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Abstract
This paper proposes a new 3D tensor glyph called a hyperstreamball that extends streamball visualization used
within fluid flow fields to applications within second order tensor fields. The hyperstreamball is a hybrid of the
ellipsoid, hyperstreamline and hyperstreamsurface. With the proposed system a user can easily interactively
change the visualization. First, we define the distance of the influence function which contributes a potential field
that can be designed to highlight the three eigenvectors and eigenvalues of a real symmetric tensor at any sample
point. Second, we discuss the choice of source position and how the user can control the parameter mapping
between the field data and the implicit function. Finally, we test our results using both synthetic and real data that
shows the hyperstreamball’s two main advantages: one is that hyperstreamballs blend and split with each other
automatically depending on the tensor data, and the other advantage is that the user can achieve both discrete
and continuous representation of the data based on a single geometrical description.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Curve, surface, solid, and
object representations

1. Introduction

Tensor fields, especially second-order tensor fields, are use-
ful in many applications such as: fluid dynamics, solid me-
chanics, geophysics, and many applications within the earth
sciences. Engineers and scientists have a great need for ef-
fective visualization methods to help them understand and
explore their tensor data sets.

The main goal of this work is to develop a simple yet ef-
fective representation of any 3D real symmetric tensor field.
Motivated by the simple ellipsoid representation of symmet-
ric tensor data and the streamball visualization [BHKD94]
used within a vector field, we present a novel glyph called
a hyperstreamball for the visualization of symmetric second
order tensor fields such as stress, strain and the symmetric
part of any general tensor. One advantage of our method is
that it provides the user both continuous and discrete repre-
sentation of the tensor field using metaballs [Bli82] to rep-
resent the status of the tensors. For example, if we distrib-
uted metaballs along a stress trajectory, they will blend with

each other or split depending on the magnitude of the three
eigenvalues of the second order tensor. This overcomes the
clutter problem when using ellipsoids as they blend together
to form a 3D hyperstreamline [DH92]. When compared to
hyperstreamline visualization, in which three hyperstream-
lines must be integrated along the three eigenvectors respec-
tively, in order to see the three eigenvectors direction, the
hyperstreamball can be easily changed back to the discrete
case, and then the three eigenvectors directions can be simul-
taneously seen from the metaball orientation. Furthermore,
cluttered hyperstreamlines can form a hyperstreamsurface to
give an intuitive representation of the whole tensor field. An-
other advantage of the hyperstreamball is its ability to blend
and split where the tensor field converges or diverges.

The rest of this paper is organized as follows: in Section 2,
some essential facts about tensor fields used in the proposed
visualization are summarized, in Section 3 the relevant pre-
vious work in tensor field visualization using glyphs are re-
viewed, Section 4 first reviews the generation of a metaball
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and streamball visualization within a vector field, and then
explains the details of designing a hyperstreamball used to
simultaneously visualize the three eigenvectors and the three
eigenvalues of the tensor data. Some implementing issues of
hyperstreamball are also discussed. Section 5 discusses and
evaluates the results based on both synthetic and real data,
and final conclusions are drawn in Section 6.

2. Tensor Basics

A tensor is a generalization of the concept of scalar, vec-
tor and linear operator in a way that is independent of any
chosen coordinate system. In this paper, our focus is applied
to the second-order tensor which appears in many physical
and engineering applications. A second-order tensor can be
represented by a 3×3 matrix relative to a fixed coordinate
system, given by nine independent scalars:

T =





t11 t12 t13
t21 t22 t23
t31 t32 t33



 (1)

The tensor T is called symmetric if for any coordinate basis,
ti j = t ji for i, j = 1, ...,n and it is called antisymmetric if
ti j = −t ji for i, j = 1, ...,n. For a general tensor T, it can be
decomposed to a symmetric part S and an antisymmetric part
A:

T = S+A =
1
2
(T+Tt)+

1
2
(T−Tt) (2)

The symmetric part of the tensor S is defined by six inde-
pendent scalars within a symmetric matrix

S =





s11 s12 s13
s12 s22 s23
s13 s23 s33



 (3)

and the definition of antisymmetric matrix implies:

A =





0 −a12 −a13
a12 0 −a23
a13 a23 0



 (4)

which is equivalent to a vector a = (a12,a13,a23). Thus any
matrix can be decomposed to a vector a and a symmetric
matrix S. For a symmetric matrix, there always exists an al-
ternative basis, also called eigenvectors, in which S can be
diagonalized and the diagonal components are the eigenval-
ues. If these basis represented by v̂(i) are the column vector
of matrix V:

[

v̂(1) v̂(2) v̂(3)
]

(5)

and the diagonal components λi, i.e., eigenvalues, i = 1,2,3
form the matrix Σ:





λ1 0 0
0 λ2 0
0 0 λ3



 (6)

then the original symmetric matrix S can be equally repre-
sented by the following:

S = VΣVT (7)

The eigenvalues are ordered so that λ1 ≥ λ2 ≥ λ3; the cor-
responding ortho-normalized eigenvectors v̂(1) and v̂(2) and
v̂(3) are respectively called major, medium and minor eigen-
vectors. Eigenvalues and eigenvectors have profoundly use-
ful physical meanings depending on the symmetric tensor S.
For example, if S is a stress tensor, then the three eigenvec-
tors are perpendicular to three planes where shear stresses
are zero, and they are then called principal stresses.

3. Related Work

In this section, we will mainly look at glyph visualizations of
tensor fields which are related to our work, but like topology
analysis of tensor fields [DH94] [HLL97] [ZP04] [ZPP05]
which provides the global structure of a tensor field, and vol-
ume renders [KW99] [KWH00] that are mainly for diffusion
tensor fields from MRI will not be described here.

The most direct representation of a tensor field is by using
glyphs. The simplest one is the Lame stress ellipsoid [F65],
which is rotated along the three eigenvectors of the tensor
and the three radii are scaled according to the correspond-
ing eigenvalues. The Haber glyph [Hab90] used a modi-
fied ellipsoid with a bar drawn along the principal eigenvec-
tor and an elliptical disk wrapping around the bar to rep-
resent the other two eigenvector directions which helps to
clearly show the direction of eigenvectors. The Reynolds
glyph [MSM95] is used to visualize the normal stress in
any direction from the origin of surface to the any point
of surface. A detailed comparison about these glyphs can
be found in [YMAHW03]. One common problem with all
these glyphs is the clutter problem in 3D space. This can be
alleviated by using a glyph interactively in the field, for ex-
ample, W. de Leeuw et al.’s probe [dLvW93]. This can be
interactively moved through the model and changes to re-
flect physical quantities such as acceleration, curvature, tor-
sion etc. extracted from the gradient tensor. Most recently,
the paper-and-pencil graphical method—mohr diagram—is
applied to visualize geologic stress interactively [CRB∗05].
One main advantage is that it can be applied to negative
eigenvalues which provides information like compressive or
tensile force.

All of the above glyphs are located at discrete sample
points and therefore a second problem is that it is difficult to
perceive continuous changes within a tensor field. Delmar-
celle and Hesselink’s [DH92] hyperstreamline glyph visual-
izes the tensor data along a line domain, which is based on
a tensor line [Dic89]. This is a curve integrated through the
tensor field along one of the three eigenvectors, and the cross
section of this curve is further divided into ellipses which
are rotated and scaled according to transverse eigenvalues
and eigenvectors or helix whose arms are proportional to the
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transverse eigenvalues. In order to overcome the ambiguity
at places where the tensors’ two or even all three eigenval-
ues are nearly equal, tensorlines [WKL99] were introduced
by Weinstein et al. Although hyperstreamlines are good at
representing how tensors change continuously along the in-
tegration curve, they are critically dependent on the start
points of integration and many hyperstreamlines can easily
again form clutter. Based on the hyperstreamline, Jeremic
et al [JSF∗02]. proposed to use a hyperstreamsurface, which
used polygons to connect hyperstreamlines to generate a sur-
face to visualize the stress tensors in the field of geomechan-
ics.

In order to overcome the clutter problems resulting from
ellipsoids and hyperstreamlines, and also keep the benefits of
them, we propose hyperstreamball visualization, which can
easily change between the ellipsoid, the hyperstreamline and
the hyperstreamsurface representation.

4. The HyperStreamball Glyph

4.1. Streamball in Fluid Flow Visualization

In 1994, Brill et al. [BHKD94] proposed streamball visual-
ization for a vector field, which is distinguished by its abil-
ity to split or merge with each other wherever divergence
or convergence happens. With discrete streamballs, the posi-
tions of particles in the flow are used as the center points for
this implicit surface and the magnitude of velocity can be ei-
ther mapped to the radius or colour of implicit surface, which
then are blended with each other to form three-dimensional
streamlines, stream surfaces etc. For example, in Figure 1,
evenly spaced sample points are chosen along the stream-
line of a double glazing data set, the velocity magnitude is
mapped to the radius of the implicit function. Where stream-
balls are blended with each other to form a continuous sur-
face this indicates a high velocity area, on the other hand a
discrete set of streamballs indicates a low velocity area. The
streamballs in this case are colored by the temperature val-
ues.

The basic idea behind the streamball visualization is
to generate a potential field F(x,y,z) i.e. an implicit sur-
face, and then take the isocontours of this implicit surface
F(x,y,z) = C, where C is the isovalue. This implicit surface
is created by placing a collection of field sources si in space
and computing a field value at each point of space. The field
value F is the sum of the weighted influence function Ii con-
tributed by each source. It is mathematically represented as
the following:

F(x,y,z,S) = ∑
i

wiIi (8)

where S is the collection of sources si, and wi are the weights.

This was proposed by Blinn [Bli82] in 1982, when he de-
fined the influence function as the electron in an atom which
was represented by a density function of the spatial location

Figure 1: The streamball visualization of the double glazing
data set

in quantum mechanics.

Ii = e−ai fi(x) (9)

where fi(x) is the distance of the field point to a source
(an atom):

√

(x− x1)2 +(y− y1)2 +(z− z1)2, and ai is the
size. If there is just one source, then the resulting isosurface
will be a sphere which is commonly known as a metaball or
blobby object. In the rest of this paper, these sources refer
to metaballs. G. Wyvill et al. [WMW86] modified the influ-
ence function to avoid the computation of the exponential
function, and applied the following polynomial approxima-
tion of the influence function Ii(x) as:

Ii(x) =

{

a fi(x)6

R6 +b fi(x)4

R4 + c fi(x)2

R2 +1 fi(x)≤ R
0 fi(x) > R

(10)

fi(x) here is the same as the one in equation 9, R is the radius
of the metaball which any scalar can map to and a,b,c are
constants satisfying the following conditions:

Ii(0) = 1 Ii(0.5) = 0.5 Ii(R) = 0

I
′

i (0) = 0 I
′

i (R) = 0

4.2. The Design of Hyperstreamball

Brill et al. [BHKD94] in their future work suggested that
the streamball could be used to visualize the 3D tensor field,
however they did not explore it further. There are two main
problems and the first is how to choose the sources’ posi-
tions. In the vector field visualization, the streamball can
be distributed on a streamline, streakline or pathline at dif-
ferent time steps, which can better represent the fluid flow
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direction, but the key question is where shall we put the
sources’ positions for the tensor field? The second problem
is in streamball visualization, for a velocity magnitude only
one scalar needs to be visualized which can be mapped to R
in Equation10 shown in Figure 1, the direction of the veloc-
ity is then shown as the 3D streamline formed by the blended
metaballs. In the tensor field, we are interested in visualizing
all three eigenvectors and all three eigenvalues of the tensor
data. So how do we represent three scalars and three eigen-
vectors using metaballs?

Let us have a look at the second problem first, which can
be solved by modifying the distance function fi(x) in Equa-
tion 10. Actually this distance function defines the shape
of the metaball, you can also state that it defines the region
where a source radiates energy.

For the vector field visualization the distance function is
defined as

fi(x)2 = (x− xi)
2 +(y− yi)

2 +(z− zi)
2

where (xi,yi,zi) is the position of the source, which results in
one metaball shown as the sphere shape (see Figure 1). The
resulting implicit function is a blending of different spheres.
If we define the distance function as:

fi(x)2 =
(x− xi)

2

r2
1

+
(y− yi)

2

r2
2

+
(z− zi)

2

r2
3

(11)

i.e., an ellipsoid where (xi,yi,zi) is still the center, then simi-
larly to the ellipsoid visualization of tensor data, three eigen-
values λ1,λ2,λ3 can be mapped to r1, r2 and r3, and the three
normalized eigenvectors can form a rotation matrix applied
to the distance function so that the generated metaball will
align with the three eigenvectors. For example, in Figure 2, a
number of ellipsoid shape metaballs along a curve will blend
with each other to form a continuous three-dimensional sur-
face as we increase the number of the sources.

Figure 2: The blending process of ellipsoid metaballs

The blending process of the metaball is different from the

merging of a set of ellipsoids because the blending surface
will be C∞ continuous, for example, in Figure 3, the left im-
age is the merging of many ellipsoids along a curve, and the
right is generated by the blending of a number of metaballs.

Figure 3: Comparison of many ellipsoids with the smooth
blending of metaballs

Another issue is in the streamball visualization for the
vector field, the velocity magnitude is mapped to R in Equa-
tion 10. However for the tensor field visualization we have
to make the influence radius fixed, rather than controlled by
the scalar. The reason is that the actual size of each metaball
is also decided by the influence radius R. If another scalar
value is mapped to it, the ellipsoid’s three radii can not actu-
ally visualize the eigenvalues.

Now let us go back to the first problem about how to
choose the position of the sources. In both Figures 2 and 3,
we can see that the metaballs form a tube shape like surface
if the sources are along a curve. If we select this curve as the
stress trajectory in which the tangents are along the direc-
tion of one of eigenvectors, then the resulting surface is very
similar to the hyperstreamline visualization of tensor data.
If we set sources on a number of nearby hyperstreamlines
then one large surface may be generated, which is similar to
the hyperstreamsurface introduced by [JSF∗02], in which a
number of hyperstreamlines are connected with polygons.

4.3. Implementation

We implemented the hyperstreamball glyph as a module in-
side AVS/EXPRESS [UTFK∗89], which can deal with both
uniform and unstructured meshes. The first requirement is
to decide the sources’ positions, then the implementation of
the hyperstreamball becomes one of computing the potential
field generated by the sources which reflect the eigenvalues
and eigenvectors, and finally this potential field is isocon-
toured. If there is no tensor matrix at a source, a tri-linear
interpolation is applied to each component of the matrix,
and then the eigenvalue and eigenvector decomposition is
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performed. If the interpolation is not performed on the com-
ponents of the matrix but its eigenvectors, the results will
not be correct, because the sign of the eigenvector is then
undetermined. For example, in Figure 4, the direction of the
eigenvector at P0 can either be 1 or 2, and the direction of the
eigenvector at P1 can either be 3 or 4. In order to get a vector
at Px, a linear interpolation can be performed. If we interpo-
late the vector with directions 1 and 3; for example, there is
no problem. However, if we take direction 1 and direction
4, the eigenvector becomes degenerated at Px, which is not
what we want. Furthermore, a linear interpolation between

P0 P
x

1

2 4

P1

3

Figure 4: The sign indeterminacy of eigenvector

two unit vectors may not be a unit vector anymore. However,
any linear combination of symmetric tensors remains a sym-
metric tensor [ZB02]. Finally, we use an extended marching
cube algorithm [LC87] to render the isosurface for both uni-
form and unstructured meshes. Depending on the size of the
metaball relative to the whole field, in order to generate a
continuous surface, the mesh has to be of high resolution.

5. Interaction and Exploratory Results

We have evaluated our method using a synthetic but com-
monly used data set: the one point load stress tensors, and
a real data set: the stress in a piece of long 3D railway
line track (data courtesy of J. Kelleher, Manchester Mate-
rials Science Center). For the synthetic data first, we linearly
map the eigenvalues to the radius of the distance function in
equation 11 as shown in Figure 5, and the sources of hy-
perstreamball are located along nine stress trajectories. The
large blended surface shows that hyperstreamball converges
where the force is loaded on the top of the cube. At the bot-
tom of the cube, there are almost no hyperstreamballs result-
ing from these being very small eigenvalues. This is because
the principal stress decreased rapidly inside of the cube. Due
to the large difference of eigenvalues on the top and the bot-
tom of the cube, a visualization solution is to use a square
root mapping to scale down the difference so that we can see
both parts as shown in Figure 6.

In both Figures 5 and 6 we can see continuous tube
shape like surfaces where the eigenvalues are large so that
the metaballs blend together, and discrete metaballs where
the eigenvalues become very small and separate. Though the
square root mapping can show some small eigenvalues near
the bottom of the dataset, not all can be seen and they are

Figure 5: The hyperstreamball visualization of one point
load data by linear mapping

Figure 6: Hyperstreamball visualization of a one point load
tensor using square root mapping

still very small being shown as points. One option to solve
this is fixing the three radii of metaball to normalize them,
so that we can see the direction in the small eigenvalues and
the three eigenvalues can be mapped to the colour of meta-
ball respectively. For example, in Figure 7, the sources of the
hyperstreamball are still located along the nine stress trajec-
tories, and discrete hyperstreamballs are shown as ellipsoids
where the directions of an ellipsoid show the eigenvectors di-
rection. This can be better observed by interactively rotating
the whole model. If we decrease the distance of the sources

c© The Eurographics Association 2006.



J. Liu & M. Turner & W.T. Hewitt & J.S. Perrin / HyperStreamball Visualization for Symmetric Second Order Tensor Fields

along the stress trajectories then nine hyperstreamlines are
generated as shown in Figure 8, the distortion of the hyper-
streamlines show the direction changes of the eigenvectors.

This also illustrates the second advantage of using hyper-
streamball as the user can easily change from ellipsoid vi-
sualization to a continuous hyperstreamline visualization so
that the clutter problem can be selectively reduced. However,
too many hyperstreamlines can still clutter the visualization,
and then the blended hyperstreamlines can form a surface
as shown in Figure 9. In this figure hyperstreamballs are
located on 49 hyperstreamlines to give an intuitive represen-
tation of how the stress propagates inside the cube. Figure 5
to 9, are all colour coded by the minor eigenvalues. Other
colour mapping can be used as well.

Figure 7: The discrete hyperstreamball

After exploring the hyperstreamball results of synthetic
data, we can consider some real data. In the railway line
track, the potential field was computed on an unstructured
mesh, which consists of 609,200 elements, while the tensor
data is located on a coarser mesh consisting of 39,520 ele-
ments to reduce computation of the eigenvalue-eigenvector
decomposition and the integration for stress trajectories. The
stress data here is the changing stress in the rail line track
rather than the residual stress, which is simulated using
ABAQUS. Along the rail direction (see Figure 10), the left
is near the center of the rail while the right is the cut end
of the rail. The stress gradually changes between these two
ends. The engineer is interested in how it changes. In both
Figures 10 and 12, the sources of hyperstreamball are lo-
cated along five stress trajectories and the eigenvalues are
normalized. In Figure 13, the hyperstreamballs are along
20 stress trajectories, and a hyperstreamsurface is formed. It
can be seen that a sharp change of the principal stress direc-
tion happens near the cut end of the piece of rail (see Figure

Figure 8: The hyperstreamballs shown as hyperstreamlines

Figure 9: The hyperstreamball visualization shown as hy-
perstreamsurface

11), while around the center it is almost invariant shown as
straight cylinder except with ellipsoids rather than spheres at
each end (see Figure 12) that are parallel to the direction of
the rail. Figures 10, 12 and 13 are all colour encoded by
the minor eigenvalues.

In summary, the hyperstreamballs have the following
properties

• Under the same sample ratio, with the decrease of eigen-
values of stress tensor along the stress trajectory, the hy-
perstreamball changes from hyperstreamline to discrete
ellipsoids, so that the continuous parts reflect the large
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Figure 10: The hyperstreamball visualization of stress
shown as ellipsoids

Figure 11: The scaled view of discrete hyperstreamballs
near the cut end of the rail

principal stress areas and discrete parts reflect the small
principal stress areas.

• When the eigenvalues are fixed along the stress trajec-
tory, under a low sample ratio, hyperstreamballs show as
discrete ellipsoids which present simultaneously the three
eigenvector directions and eigenvalues. As the sample ra-
tio increases, the ellipsoids will blend with each other
smoothly to generate a surface, which is similar to the
hyperstreamline. Furthermore cluttered hyperstreamlines
can then form a hyperstreamsurface.

Figure 12: The hyperstreamball visualization of stress
shown as hyperstreamlines

Figure 13: The hyperstreamball visualization of stress
shown as hyperstreamsurface

6. Conclusions and Future Work

In this paper we propose a new glyph called hyperstreamball
to visualize 3D symmetric tensor fields. The biggest advan-
tage of the hyperstreamball is that it bridges the difference
between ellipsoid, hyperstreamline and hyperstreamsurface.
The user can easily switch between these modes using just
one glyph.

One of future directions of our work is to improve the
speed of computation of the potential field. Currently every
time the user switches from ellipsoid to the hyperstreamline
or hyperstreamsurface, the whole potential field is recom-
puted. It is possible to only compute the potential field near
the sources. Another direction of the future work is to apply
the hyperstreamball to more tensor data such as diffusion
tensor data obtained from MRI. In this case, the seeding of
hyperstreamball will be of interest.
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