
EG UK Theory and Practice of Computer Graphics (2006)
M. McDerby, L. Lever (Editors)

Physically Based Simulation and Visualization of Fire in
Real-Time using the GPU

Samuel Rødal†, Geir Storli‡, and Odd Erik Gundersen§

Visualization Group, Department of Computer and Information Science, NTNU, Norway

Abstract

In this paper we present a physically based framework for real-time simulation and visualization of fire using the
GPU. The physics of fire is modeled through a combination of a fluid solver and a combustion process causing
the characteristic motion of fire. The simulation results are then rendered using a particle system combined with
a black-body radiation model where the physically based simulation governs both the motion and appearance of
the particles. By performing individual slice simulations in 2D and combining them using volumetric extrusion
we achieve better performance than by performing the simulation in 3D without compromising the visual quality.
Thus, achieving our goal of visualizing bonfire and torch-like fire effects with high visual quality in real-time.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

1. Introduction

Fire is a powerful effect and can be used in virtual environ-
ments like games in order to increase immersion, suspending
the disbelief of the user. However, it is hard to reproduce the
chaotic and turbulent behavior of fire using traditional pro-
cedural methods. Fire is a very intense visual phenomenon,
and thus needs to be realistically reproduced in order to con-
vince the eye of a human observer.

Our view is that the laws of nature play an important part
and must be taken into consideration when simulating visu-
ally convincing fire. Thus, we take a physically based ap-
proach to the simulation and visualization of fire. This also
reduces the need to come up with various ad hoc approx-
imations which can be hard to justify. With the increased
power and programmability of modern GPUs, more process-
ing power is available for performing physically based sim-
ulations while still achieving real-time frame rates.

Our main contributions are performing the combustion

† knuterro@idi.ntnu.no
‡ geirst@idi.ntnu.no
§ odderik@idi.ntnu.no

process and fluid simulation from [MK02] on the GPU and
using a black-body radiation model in combination with a
particle system also running on the GPU. The combustion
simulation is combined with vorticity confinement as used
in [NFJ02, WLL04, KW05]. The black-body radiation color
table is precomputed and stored in a lookup texture on the
GPU and used when calculating the color radiated by the hot
exhaust gas. Another contribution is combining the combus-
tion process with volumetric extrusion [RNGF03, KW05].
We have achieved our goal of visualizing bonfire and torch-
like fire effects with high visual quality in real-time.

This paper is organized as follows. After a brief overview
of related work in chapter 2, we describe both the theory and
implementation of our framework for simulating and visual-
izing fire in chapter 3. In chapter 4 we present the results and
analysis and chapter 5 concludes with a summary and future
work.

2. Related work

We divide between methods used for simulating and meth-
ods used for visualizing fire and will treat them separately.
Although other techniques have achieved visually pleasing

c© The Eurographics Association 2006.

http://www.eg.org
http://diglib.eg.org

S. Rødal & G. Storli & O. E. Gundersen / Physically Based Simulation and Visualization of Fire in Real-Time using the GPU

results [Ngu04,LF02], our focus is on physically based sim-
ulation techniques.

2.1. Simulating fire

[NFJ02] present an offline physically based method for
modeling fire. A thin flame model is developed, using an im-
plicit surface to represent the reaction zone where vaporized
fuel reacts with oxygen and creates hot gaseous products.
The movement of the implicit surface is tracked using the
level set method, and the flow of vaporized fuel and the flow
of hot gaseous products are modeled independently using the
incompressible Navier-Stokes equations.

[MK02] model fire in real-time by using a combus-
tion process in addition to the incompressible Navier-Stokes
equations. The equations are discretized into a 3D grid and
solved using a fluid solver similar to the approach in [Sta99].
The fluid solver is used to control the motion of a three-gas
system consisting of oxidizing air, fuel gases, and exhaust
gases. The combustion process models the reaction that oc-
curs between oxygen and fuel gases at a certain temperature
threshold, resulting in the generation of exhaust gases and
the spread of heat.

[WLMK02] use the Lattice Boltzmann model instead of
the Navier-Stokes equations to simulate the fire process us-
ing a temperature field to model the generation of smoke.
The fire behavior is mainly affected by the direction of wind
and the location of fuel and non-burning objects.

[KW05] use volumetric extrusion of a 2D fluid simula-
tion to simulate fire. However, instead of using a physically
based combustion model to guide the fluid simulation they
use pressure templates to disturb the flow in order to create a
turbulent fire. Heat is modeled and used to scale the pressure
templates to create more turbulence at the base of the fire.

The simulation is performed on the GPU in [WLMK02]
and [KW05], and on the CPU in [NFJ02] and [MK02].

2.2. Visualizing fire

In [NFJ02] a Monte Carlo ray tracing approach is used to
visualize the fire, treating the hot gaseous products as a par-
ticipating medium. The radiance emitted by the medium is
modeled using black-body radiation.

A hardware based volume rendering technique is used
in [MK02] for fire visualization. The output of the fire simu-
lation is voxelized data of the fuel gas, exhaust gas, and heat
in the system, and each voxel is replaced by a semitrans-
parent polygon where the level of transparency is controlled
by the density of fuel gas and exhaust gas in the voxel. The
fuel gas is shown in yellow and the reaction zone where the
combustion occurs is shown in red.

Texture splats are used to visualize the fire in [WLMK02].
The velocity volume from the simulation is used to advect

the display primitives, which are removed from the system
when the fuel they are holding is consumed by combustion.
The display primitives are rendered using texture splatting.

[KW05] use a GPU implemented particle system to visu-
alize the fire. The velocity vector field from the fluid simula-
tion is used to update the particle positions, and the particles
are rendered using textured point sprites.

Recently, the ability of the GPU to perform both the sim-
ulation and visualization of particle systems has been ex-
plored. [Lat04] and [KSW04] introduce a full GPU imple-
mentation of the simulation and rendering of a particle sys-
tem. The particle positions are stored in a 2D texture on the
GPU and the current particle velocities in another 2D tex-
ture. The velocity texture and position texture are both up-
dated in separate rendering passes. In [KSW04] the updated
particle positions are rendered into a vertex array memory
object. This array is processed when rendering the particles
to the screen. [Lat04] propose the use of vertex texture fetch
to read the particle positions from a vertex shader responsi-
ble for rendering the particles to the screen.

3. Simulating and visualizing fire on the GPU

Here we first give a general overview and then separately
present our approach for simulating fire and our approach for
visualizing fire. Then, we present the complete algorithm,
and finally the implementation details are discussed.

3.1. Overview

We simulate the evolution of a fuel gas field, an exhaust gas
field, and a temperature field, in co-evolution with a velocity
field. The combustion process converts fuel gas to exhaust
gas and heat when the temperature exceeds a certain thresh-
old. Buoyancy due to heat then causes the hot exhaust gas to
rise, which in combination with vorticity confinement causes
the characteristic fire-like motion. All the simulation steps
are efficiently performed on the GPU by packing the fuel
gas, exhaust gas, and temperature field into a single texture.
This packing is similarly performed for the components of
the velocity field. We implement two variations of the simu-
lation. One performs the simulation in full 3D and the other
performs individual 2D slice simulations and combines them
through volumetric extrusion.

We visualize the result of the fire simulation using a black-
body radiation model and a particle system. A black-body
radiation table is precomputed and stored as a lookup tex-
ture on the GPU. The black-body radiation approximates the
radiation from the hot exhaust gas. Particle data is stored
in textures on the GPU, which are updated by the particle
system simulation and used by the vertex shader to specify
the particle positions. The velocity field from the physically
based simulation is used to advect the particles, while the
temperature and exhaust gas fields are used in combination

c© The Eurographics Association 2006.

S. Rødal & G. Storli & O. E. Gundersen / Physically Based Simulation and Visualization of Fire in Real-Time using the GPU

with the black-body radiation table to compute the particle
colors.

3.2. Simulating fire

Our fire simulation is largely based on the approach pre-
sented in [MK02], which combines the stable fluid solver
from [Sta99] with a combustion process modeling fuel gas,
exhaust gas, and temperature fields. The fields are limited to
the finite computational domain, which represents the area
where the fire is located, and are discretized into a voxel or
grid structure. In addition, we use the vorticity confinement
method used in [NFJ02], [WLL04] and [KW05] to create a
more turbulent flame.

3.2.1. Velocity field

The velocity field u is a vector field specifying the direction
and speed of air and gas. It is governed by the Navier-Stokes
equations for incompressible flow with zero viscosity, shown
in equation 1 and equation 2.

∂u
∂t

=−(u ·∇)u−∇p+F (1)

∇·u = 0 (2)

The first term on the right-hand side of equation 1 is the
self-advection of the velocity, causing velocity to be pushed
along itself. The second term, −∇p, is the gradient of the
pressure field, causing velocity to move from areas of high
pressure to areas of low pressure. The pressure field is used
as a correcting term, ensuring that equation 2 holds by pro-
jecting the velocity field onto its divergence free component.
The velocity field needs to be divergence free in order to
conserve mass according to equation 2.

The last term on the right hand side of equation 1 is the
external force acting on the velocity field. The external force
consists of several separate forces, shown in equation 3:

F = fvorticity + fgravity + fbuoyancy, (3)

where fvorticity is the vorticity confinement force, fgravity
is the gravity force due to fuel and exhaust gases, and
fbuoyancy is the buoyancy force due to heat. These forces are
described later in equations 9, 10, and 11.

3.2.2. Fire density fields

We use the fire density fields as a common term for the scalar
fuel gas, exhaust gas, and temperature fields. To create a re-
alistic and moving flame, we use the stable fluid solver and
the velocity field to advect the fire density fields throughout
the computational domain.

We use a slightly modified version of the density advec-
tion equation presented in [Sta99] to describe the evolution
of the three fire density fields: fuel gas g, exhaust gas a, and
temperature T . The modified equations governing the evolu-
tion of respectively the fuel gas field, exhaust gas field, and
temperature field are given by 4, 5, and 6. These three equa-
tions correspond to the equations used in [MK02].

∂g
∂t

=−u ·∇g+κg∇2g−αgg+Sg +Cg (4)

∂a
∂t

=−u ·∇a+κa∇2a−αaa+Ca (5)

∂T
∂t

=−u ·∇T +κT∇2T −αT T +ST +CT (6)

The first term on the right hand side of each equation is
the advection term, causing the fire density fields to be car-
ried along by the velocity field. The second term is the diffu-
sion term, simulating the tendency of the densities to spread
out. The third term governs the dissipation of the fire density
fields, and is controlled by the dissipation rates αg, αa, and
αT . We also have source terms, Sg for fuel gas and ST for
temperature, which are used to inject fuel gas and tempera-
ture in order to get the fire started and to keep it going. The
remaining terms Cg, Ca, and CT are related to combustion,
and are discussed in detail in section 3.2.5.

3.2.3. Vorticity confinement

To achieve real-time results, we have to use a rather coarse
grid in our simulation. In addition to this, the stable fluid
solver suffers from some numerical dissipation, meaning
that much of the low-level turbulence that is important for
achieving a realistic flame is lost. To counterbalance this, we
use the vorticity confinement method, also used by [NFJ02],
[WLL04], and [KW05], to find the vortices that are formed
in the velocity field. A vortex is the center of a rotational
movement. The vorticity at a given field point thus measures
how much rotational movement is present there. The vortic-
ity ω of the velocity field u is calculated with equation 7.

ω =∇×u (7)

Next, the normalized gradient N of |ω|, pointing from
lower to higher concentrations of vorticity, is calculated
from equation 8, and finally we calculate the vorticity force
fvorticity, given in equation 9. The parameter ε controls the
strength of the vorticity confinement, and h is the distance
between two grid cells.

N =
∇|ω|
|∇|ω|| (8)

c© The Eurographics Association 2006.

S. Rødal & G. Storli & O. E. Gundersen / Physically Based Simulation and Visualization of Fire in Real-Time using the GPU

fvorticity = εh(N×ω) (9)

3.2.4. Gravity and buoyancy

Fuel gas and exhaust gas are pulled down due to a gravity
force acting on the velocity field. The gravity force is given
by the following equation:

fgravity = fg (g+a)

 0
−1
0

 (10)

The constant fg determines the strength of the gravity
force, while g and a are the amount of fuel gas and exhaust
gas respectively.

Like the gravity force, the buoyancy force acts on the ve-
locity field. The buoyancy force causes hot air to rise, and is
given by the following equation:

fbuoyancy = fb (T −Tambient)

 0
1
0

 (11)

The strength of the buoyancy force is determined by the
buoyancy constant fb, the temperature T , and the ambient
temperature constant Tambient , which is the temperature of
the surrounding air. To create realistic fire the buoyancy
force is crucial, as rising air is one of the main causes of
the characteristic and turbulent appearance of the flame.

3.2.5. Fire combustion

An important part of the physically based simulation is to
take into account what happens when fuel gas reacts with
oxygen creating exhaust gas and heat. To simulate the com-
bustion we choose an approach similar to the one in [MK02].

The combustion will only occur if the temperature is
above a given threshold temperature Tthreshold . In contrast
to [MK02] we assume that there will always be enough oxy-
gen to react with the fuel gas, which simplifies the equation
for the combustion parameter:

C = rbg, (12)

where r is the burning rate parameter describing how fast
the fuel gas can be burned, b is the stoichiometric mixture
describing the amount of oxygen required to burn one unit
of fuel, and g is the amount of fuel gas. Equations 13, 14,
and 15 use the combustion parameter C, and describe the
rate of change of respectively the fuel gas, exhaust gas, and
temperature due to combustion.

Cg =
{

−C
b if T > Tthreshold

0 if T ≤ Tthreshold
(13)

Ca =
{

C(1+ 1
b) if T > Tthreshold

0 if T ≤ Tthreshold
(14)

CT =
{

T0C if T > Tthreshold
0 if T ≤ Tthreshold

(15)

Because we assume there will always be enough oxygen
to react with the fuel gas, the parameter b only controls how
much oxygen is involved in the reaction, and will not di-
rectly affect how fast the fuel is consumed. In addition the
parameter T0 is used in equation 15 to control the amount of
heat that is produced by the reaction.

3.3. Visualizing fire

Using a precomputed black-body radiation lookup table, a
fire color field is computed based on the exhaust gas and
temperature fields. Then, the fire is visualized using a parti-
cle system. The particle positions are updated based on the
velocity field and the particle colors are read from the fire
color field.

3.3.1. Computing the fire color field

We use Planck’s formula for black-body radiation given by
equation 16 in order to calculate the intensity radiated by the
hot exhaust gas.

Bλ(T) =
2πhc2

λ5
(

e
hc

λkT −1
) (16)

By using the wavelengths of red, green, and blue light
and the temperature of the gas, we calculate the three inten-
sities Bred , Bgreen, and Bblue. These intensities have a very
high dynamic range whereas the resulting color should have
a limited dynamic range suitable for display on traditional
computer monitors. To map the given intensities onto a lim-
ited dynamic range, we use the exponential mapping func-
tion from [Mat97], shown in the following equation:

n = 1− e
−L

Laverage , (17)

where L is the original intensity, and Laverage is a constant
controlling the overall brightness. The resulting intensity n
will be in the range [0,1〉.

Equations 16 and 17 are used to precompute black-body
radiation color values for a user specified range of tempera-
tures, which are stored in a one dimensional lookup table.

c© The Eurographics Association 2006.

S. Rødal & G. Storli & O. E. Gundersen / Physically Based Simulation and Visualization of Fire in Real-Time using the GPU

At the beginning of each visualization step, the exhaust
gas and temperature fields are used in combination with the
black-body radiation lookup table in order to compute the
fire color field. This is done for each cell in the computa-
tional domain. Equation 18 shows how the color c in the fire
color field is computed, based on the temperature T , exhaust
gas a, and a temperature scaling factor Tscale, which is used
to control the resulting brightness of the fire. lookup is the
black-body radiation lookup table.

c = a× lookup(TscaleT) (18)

3.3.2. Particle system

Like [KW05], we visualize the fire using a particle system
defined in the computational domain. Each particle repre-
sents a small element of the fire and has a set of associated
variables: spawn position, current position, initial spawn de-
lay, current velocity, and color. Spawn position and initial
spawn time are given at the beginning of the simulation,
whereas the other variables are dynamically updated. A par-
ticle’s color is specified by an RGBA color value.

Initially, after the given spawn delay, a particle’s position
is set to the spawn position of the particle. A simple Euler
step is later used to update a particle’s position as described
by the following equation:

xi = xi +viδt, (19)

where xi and vi are the position and velocity of particle
i respectively and δt is the timestep. Based on the particle
position, the particle’s velocity and color are found by in-
terpolating samples from the discretized simulation velocity
and fire color fields.

When a particle’s intensity drops below a certain thresh-
old, it is respawned by resetting its position to its spawn po-
sition. A minimum initial lifetime ensures that the particle
is not respawned before it has had a chance to enter the fire.
Particles are textured like in [WLMK02], creating more low-
level detail. Figure 1 shows an example of a texture we used
for this.

Figure 1: Texture used for particles

3.4. The complete algorithm

Both the fire simulation and the visualization are performed
for each frame. The fire simulation evolves the velocity and
fire density fields based on the combustion process and a
stable fluid solver. The velocity and fire density fields are
discretized in a grid structure throughout the computational
domain and each step of the simulation is performed for all
cells in the grid. The fire simulation steps are shown below:

1. Compute velocity forces and add them to the velocity
field.

• Vorticity confinement using equation 9.
• Gravity using equation 10.
• Buoyancy using equation 11.

2. Compute fire density forces and add them to the fuel gas,
exhaust gas, and temperature fields.

• Dissipation, part of equations 4, 5, and 6.
• Source terms, part of equations 4 and 6.
• Combustion forces using equations 13, 14, and 15.

3. Self-advect and project the velocity field based on equa-
tions 1 and 2 using the stable fluid solver.

4. Advect and diffuse the fuel gas, exhaust gas, and temper-
ature fields based on equations 4, 5, and 6 using the stable
fluid solver.

After the velocity and fire density fields have been calcu-
lated, they in turn are used by the particle system to visualize
the fire. A discretized fire color field is now computed based
on the temperature and exhaust gas fields, using the precom-
puted black-body radiation color table. The discretized ve-
locity and fire color fields are then used by the particle sys-
tem to locate corresponding velocity and color values based
on the particle positions. This is shown below:

1. Compute the fire color field using the precomputed black-
body radiation color table as described in equation 18.

2. Based on particle positions, sample particle velocities and
colors from velocity and fire color fields respectively.

3. Advect particles based on the sampled velocities from
step 2 using equation 19.

4. Render particles using a texture splat colored by the sam-
pled colors from step 2.

3.5. Implementation details

To implement the fire simulation and particle simulation on
the GPU, we use the FBO (framebuffer object) extension,
which allows us to render directly to textures. Textures are
used to store both the main velocity and fire density fields as
well as particle data (including positions, velocities, and col-
ors). Computations on textures are performed using Cg frag-
ment shaders. GPU implementations of stable fluid solvers
are presented in [LLW04] and [Har04].

We implement two versions of the algorithm. One per-
forms a full 3D simulation and the other performs individual

c© The Eurographics Association 2006.

S. Rødal & G. Storli & O. E. Gundersen / Physically Based Simulation and Visualization of Fire in Real-Time using the GPU

2D slice simulations and combines them using volumetric
extrusion [RNGF03, KW05]. In both cases we use flat 3D
textures [HBSL03] to be able to simulate several slices at
once (depth slices for the full 3D simulation and individual
2D slices for the slice simulation). Figure 2 shows an exam-
ple of a flat 3D texture used to store two 2D slices of the fire
color field.

Figure 2: A flat 3D texture representing two slices of the fire
color field at grid size 64x64.

Sampling from the computational domain using the par-
ticle positions requires two different approaches when the
computational domain is represented as respectively a full
3D voxel volume or a set of individual 2D grid slices.
When sampling from the full 3D voxel volume, simple tri-
linear interpolation can be used. Sampling from the 2D grid
slices is more complicated though. Cylindrical interpolation
[RNGF03] is used between the two closest slices and then
bilinear interpolation is used within the two slices.

Particles are rendered as quads, which requires four ver-
tices for each particle. As the particle positions are stored in
textures on the GPU, we create a vertex buffer object. Each
vertex contains the particle’s index in the particle textures
as well as an offset specifying the corner of the quad. The
vertex shader then uses the index to read the position and
color from the particle position and color textures respec-
tively. The offset is transformed based on the modelview
transformation matrix to make sure that the plane of the quad
is parallel to the the viewing plane. Reading from textures
in vertex shaders requires a GPU with VS3.0 support. Us-
ing a vertex buffer in combination with texture fetch in the
vertex shader for particle system rendering was suggested
by [Lat04].

4. Results and analysis

In this section, the performance of our algorithm is evaluated
and it is compared to other approaches for visualizing fire.
The limitations of the algorithm are also discussed.

4.1. Performance evaluation

In this section we first present and compare the performance
results from full 3D and 2D slice simulations. We then use
the 2D slice simulation coupled with the particle system and
compare frame rates using different particle counts with and

without rendering the particle system. We also present some
visual results. All the tests were run on a 3 GHz Intel Pen-
tium 4 CPU with 512 MB RAM and a NVIDIA GeForce
7800 GT with 256 MB VRAM.

Table 1 shows frame rates from the full 3D simulation
with and without visualization. As expected, the frame rate
rapidly decreases as we increase the grid dimensions. Also,
the visualization is the most time-consuming part at lower
grid sizes. As can be seen in figure 3, 32x32x32 is sufficient
for achieving visually pleasing results in combination with
the particle system.

Grid size Fire simulation Visualization
16x16x16 503.3 fps 49.4 fps
24x24x24 202.0 fps 42.5 fps
32x32x32 93.9 fps 34.0 fps
48x48x48 28.2 fps 19.0 fps

Table 1: Frame rates for full 3D fire simulation, both with
and without a particle system with 2048 particles.

The frame rates achieved by running the 2D slice simula-
tion with and without visualization using both 2 slices and 4
slices are presented in table 2. The results show that a large
speed increase is gained from not performing the simula-
tion in full 3D, although the difference is less explicit when
visualizing. A simulation grid of 64x64 with two slices is
sufficient for good visual results (figure 3). The frame rate
is around 5 times as high as for the 3D simulation without
visualization at 32x32x32.

Fire simulation Visualization
Grid size 2 slices 4 slices 2 slices 4 slices

32x32 608.8 fps 597.1 fps 50.4 fps 49.5 fps
64x64 481.7 fps 297.8 fps 48.0 fps 44.9 fps

128x128 170.5 fps 90.9 fps 41.1 fps 33.9 fps
256x256 47.4 fps 24.0 fps 25.3 fps 16.1 fps

Table 2: Frame rates for 2D slice fire simulations, both with
and without a particle system with 2048 particles.

Figure 3 shows a side by side comparison of the resulting
fire for full 3D and 2D slice simulation. Performance-wise,
the 2D slice simulation with two slices at 64x64 clearly out-
performs the full 3D simulation at 32x32x32 without com-
promising the visual quality. In fact, the fire may even appear
more detailed because of the higher grid resolution used in
the individual slices. The fire has a flickering and turbulent
behavior and a lot of low level details. This is representa-
tive of a raging bonfire, whereas small camp fires and candle
flames usually are smoother.

The number of particles used when visualizing a fire sim-
ulation affects the performance and this is illustrated by the
results presented in table 3. The number of particles has been

c© The Eurographics Association 2006.

S. Rødal & G. Storli & O. E. Gundersen / Physically Based Simulation and Visualization of Fire in Real-Time using the GPU

Figure 3: Visual results from 64x64x2 slice (left) and
32x32x32 3D (right) simulations, with 2048 particles.

varied when running 2D slice simulations with two slices of
dimension 64x64. The particle size was the same for all tests
resulting in very high fill rate requirements for high particle
counts. The first column shows the results from performing
the fire simulation and the particle system simulation (up-
dating positions, velocities, and colors) but not rendering the
particles. In the second column the particles are rendered as
well. As can be seen, visualization is the main bottleneck
of the algorithm due to the high fill rate requirements when
rendering a large number of particles. The simulation on
the other hand is pixel processing limited. Figure 4 shows
the result of the particle system visualization at two particle
counts. The size of the particle splats has also been varied to
compensate for the different particle counts.

Particle count No rendering Rendering
256 471.5 fps 221.4 fps
1024 471.5 fps 87.8 fps
2048 457.8 fps 48.1 fps
4096 443.9 fps 25.6 fps

16384 374.3 fps 6.7 fps

Table 3: Frame rates for two 2D slice fire simulations of
size 64x64 and a particle system simulation with and without
rendering.

4.2. Comparison with other approaches

In this section, we briefly compare our fire visualization
against the visual elements and performance of other ap-
proaches for visualizing fire. We have defined a set of criteria
to guide the visual comparison. These criteria are flickering,
turbulent behavior, color, texture, and smoke.

Flickering and turbulent behavior as well as a smooth ap-
pearance with realistic colors is best achieved by the of-
fline method presented in [NFJ02]. The focus in [MK02] is
on simulation and their fire is not visually convincing. The

Figure 4: Particle system with 16384 particles (left) and 256
particles (right).

fire in [KW05] fails in capturing the flickering and turbu-
lent elements as convincingly as ours, in addition to having
quite saturated colors. Like our fire visualization, the one in
[WLMK02] has some low level texture and realistic colors.
As opposed to our work, both [NFJ02], [KW05], [MK02],
and [WLMK02] include smoke.

[MK02] achieve 20 fps with a 20x20x20 simulation grid.
Using the same grid size, we achieve a frame rate at around
360 fps, mainly because we have implemented the complete
fire simulation on the GPU.

When using a grid size of 32x32x32 on a NVIDIA
GeForce3 Ti 200, [WLMK02] achieve a frame rate of around
215 fps for the fire simulation alone, and 65 fps when ren-
dering 100 texture splats. At the same grid size we achieve
a frame rate of 94 for the fire simulation alone, and are able
to render 512 particles at 65 fps. Obviously, the LBM imple-
mentation is a lot faster than the stable fluid solver, although
the accuracy of the former is uncertain. Since they render the
display primitives back-to-front, they use more computation
power during the rendering step as sorting is needed.

Finally, [KW05] achieve a frame rate of 190 fps on a
NVIDIA GeForce 6800 GT when using two 2D simulations
at 64x64 each and extruding them to a full 3D volume. In
comparison, we achieve a frame rate of 480 with the same
grid size. However, we do not compute pressure templates,
nor do we explicitly extrude the 3D volume.

4.3. Limitations

Our algorithm for simulating and visualizing fire has sev-
eral limitations. First of all, the fire is non-interactive in that
it does not react to its environment. The fire will thus not
be affected by items or obstacles coming in contact with it,
which might cause it to look unrealistic.

The characteristic blue core, which appears at the base of
small flames and gas flames, is missing from our visualiza-
tion. As the blue core is not explicitly simulated, we can not

c© The Eurographics Association 2006.

S. Rødal & G. Storli & O. E. Gundersen / Physically Based Simulation and Visualization of Fire in Real-Time using the GPU

visualize it without resorting to ad hoc approximations un-
coupled from the physically based simulation. Smoke is ba-
sically exhaust gas which has cooled down and is thus sup-
ported by the simulation framework. However, smoke visu-
alization has not been implemented yet.

The 2D slice simulation with volumetric extrusion limits
the fire to rotationally homogeneous phenomena like torches
and bonfires. For other effects, like for example a flame
thrower, a full 3D simulation needs to be performed.

There are no high-level options for controlling the fire.
Thus, an animator wishing to create a certain behavior and
appearance needs to manually experiment with the quite
large amount of different parameters for the algorithm. Parti-
cle spawn positions must also be synchronized with the fuel
gas source field.

5. Summary and future work

We have presented an algorithm for simulating and visual-
izing fire completely on the GPU. The algorithm is based
on an underlying fluid simulation coupled with a model of
the combustion process. A black-body radiation model and
a GPU-driven particle system are used in combination to vi-
sualize the result from the simulation.

Future work will include exploring whether volume ren-
dering for visualizing the underlying simulation could pro-
duce better visual results or better performance than the
current particle system. Another possibility is to explore
whether it would be possible to model the interaction be-
tween the fire and other objects by incorporating obstacle
boundaries in the simulation step. Some work has already
been done on fluid and complex object interaction on the
GPU [LLW04]. Other possible extensions of the algorithm
include blue core simulation and smoke.

References

[Har04] HARRIS M. J.: Fast fluid dynamics simulation on
the gpu. In GPU Gems: Programming Techniques, Tips,
and Tricks for Real-Time Graphics, Fernando R., (Ed.).
Addison-Wesley Professional, 2004, pp. 637–665.

[HBSL03] HARRIS M. J., BAXTER W. V., SCHEUER-
MANN T., LASTRA A.: Simulation of cloud dynamics
on graphics hardware. In HWWS ’03: Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS conference on
Graphics hardware (Aire-la-Ville, Switzerland, Switzer-
land, 2003), Eurographics Association, pp. 92–101.

[KSW04] KIPFER P., SEGAL M., WESTERMANN R.:
Uberflow: a gpu-based particle engine. In HWWS ’04:
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware (New York, NY, USA,
2004), ACM Press, pp. 115–122.

[KW05] KRÜGER J., WESTERMANN R.: Gpu simulation

and rendering of volumetric effects for computer games
and virtual environments. Computer Graphics Forum 24,
3 (2005).

[Lat04] LATTA L.: Massively parallel particle systems on
the gpu. In ShaderX3: Advanced Rendering with DirectX
and OpenGL (Shaderx Series), Engel W., (Ed.). 2004,
pp. 119–133.

[LF02] LAMORLETTE A., FOSTER N.: Structural mod-
eling of flames for a production environment. In SIG-
GRAPH ’02: Proceedings of the 29th annual conference
on Computer graphics and interactive techniques (New
York, NY, USA, 2002), ACM Press, pp. 729–735.

[LLW04] LIU Y., LIU X., WU E.: Real-time 3d fluid sim-
ulation on gpu with complex obstacles. In Pacific Con-
ference on Computer Graphics and Applications (2004),
pp. 247–256.

[Mat97] MATKOVIC K.: Tone Mapping Techniques and
Color Image Difference in Global Illumination. PhD
thesis, Institute of Computer Graphics and Algorithms,
Vienna University of Technology, Favoritenstrasse 9-
11/186, A-1040 Vienna, Austria, 1997.

[MK02] MELEK Z., KEYSER J.: Interactive Simulation
of Fire. Tech. rep., Texas A&M University, 2002.

[NFJ02] NGUYEN D. Q., FEDKIW R., JENSEN H. W.:
Physically based modeling and animation of fire. In SIG-
GRAPH ’02: Proceedings of the 29th annual conference
on Computer graphics and interactive techniques (New
York, NY, USA, 2002), ACM Press, pp. 721–728.

[Ngu04] NGUYEN H.: Fire in the “vulcan” demo. In
GPU Gems: Programming Techniques, Tips, and Tricks
for Real-Time Graphics, Fernando R., (Ed.). Addison-
Wesley Professional, 2004, pp. 87–105.

[RNGF03] RASMUSSEN N., NGUYEN D. Q., GEIGER

W., FEDKIW R.: Smoke simulation for large scale phe-
nomena. ACM Trans. Graph. 22, 3 (2003), 703–707.

[Sta99] STAM J.: Stable fluids. In SIGGRAPH ’99:
Proceedings of the 26th annual conference on Com-
puter graphics and interactive techniques (New York,
NY, USA, 1999), ACM Press/Addison-Wesley Publishing
Co., pp. 121–128.

[WLL04] WU E., LIU Y., LIU X.: An improved study of
real-time fluid simulation on gpu. Journal of Visualization
and Computer Animation 15, 3-4 (2004), 139–146.

[WLMK02] WEI X., LI W., MUELLER K., KAUFMAN

A.: Simulating fire with texture splats. In VIS ’02: Pro-
ceedings of the conference on Visualization ’02 (Washing-
ton, DC, USA, 2002), IEEE Computer Society, pp. 227–
235.

c© The Eurographics Association 2006.

