallesced to pro-
duce the final result [CN96], but an algorithm for this prob-
lem is useful only if, crucially, the boundary is computed
without first computing the boundary of individual leaves.
That algorithm has also not been so far shown to be simple
enough to be implementable.

The method presented to compute the boundary of a BSP
tree requires that the tree in question represent a shadow vol-
ume. It remains to be investigated whether this method can
be elegantly extended to compute the boundary of an arbi-
trary solid represented by a BSP tree. To extract the bound-
ary of a BSP representation of a shadow volume we require
both the BSP tree representing the solid as well as a 1D BSP
tree capturing visibility along each splitter edge. To extend
this method to arbitrary solids, we would require a 2D BSP
tree in addition to the 1D BSP tree. For each splitting plane
in the 3D BSP tree a 2D BSP tree would describe the facets
of the solids on that plane. Each line in the 2D BSP tree
would also require a 1D BSP tree.

Another intriguing problem does not arise in our case be-
cause all partitioning planes are defined by points in the in-
put. But suppose that we are given an arbitrary line in 2D
or plane in 3D defined by second or third generation points
(a line whose extremities are themselves given by line inter-
section). How can one reduce the number of bits required for
defining the line or the plane by finding points incident to the
line or the plane, but ones that have a brief description?
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