
Automatic Stroke Extraction and Stroke Ordering

Based on TrueType Font

Sang Ok Koo , Hyun Gyu Jang, Kwang Hee Won and Soon Ki Jung

Virtual Reality Laboratory, Kyungpook National University, South Korea

Abstract

In this paper, we suggest a method that extracts strokes of Chinese characters and orders them automatically based

on glyph data from TrueType Font. TrueType Font contains glyph of characters whose format is a series of bézier

curves and they are arranged according to a rule. Using clues, we extract the vectors which consist of each stoke

and reconstruct each stroke to the format similar to a TrueType Font. In addition, we label every stroke and define

the orders of strokes using stroke labels and indicate the relations among them. Because all of the processes are

performed automatically, we can minimize the time and the effort to make stroke database of Chinese characters.

Moreover, because the final data has vector graphics format, it can be applied to the study of graphical contents

using glyphs as well as to simple font generation for the Chinese education.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Geometric algorithms,

languages, and systems

†

sokoo@vr.knu.ac.kr

1. Introduction

There are many people who learn the Chinese language.

When we are willing to learn Chinese, the first step is

memorizing Chinese characters. However, Chinese

characters are so complicate and have many different

characters that we cannot learn them easily. Nowadays, we

can contact a lot of education contents through web or multi

media devices [1][2]. Despite an increasing amount of

content, vendors still generate them manually. In addition,

the contents are not compatible because of the limitation of

the data format. To change the attributes of contents such as

size, color, and others, they have to do it all over again. So it

is very important that we have to define the data format of

the contents that is device-independently.

In this paper, we extract stokes of Chinese characters

using TrueType Font data, which is able to be employed

device-independently. This stores data in vector format,

which is more efficient and more compatible. Moreover, we

describe how to order stokes that are extracted from the

previous step. We employ a labeling method. We name

arrangements of strokes as labels, and define the orders

among them. Since all parts of the process are performed

automatically, we can simply build up the Chinese character

stroke database. This database can be used within any

application.

This paper is organized as follows. We describe the

TrueType Font format which we use, and previous works in

Section 2. We describe the automatic algorithm of stroke

extraction and ordering in Section 3 and Section 4,

Experimental results are shown in Section 5. Finally, the

conclusion and future work are discussed in Section 6.

2. Background

The method of stroke extraction we propose is based on the

TrueType Font data, which is more effective at expressing

glyphs than using bitmap data. In this section, we discuss the

properties of the TrueType Font and previous methods to

extract strokes and order them.

2.1 TrueType Font and Bézier Curves

EG UK Theory and Practice of Computer Graphics (2006)
M. McDerby, L. Lever (Editors)

c© The Eurographics Association 2006.

http://www.eg.org
http://diglib.eg.org

TrueType Font is a popular font format used in operating

systems such as Mac OS and Windows and was designed to

be efficient in storage and processing, and extensible [3].

The information from a TrueType Font is the glyph of a

character, which is composed of control points of bézier

curves [4]. This kind of vector font needs a font rasterizer

which renders the final shape of the character, but it is very

efficient structure to change certain attributes including

shape or size.

Figure 1 shows the glyph of ‘ ’. There are some points

shown, that are the control points of the TrueType Font. The

algorithm of stroke extraction we propose keeps these points

when making up each stroke. Figure 2 shows the result of

stroke extraction. The resulting points are all originally from

TrueType Font data. Therefore, the result of our method has

the characteristics of a TrueType Font.

Figure 1: The glyph of ‘ ’

Figure 2: The part of the result of stroke extraction

2.2 Acquisition of Stroke Animation Data

i-hanja shows GIF animation of Chinese characters [2]. To

make the GIF animation data, they have to paint stroke by

stroke manually. That is simple and easy, but very time

consuming work.

Koo et al. shows more natural and smooth stroke

animation [5]. Their method depends on user’s input as

shown Figure 3. The number of stroke, the direction of each

stroke and the order of strokes are determined by the user’s

input. This is faster and easier than making image sequences

directly, but it is still cumbersome to make a stroke for each

character. We propose the method to extract and to order

strokes automatically without user interaction.

Figure 3: User’s input for manual stroke extraction

3. Automatic Stroke Extraction

In this section, we describe how to extract stokes from the

vectors in the TrueType Font data. As shown in Figure 4, a

stroke consists of the set of vectors. There are two vector

sets; one consists of vector a, b and c, the other consists of

vector i, j, and k. We name one vector set “corresponding

vector set” to each other. We have to find vector sets as

shown in Figure 4. The process of stroke extraction consists

of four steps (contour grouping, extracting vectors,

composing strokes and control point recovery) as shown in

Figure 5.

Figure 4: A stroke is composed of vectors

Figure 5: The process for extracting strokes

c© The Eurographics Association 2006.

Sang Ok Koo et al. / Automatic Stroke Extraction and Stroke Ordering Based on TrueType Font124

3.1 Contour Grouping

It is not efficient to search for corresponding vectors from all

vectors. So, we make contour group, which does not affect

others when finding a corresponding set. The left of Figure 6

shows the result of grouping contours of a character. Every

group does not overlap any group. A group can have one

contour or more. If a contour is surrounded by an outer one,

they belong to same group. In this case, we have to pay

attention to the fact that the direction of an inner contour is

the reverse of the outer one.

Figure 6: Contour grouping and direction

3.2 Extracting Vectors

The initial data from a TrueType Font is a series of bézier

curves. It is hard to calculate with bézier curves. For this

reason, we replace them by simple vectors as shown in

Figure 7. These simple vectors keep the feature that they

were originally bézier curves taking the coordinates of

control points. We employ only operations between 2

dimensional vectors. This is very efficient and easy.

Figure 7: Extracting vectors

3.3 Composing Strokes

To compose stokes, we need two vector sets, which are

parallel to each other. To do this, we use the distance and the

angle between two vectors.

The thickness of fonts is regular. Therefore, two vectors

that are far from one another cannot be corresponding

vectors. A vector placed within a specified distance to

another is considered as a candidate. We employ the distance

between a point and a line on Euclidean 2-space.

As shown in Figure 8, there are three vector relations. In

the relation of (a) and (b), we can estimate the distance. But

in case of (c), the intersection is not within the line segment.

Hence, we do not consider it as a possible candidate.

Figure 8: Vector relations

To examine whether a vector corresponds to another, we

have to check the angle between two vectors. Two main axes

which make up a stroke are nearly parallel each other.

Therefore we think of two vectors that make an angle

between them close to 180 degree as a possible candidate.

We define the angle () between two vectors u and v as

taking arc cosine of the dot product of the two vectors as

Equation 1.

.cos 1

vu

vu
 (1)

If two vectors of a stroke move counter-clockwise or

right-hand direction as Figure 9-2, we can make up a stroke.

But if vectors move clockwise as Figure 9-3, we cannot

compose a stroke.

Figure 9: Contour of a stroke moves counter-clockwise

In order to determine the direction of two vectors, we

estimate the cross product of two vectors. If there are two

vectors u and v

, we can make a vector w

, connecting the

head of u

and the tail of v as you can see in Figure 10.

In the following Equation 2, we augment dimension,

adding the value zero as a third entry, because u and v

are

vectors in the 2D coordinate system. If the third entry of

wu is greater than 0, this means u and v move

counter-clockwise according to the right-hand rule.

c© The Eurographics Association 2006.

Sang Ok Koo et al. / Automatic Stroke Extraction and Stroke Ordering Based on TrueType Font 125

Figure 10: Arrangement of vectors

),0,0(

)0,,()0,,(

wuwu

wwuu

xyyx

yxyxwu
 (2)

Figure 11 shows the algorithm for finding corresponding

vectors for composing strokes.

dT : threshold distance

aT : threshold angle

MakeStroke(vector1, vector2)

{

 if(Distance(vector1, vector2) < dT &&

 Angle(vector1, vector2) < aT &&

 CrossProduct(vector1, vector2) = CCW)

 {

 if(SameDirection(vector1, vector2))

 add_same_vector_set …

 else add_opposite_vector_set …

 }

}

Figure 11: The algorithm for finding corresponding

vectors

To complete making a stroke, finally it needs merging

some segments. The glyph as shown in Figure 12, where

there is a ‘+’ shape, has four segments, A, B, C and D that

have been composed by previous stages. However, actually

we want to get strokes, A+B and C+D.

Figure 12: Stroke segmentation

It is easy to know which segments have to be considered.

At the right part of A in Figure 13, the vectors move

clockwise. On the other hand, at the left part of A, the

vectors move counter-clockwise. The stroke that has the

parts that vectors move counter-clockwise is a candidate.

And if there is another candidate, they are merged. We can

examine the fact that two vectors are arranged clockwise by

using Equation 2.

Figure 13: Movement of vectors at ‘+’ shape strokes

3.4 Control Point Recovery

We have to substitute control points for vectors that have

been extracted during the previous steps as shown in Figure

14.

Figure 14: Control point recovery

c© The Eur ogr aphics Association 2006.

Sang Ok Koo et al. / Automatic Stroke Extraction and Stroke Ordering Based on TrueType Font126

In the case of Figure 15, two strokes intersect each other at

‘T’ or ‘+’ shape characters. There is no vector that connects

all other vectors, so we simply add line there. It is easy to

know when and where these cases exist. That is the point

where two or more stroke share one control point.

At the end of a stroke, we add all control points between

the ends of vectors which make up a stroke as shown in

Figure 16. This ensures that there is no control point which

shares two or more strokes at the end of stroke.

Figure 15: Control point recovery at general part

Figure 16: Control point recovery at the end of a stroke

4. Automatic Stroke Ordering

In this section, we describe how to estimate the order of

stokes. We label all strokes, and determine the order

according to the relation of them.

4.1 Stroke Classification

Table 1 shows the basic rule for ordering Chinese stroke [6],

but these are exceptions. To resolve the exception, we deal

with the problem as a special case. If there are stroke sets

which are against the basic rule, we define them as labels

and order them correctly.

Before we set the order of strokes, we should determine

the stroke level. There are 7 stroke types as you see in table 2.

All strokes map into that pre-defined types. The length of

strokes, the slope of strokes and the angle between vectors in

strokes decide the label of strokes. The algorithm for labeling

is shown in Figure 17.

Table 1: Basic rules for stroke order [6]

Rule Ex. Stroke order

First horizontal,

then vertical

First left-falling,

then right-falling

From top to bottom

From left to right

First outside,

then inside

Finish inside,

then close

Middle,

then the two sides

Table 2: Labels of strokes

Label Stroke

DOT

HORIZONTAL

VERTICAL

HOOK

LEFTFALLING

RIGHTFALLING

TURNING

Table 3 shows subdivided stokes, which are labeled by

relation of their positions. They can resolve the problem of

exception.

4.2 The Algorithm for Stroke Ordering by Relaxation

Labeling

Relaxation labeling is a way to define a unique label of an

entry after one or more labels of an entry are given according

to its attributes [7][8]. We define the set of labels (Table 3),

and the relation as the position of them (see table 3). For any

stroke, if we deal with the set of strokes },...,,{ 21 nsssQ ,

is will be labeled by its relation with other strokes. The

algorithm is shown in Figure 18. We consider the clues,

which are intersection and adjacency of strokes and so forth.

c© The Eurographics Association 2006.

Sang Ok Koo et al. / Automatic Stroke Extraction and Stroke Ordering Based on TrueType Font 127

Table 3: Stroke subdivision

Base Label Ex. Description

DOT Not divided

NONE General

CROSS Intersection

LEFT Left of other strokes

RIGHT
Right of other

strokes

HORIZONTAL

CLOSE or

NONE General

T Vertical of

CROSS Intersection

VERTICLAL

LEFT Vertical of

NONE General

CROSS Intersection HOOK

CROSS

2
Hook of

NONE General

SYM Symmetry

SYM2 Above the

LEFTFALLING

RIGHT Intersection

NONE General

SYM Symmetry RIGHTFALLIN

G

SYM2 Above the

NONE General

TURNING

F Turning of

LT : threshold of stroke length (100 pixel)

varT : the maximum angle between two vectors in a stroke

maxT : maximum slope of stroke

minT : minimum slope of stroke

for all strokes in the set of strokes },...,,{ 21 nsssQ {

 if (length of is <
LT) label of is = DOT

 else if (vector angle of is > varT)

 label of is = HOOK

else if(slope of is < minT)

label of is = VERTICAL

else if(slope of is > maxT)

label of is = HORIZONTAL

else if(x-value of is > 0)

label of is = RIGHTFALLING

else label of is = LEFTFALLING

for all strokes in the set of strokes },...,,{ 21 nsssQ

if (label of is = VETICAL &&

 label of js = HORIZONTAL &&

 Intersect(is , js) = TRUE)

 Label of is + js = TURNING

}

Figure 17: Stroke classification algorithm

},...,,{ 21 nsssQ : the set of strokes

},...,,{ 21 nlllL : the set of labels

1. For all strokes in },...,,{ 21 nsssQ , determine

the label of is (by Figure 17).

2. Subdivide the label of is (by table 3)

(is may have several labels).

3. Delete the labels of is which do not keep

consistency.

4. Repeat 3, until the label of is is unique.

Figure 18: Relaxation labeling algorithm

c© The Eurographics Association 2006.

Sang Ok Koo et al. / Automatic Stroke Extraction and Stroke Ordering Based on TrueType Font128

4.3 Stroke Ordering

We make up the order after all labels of strokes are

determined. We define the operator ‘ ’ between two

strokes. We consider the ordering strokes as a problem of

sorting strokes. Operator ‘ ’ is reflexive, antisymmetric,

and transitive. Hence the set of strokes Q has totally

ordered relation for the operator ‘ ’. Operator ‘ ’ is

defined by the rule of table 4.

Table 4: The order of priority between labels

Ahead Later

DOT HORIZONTAL_CLOSE

HORIZONTAL_CROSS VERTICAL_CLOSE

HORIZONTAL_CROSS HOOK_CROSS

VERTICAL_NONE HORIZONTAL_LEFT

VERTICAL_NONE HORIZONTAL_RIGHT

VERTICAL_T HORIZONTAL_CROSS

VERTICAL_LEFT TURNING_NONE

VERTICAL_NONE LEFTFALLING_SYM

VERTICAL_NONE RIGHTFALLING_SYM

HOOK_NONE HORIZONTAL_LEFT

HOOK_NONE HORIZONTAL_RIGHT

HOOK_CROSS2 HORIZONTAL_CROSS

HOOK_NONE LEFEFALLING_SYM

HOOK_NONE RIGHTFALLING_SYM2

LEFEFALLING_NONE RIGHTFALLING_NONE

LEFEFALLING_SYM HORIZONTAL_NONE

LEFEFALLING_SYM2 HORIZONTAL_CROSS

LEFEFALLING_RIGHT RIGHTFALLING_NONE

RIGHTFALLING_SYM2 HORIZONTAL_NONE

RIGHTFALLING_SYM2 HORIZONTAL_CROSS

TURNING_F VERTICAL_NONE

TURNING_F HOOK_NONE

5. Experimental Results

In this section, we made an experiment to estimate the

accuracy of our method for 1000 Chinese characters. The

parameters used in this experiment are:

Font name: gulim.tcc

Font size: 500 500 pixel

Minimum of thickness of strokes: 35 pixel

Maximum of thickness of strokes: 45 pixel

Tolerance of slope of corresponding vectors: 15

degree

LT (threshold of stroke length): 100 pixel

varT (the maximum angle between two vectors

in a stroke): 75 degree

maxT (maximum slope of stroke): 75 degree

minT (minimum slope of stroke): 15 degree

The result of the experiment is shown in table 5. Stroke

extraction is successful for as many as 97% of all the

characters. The ordering experiment was taken for the

characters which are extracted successfully. The ordering is

successful for about 77%. Figure 19 and Figure 20 show the

result of stroke extraction and stroke ordering for two

characters (and).

6. Conclusions

We proposed a method of automatic stroke extraction and

stroke ordering for glyph data within a TrueType Font. We

verified that about 97% of characters are well extracted and

77% of the well extracted characters are ordered correctly.

We made the order of strokes using relaxation labeling. We

defined the labels of strokes according to the relation of

strokes, and determined a priority amongst them. It is

possible to generate stroke animation data for Chinese

characters automatically using our method.

Our method does not work well for any fonts whose

thickness or shapes are variable. We will study to apply our

method how to these kind of fonts as future work.

References

[1] USC Chinese Department Homepage,

http://www.usc.edu/dept/ealc/chinese/newweb/home.htm

[2] i-hanja Homepage (Korean), http://www.ihanja.com/

[3] Microsoft Typography,

http://www.microsoft.com/typography

[4] Farin, G.: Curves and Surfaces for Computer Aided

Geometric Design, Academic Press, New York, 1988.

[5] Sang Ok Koo, Hyun Gyu Jang and Soon Ki Jung:

Efficient Stroke Order Animation of the Chinese Character,

KCJC, 2005.

[6] How To Write Chinese Characters,

http://www1.esc.edu/personalstu/jli/How to Write Chinese

Characters.pdf

[7] Dana Harry Ballard, Christopher M. Brown: Computer

Vision, Prentice Hall Professional Technical Reference, 1982.

[8] Hummel R.A. and Zucker S.W.: On the foundations of

relaxation labeling processes, IEEE Transaction on Pattern

Analysis and Machine Intelligence., Vol.5, No. 3, 1983.

c© The Eurographics Association 2006.

Sang Ok Koo et al. / Automatic Stroke Extraction and Stroke Ordering Based on TrueType Font 129

Figure 19: The result of ‘ ’

Figure 20: The result of ‘ ’

c© The Eurographics Association 2006.

Sang Ok Koo et al. / Automatic Stroke Extraction and Stroke Ordering Based on TrueType Font130

Table 5: The result of the experiment

The extracted well fail

972 (97.2%)

The ordered well fail

751 (77.3%) 221 (22.7%)

28 (2.8%)

c© The Eurographics Association 2006.

Sang Ok Koo et al. / Automatic Stroke Extraction and Stroke Ordering Based on TrueType Font 131

