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Abstract
We present a novel algorithm capable of rendering complex dynamic scenes at high frame rates. The key part of
the algorithm is occlusion culling which is performed by an optimized usage of the hardware occlusion queries.
The spatial organization of the scene using 2-level BSP-like hierarchy helps to speed up evaluating full and partial
occlusion of the objects. The algorithm handles both static and dynamic objects and places no restrictions on the
shape of objects.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

1. Introduction

The computer graphics is evolving and more and more com-
plex worlds are becoming common. Recently, high quality
models were used mainly in CAD applications, architectural
visualizations or scientific simulations. Nowadays it is possi-
ble to find very complex environments in many applications,
e.g. in common computer games. Unfortunately (never end-
ing story), the raw power of the computers is not increasing
fast enough and it is not possible to display such environ-
ments directly using just the power of a current 3D graph-
ics hardware. More advanced algorithms have to be used
to achieve acceptable frame rates. These algorithms include
level-of-detail reduction of complexity and visibility culling.
In this paper we will focus on the latter approach.

The visibility culling algorithms are used to detect prim-
itives that are not visible from the current point of view.
Most of the commonly used algorithms are based on frus-
tum culling and backface culling. Both approaches process
each polygon independently, are easy to implement and are
supported by major graphic APIs. Occlusion culling, which
can eliminate objects occluded by other objects, is much
more problematic. This type of visibility determination can-
not process graphic primitives independently but has to take
objects relations into account.

If done properly, the occlusion culling can accelerate the
rendering significantly. Previous research efforts have gone
far in this area, especially for large static scenes (e.g. urban
areas) and moving camera. Most of the algorithms published

till now use some kind of preprocessing of the scene remain-
ing the same for all the time of the existence of the scene.

Figure 1: Two level BSP tree structure: objects in the scene
are organized in main BSP-like tree (black) and any object
can be partitioned and have its own BSP tree (red).

Usually some support for moving objects can be imple-
mented. However, if most objects in the scene were moving,
the time requirements for the change of preprocessed data
would be too high. We want to fill this gap by presenting
an algorithm based on BSP-like trees allowing movement of
many complex objects and also supporting partial occlusion
of objects.

Our main goal was to design a flexible unbiased algorithm
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for complex scenes. The algorithm described in this paper
has the following properties:

• There are no restrictions on the shapes of objects in a
scene.

• All objects serve as potential occluders.
• Entire object as well as only a part of it can be eliminated

due to occlusion culling.
• All objects in a scene can move.

A preprocessing of objects is still necessary, but runtime
updates of the internal structures are simple and can be done
quickly.

2. Related work

In the last decade, many algorithms for accelerating the vis-
ibility task were published. These algorithms fall into two
main categories: visibilityfrom-pointor visibility from-cell.

From-cell algorithms calculate potentially visible set of
objects (PVS) for a region. PVS is usually determined in
preprocessing phase and just a few computations are exe-
cuted at runtime. The typical representative of this group is
portal rendering (see Luebke et al. [LG95]), which is fre-
quently used in computer games. Scene is divided into con-
vex cells, which are connected through portals. As the user
can see different cells only through the portals, the set of
visible cells can be determined by performing only several
simple tests in each frame. Hua et al. [HBPF02] and Koltun
et al. [KCCO00] proposed different algorithms that divide
scene into cells and for every cell several occluders are cre-
ated. The occluders are very simple objects approximating
fusion of several smaller objects and which are used, instead
of actual objects, to accomplish occlusion culling at runtime.
The from-cell algorithms are useful in specific types of en-
vironments, such as indoor scenes, but their drawback is a
little support of highly dynamic scenes.

Visibility in dynamic scenes can be solved by usingfrom-
point algorithms. These algorithms determine PVS that is
valid for the current point of view. Usually, PVS has to be
detected for every change of view, and special arrangements
are necessary to lower the cost of this operation. Hudson et
al. [HMC∗97] created "shadow" volumes that extend away
from the camera and are used for culling the intersecting ob-
jects. Greene et al. [GKM93] and Zhang et al. [ZMHH97]
presented algorithms based on a screen-space hierarchical
buffer. The latter uses Hierarchical Occluder Map (HOM), a
pyramid of images with decreasing resolution. Every pixel
in the HOM represents an average opacity of respective re-
gion in image space. The pyramid is generated from several
occluders which are selected automatically each frame. This
algorithm relies on an appropriate selection of the occluders.
If wrong occluders are chosen, the performance can decrease
dramatically. However, the careful selection of the occluders
is not so crucial in algorithms which use occlusion query
functions available in current graphic cards.

Hey at al. [HTP01] proposed an algorithm that constructs
"lazy occlusion" grid in screen space and uses the occlusion
queries to resolve the visibility of the individual cells if nec-
essary. Hillesland et al. [HSLM02] divide the scene into a 3D
grid (either uniform or non-uniform) and the visibility of the
cells is queried during the rendering. For a visible cell, the
geometry intersecting it is rendered. Bittner et al. [BWPP04]
optimized the usage of occlusion queries. Their algorithm
performs a traversal of the hierarchy represented as kD-tree.
Considering the temporal coherence of previously visible
and invisible nodes, unnecesary queries are not issued and
the rendering is speeded up significantly.

Yoon et al. [SEYM03] combined occlusion culling with
view-dependent rendering (an extension of the progressive
meshes [Hop96]) to allow fast rendering with slight image
imperfections. This algorithm gives good results for mod-
erate dynamic changes, however it has some drawbacks. If
the movement of the camera exhibits only a low temporal
coherence (fast camera rotation or a sudden change in posi-
tion), it would be difficult to find proper occluders and the
performance would decrease.

The common problems of above-mentioned algorithms
are high memory requirements caused by loading all data
in advance. Correa et al. [CKS03] solved it by computing
an approximate set of visible objects for the next frame
and prefetching the geometry just before it was used. Their
method uses much less memory than other approaches, with-
out serious impact on the performance.

More comprehensive surveys of visibility algorithms were
presented by Cohen-Or et al. [COCSD00] and Bittner et al.
[BW03].

3. Algorithm overview

We present a novel algorithm capable of rendering complex
dynamic scenes at high frame rates. The algorithm is based
on three key principles: Adaptive space partitioning, divid-
ing objects into parts and optimized issuing of occlusion
queries. These will be desribed in detail later.

The algorithm assumes a scene composed of objects
which are independent on each other, can be moved freely
and can be of an arbitrary complexity. The current version
of algorithm can process objects represented as triangular
surfaces without any topological constraints.

The basic scheme of the algorithm is as follows: At first,
each object is processed individually using its original co-
ordinate system. Each object that is too complex, is divided
into parts and a local axes-aligned BSP tree is created. A
simple criterion based on the maximum number of triangles
in leaves is used to terminate a construction of the tree (de-
tails in3.1).

Afterwards the whole scene is organized globaly using an-
other tree structure. Complex objects with their BSP trees,
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as well as simpler objects without BSP trees, are positioned
into a scene. Axis-aligned BSP-like tree is constructed in a
similar way, see3.2. As the result, a 2-level hierarchy is pre-
pared in the preprocessing phase.

At runtime, the hierarchical spatial structure is traversed
in a top-down manner, leaves visited in a front-to-back or-
der with respect to the current position of a camera. The
visibility of each node is tested and the nodes found visi-
ble are processed further. Objects in the node without lo-
cal BSP tree are directly rendered by sending them to the
graphic card, which draws them using conventional Z-buffer
algorithm. The complex objects having their own BSP tree
are processed similarly as the main scene tree. The overall
scheme is outlined in the Algorithm1.

Algorithm 1: Overview of the algorithm

/* Preprocessing phase */
foreach object do

if TooComplex (object) then
Divide object;
Create local BSP tree;

end
end
Create global BSP-like tree containing all transformed
objects;

/* Runtime phase */
foreach frame do

// Possible changes in the scene
Update global BSP-like structure;
Traverse tree hierarchy front-to-back;
foreach node do

Try to estimate the visibility;
if CannotEstimate then

Issue occlusion query;
if Visible (node) then

Render appropriate object parts;
end

end

The scheme is presented in a very simplified form as it
does not show overlapping of processing at runtime. The de-
tails of the algorithm are discussed in the following sections.

3.1. Object partitioning

Complex objects consisting of many triangles are partitioned
in space using an axis-aligned BSP trees. The object is di-
vided recursively by planes until a number of triangles in
parts drops below threshold level. The triangles intersecting
the plane are split up. Although this process increases a total
number of triangles, the overall effect is negligible as large
parts of objects can be eliminated by the occlusion culling at
runtime.

Whereas a world coordinate system of a scene is fixed, ob-
jects in the scene may be positioned and move independently
of each other. It implies that the local BSP trees must be also
transformed together with their objects. An additional trans-
formation matrix is stored in a root of every local tree node
and evaluated after every dynamical change in the scene.

3.2. Scene partitioning

An axis-aligned BSP-like tree is employed for organizing
the objects in the scene. The main difference to object parti-
tioning described in3.1 is that objects are not split, but only
tied to a respective node. An object intersecting the splitting
plane between two children of a node, is placed in the parent
node. Consequently any object belongs exactly to one node,
which is the smallest node denoting the subspace the object
is fully contained in. Resulting structure is similar to BSP
tree, with objects not only in leaves but also in inner nodes.

Analogously to local BSP trees, bounding boxes of sub-
spaces are stored in nodes for additional visibility testing.

In some cases, objects may be placed into the root of the
whole tree hierarchy, which means thay have to be processed
each frame regardless of the camera position and orientation.
The number of such objects is usually not high and it may
be lowered using adequate splitting or other form of decom-
position.

But even if not, one can assume that such a large object
would consist of many triagles and a local BSP tree would
be constructed which would support efficient traversal.

To make dynamic changes available, the scene tree is
checked at the beginning of each frame. The objects are
tested with respect to space subdivision and if neccessary,
they are relinked to respective node moving thus up or down
in the scene tree. Space subdivision is not changed. As the
tree is built using only bounding boxes of objecs and no
splitting is accomplished, this operation is fast and inex-
pensive. Simultaneously we perform "lazy" reconstruction
of the scene tree, i.e. after several frames the scene subdivi-
sion tree is locally adjusted to reflect the dynamic changes.

3.3. Traversing the structures

The traversing starts at the root of the scene tree. For each
visited node the potential visibility is resolved (see3.4). If
the node is visible, its contents are processed further in the
following order: The child node closer to a camera is pro-
cessed first, then the objects stored in the node and finally
the child node further from the camera. The objects stored
directly in the node are sorted by the distance of their bound-
ing boxes’ centroids from the camera. Whenever an object
is to be rendered it is first checked for existence of the local
BSP tree. An object without tree is immediately rendered
on the screen. If the tree is present, the algorithm traverses
it in the same way as the scene tree. As mentioned before,
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respective local transformation must be applied to the local
BSP tree as well as to objects rendered. Remaining work can
be done in the same way as when dealing with the scene tree.
The process is illustrated in Figure2.

Figure 2: Traversing the scene tree and the individual object
trees.

3.4. Estimating the visibility

When traversal of the scene tree or the object tree begins the
processing of a node, it needs to determine its visibility.

In order to minimize the number of unnecessary occlusion
queries, we first perform frustum culling and reject culled
nodes. For any other node we should issue occlusion queries
to resolve visibility exactly. However, by using a temporal
coherence many queries could be saved. For each node we
store the results of several recent queries in previous frames
and use it to estimate the visibility of the node in the cur-
rent frame. If the node was not visible in the last frame,
we have to issue query to detect possible dynamic change
of visibility. If visible, we assume the node will be proba-
bly visible again. In this case we use the results of previous
queries stored in the node, and count the number of "visible"
responses returned over certain time period. The higher the
number, the more frames we postpone the query and render
the node directly (see Figure3). This temporal-coherence
technique decreases the number of issued queries and speeds
up rendering.

Figure 3: The more queries returned the result "visible" the
more frames we will wait before issuing other query. Mean-
while the node will be assumed visible.

Furthermore, the queries are issued in parallel if possible.

If there are several nodes waiting to be queried for visibility,
their bounding boxes are projected onto screen and bounding
rectangles are created. The bounding boxes corresponding to
non-intersecting rectangles are then sent to graphics card as
occlusion queries. Nodes with overlapping projections have
to wait until the results of previous queries are returned. To
accomplish this we use an auxiliary structure - a list of ac-
tive nodes waiting to be processed. This list includes both
nodes from the scene tree and from the objects’ trees. The
list is sorted approximately by the distance from the viewer
and it is continuously refined as the algorithm traverses the
trees. For pseudo-code of the core part of the algorithm see
Algorithm 2.

Algorithm 2: Rendering of a frame

while notFinished () do

/* Finish processing of active
queries */

foreach query in activeNodeQueries do
if result == Visibile then

ProcessVisibleNode(query->node);
end

end

/* Process as many nodes as
possible at once */

foreach node in activeNodes do
visResult =
FirstVisibilityTest(node);
if visResult == NeedQuery then

if maximum queries reachedthen
break;

Issue query;
end
else if visResult == Visibile then

ProcessVisibleNode (node);
end
else if visResult == Invisibile then

/* Nothing to do... */
end
Deletenode from activeNodes ;

end
end

The main part uses two auxiliary functions.FirstVisibili-
tyTestfunction performs several simple tests to roughly esti-
mate the visibility. The pseudo-code can be seen in the Algo-
rithm 3. The last major function isProcessVisibleNodefunc-
tion, which is called for every node that is found visible in
the current frame (Algorith4).

Another speedup might be gained by tightening the boxes
used to query the visibility. Instead of querying the bound-
ing box corresponding to a node, we shrink the box so it
fits tightly the contents of a node. As this operation could
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Algorithm 3: FirstVisibilityTest function

Input : node
Output: returnNeedQuery, Visibile, Invisibile

if FrustumCulled() then
returnInvisibile;

if ViewerInside() then
returnVisibile;

if WasInvisibleLastTime() then
returnNeedQuery;

if ExamineRecentQueryResults() then
/* The more times the object was

visible recently, the less
likely is the query issued */

returnVisibile ;
returnNeedQuery ;

Algorithm 4: ProcessVisibleNode function

Input: aNode

Render aNode->objects without trees;
In activeNodes replace aNode with aNode->child1,
aNode->child2;
sort aNode->objects with trees;
foreach aNode->object with treedo

insert aNode->object into activeNodes before
aNode->child2;

end

be computationally expensive, it is executed only for nodes
whose contents have not changed for several frames.

4. Experiments and results

All test were performed on a computer with AMD Sem-
pron 3000+ processor, 2 GB of RAM and ATI Radeon 9500
graphic card with 128 MB of memory.

We have tested the algorithm on two scenes:

• The power plant model containing 1185 objects and about
13 million triangles in total. (Figure4)

• A scene composed of 300 Stanford bunny models, each
having nearly 70 thousand triangles. The bunnies were
placed very densely and were moving around freely in
a box-shaped area. No collision detection was performed
and surfaces were allowed to penetrate without any re-
striction, see Figure5.

To determine the performance of rendering algorithm we
defined a path through the testing scene and let the camera
fly along it. The path was sampled reguraly and the same
sequence of viewpoints was evaluated in each test run. The
dynamic objects were moving along straight line pathes with
the initial positions and movement vectors set by pseudoran-
dom number generator. The positions of the objects at sam-

Figure 4: UNC power plant model.

Figure 5: A scene with 300 moving bunny models.

pled viewpoints were the same each test. We have measured
the performace of the following three algorithms:

• Full - the algorithm described in this paper with occlusion
culling and optimized issuing of occlusion queries.

• Simple OC - a simpler version of the algorithm that does
not issue occlusion queries in parallel and does not use the
recent query results to estimate the visibility. It traverses
the BSP tree and a query is issued for every node in the
frustum.

• VFC only - The objects are eliminated by view-frustum
culling, but no occlusion culling is done and every object
in front of the camera is rendered.

Before rendering a dynamic scene we run the preproces-
sor to subdivide the individual objects and to create the ob-
jects’ trees. It took about 8 minutes to prepare BSP trees
for the objects in the power plant model (1185 objects and
about 13 million triangles in total). The Standford bunny was
prepared in 5 seconds. None optimization and sophisticated
splitting methods were applied. On the other hand, creat-
ing and updating a scene tree during rendering phase was
very fast (in the order of milisecond) and was plausible to be
completed before the rendering of the next frame. The pre-
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processing increased number of triangles. For example, the
Stanford bunny was divided into 23 parts with the total num-
ber of triangles to be nearly 77,000. The bunny originally has
nearly 70,000 triangles, so the increase is about 10 %.

The results are summarized in Table1. Note the long time
per frame for the "Simple OC" algorithm when applied to
the bunny scene. In this case, a huge number of objects and
their parts require frequent occlusion queries. Resolving the
visibility using the occlusion queries was time costly and
in some frames this algorithm preformed worse than brute
force approach ("VFC only").

The following graphs show the progress of the powerplant
fly-through test. The graphs in Figure6 and Figure7 com-
pare the performance of the algorithms described above. No-
tice that although the "Full" algorithm is the fastest in most
frames, there are some frames, where the "VFC Only" suits
best. It happens in situations when the camera is looking to
an area with low occlusion. The occlusion queries fail and
only increase the rendering time needed.

Figure 8 shows number of object parts rendered in in-
dividual frames. The best algorithm in this comparison is
the "Simple OC", because it determines the occlusion of
all nodes for every frame. However, it does not optimize
queries, which means it does not use shrinked bounding
boxes. That explains some cases when the algorithm per-
forms slightly worse than "Full".

The graph in Figure9 compares the number of queries is-
sued in each frame. The difference between "Full" and "Sim-
ple OC" is the consequence of the estimation of unnecessary
queries described in section3.4.
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Figure 6: Rendering time of each frame.

5. Conclusion

We present an algorithm capable of performing occlusion
culling with HW occlusion queries efficiently. It can be ap-
plied to any kind of the scene, including dynamic environ-
ments. Because of the usage of a two-level BSP-like struc-
ture it gives very good performance, yet the implementation
remains straightforward.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  50  100  150  200  250

F
ra

m
es

 p
er

 s
ec

on
d

Frame (#)

Full
Simple OC

VFC only

Figure 7: Rendering speed in fps.
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Figure 8: Number of objects rendered each frame.

Our algorithm have some weak spots that could be elim-
inated in the future. The main problem of the algorithm is a
creation of new triangles while preparing BSP trees for the
individual objects. While the increase of the number of the
triangles is not dramatic, in might be troublesome in some
cases. This problem could be fixed by using different struc-
ture than BSP.
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Figure 9: Number of queries issued each frame.
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Time per frame (ms) # of rendered object parts # of occlusion queries
Scene Full Simple OC VFC only Full Simple OC VFC only Full Simple OC VFC only
Power plant 788 1194 5942 522 504 1678 216 616 0
Moving bunnies 826 3168 3836 6260 2584 22344 2173 14408 0

Table 1: Comparison of the new algorithm performing both frustum culling and occlusion culling (Full) with the algorithm
performing simple occlusion culling without any optimizations of the query issuing (Simle OC) and the algorithm performing
view-frustum culling only (VFC only). The "Time per frame" column shows average times spend on rendering one frame. The
second column shows the number of parts of an object that have been rendered. The last column shows an average number of
queries issued per frame.

The optimization strategy could be also improved. One
possibility is to work adaptively according to the perfor-
mance of the GPU (for example: On different graphic cards
the cost of occlusion query is different).

Finally, the memory requirements could be reduced sig-
nificantly by using approach similar to [CKS03]. Only nece-
sary objects and kept in the memory and objects estimated
to be visible in the subsequent frames are loaded in advance.
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