
Eurographics Italian Chapter Conference (2011)
A. F. Abate, M. Nappi, and G. Tortora (Editors)

3D-ize U! A Real-time 3D Head-model
Texture Generator for Android

Stefano Boi1, Fabio Sorrentino1, Stefano Marras1,2, and Riccardo Scateni1

1University of Cagliari, Dept. of Mathematics and Computer Science - Italy
2Visual Computing Laboratory, ISTI-CNR, Pisa - Italy

Abstract
Recently, the number of applications developed for smartphones has dramatically increased; however, at the mo-
ment, applications having the purpose of creating and displaying 3D models are quite rare. The goal of this work
is to build an application that allows the user to see the virtual three-dimensional representations of their friends
and interact with them. The main challenge is to achieve results similar to those that a computer would produce,
optimizing the process to deal with the constraints due to the technology used. Since there are no similar mobile
applications, this work will make possible to create a base onto which will be possible to realize applications that
have customized 3D models as a common feature.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Image processing—
Warping
Keywords:Android, 3D Head models, Real-time texturing, Photo

1. Introduction

According to [Mar10], the economic value of the mobile
market will increase from 6,8 billions dollar in 2010 to
25 billions dollar in 2015. This statistic also states that
the cause of the increment is the widespread diffusion
of the smartphones, along with the progressive lowering
of connection fees and the increment of use of mobile
applications.
Lots of applications that allow the user to play with reality,
entertaining him in a way considered unthinkable till a
few time ago, were born in the last years. Giving a quick
look to the applications market for mobile system, it’s easy
to notice that the photo-editing oriented applications are
getting downloaded more and more.
The idea of building a tool for playing with the face of the
people, based on the use of a 3D model, comes up from this
fact. The application has been developed using the Android
platform, a choice mainly due to the availability of low price
devices. When developing an application for mobile, one
has to take into account the peculiarities of mobile phones
hardware, such as the processor speed and the memory
capacity, that have a way lower limit than standard com-
puters. For more information about the Android platform

and the application development, see [com11c], [com11b]
and [com11a]
The result of this work is an application named 3D-ize U!
that allows the user to build and display a 3D model of one
of his friends simply using a picture. In order to reach the
goal, the application goes through several steps:
- Taking a picture, or choosing an existing one;
- Detecting a set of feature points in the picture;
- Processing the image using warping techniques in order
to create a texture;
- Applying the texture onto a predefined 3D model;
- Rendering the 3D model and his texture;
- Interacting with the model;

This paper is organized as follows: in section 2 we will
introduce the ideas behind this work, section 3 describes the
phases of the application, then performance are examined
in section 5.1; section 5.2 deals with the limitations of the
algorithms; finally section 5.3 discusses about future works.

2. Background

Warping is the set of proceedings focused on the transfor-
mation and deformation of shapes. This technique has been

c© The Eurographics Association 2011.

DOI: 10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2011/041-046

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2011/041-046

S. Boi, F. Sorrentino, S. Marras, and R. Scateni / 3D-ize U! A Real-time 3D Head-model Texture Generator for Android

(a) (b) (c)

Figure 1: Final results

largely used in shape animation, modeling, analysis and
matching (see for example [VFG∗09] [MN06]). Basically,
the image is deformed in order to distort the geometry of the
objects depicted in the scene; it’s a process mainly used to
correct the distortion caused by the lenses, but has been re-
cently used also for artistic photo editing. Using the warping
technique, it is possible to modify an image aiming to align
a set of image features to the same features on a different im-
age, usually referred as the template image. It’s also possible
to calculate the amount of transformation needed to align the
features: in this way it is possible to choose among a pool of
images picking the one that is most similar to the template,
to recognize people or objects that appear in damaged or dis-
torted images, even if the object itself is disguised.
Intuitively, a graphical object U consists of any processable
entity in a computer graphics system: points, lines, surfaces,
images and so on. In the particular case where the graphical
object is an image I, the transformation T : I→ Rn defined
only for the points of I is named intrinsic transformation.

The easiest way to work on an image consists of defining
a global transformation of I, that is, a transformation applied
uniformly onto every pixel of the image; however, it’s really
hard to transform a specific object of the scene by means
of a global image transformation. Instead, this goal can be
achieved working locally on a subset of pixels. A good strat-
egy to build local transformations is based on the idea of
subdividing the object into smaller pieces, then defining a
transformation for each piece separately and finally merg-
ing all the pieces together to obtain a new image. Working
locally has also the advantage of approximating each trans-
formation using simple functions, obtaining good results and
reducing the computational cost. Triangles and quadrilater-
als has been widely used in computer graphics as blocks to
build graphical objects. Dealing with a triangulated image
or a subdivision made of a quadrilateral mesh is a rather dif-
fused scenario and the techniques to compute the transfor-
mation from a polygon to another gain considerable impor-
tance (see [BKP∗10]).
One of the challenges of the techniques based on locally de-
fined transformations is the need of computing new attribute
values for every point of the deformed object using only the
values store in the original one.

Considering the particular case in which has been calcu-
lated the affine transformation between two triangles ABC
and DEF , the transformation T on the vertices is defined
as T (A) = D, T (B) = E and T (C) = F . So it is possible to
apply T to every point inside the triangle using barycentric
coordinates.

A point p of a triangle ABC has barycentric coordinates
(λ1,λ2,λ3), that is

p = λ1A+λ2B+λ3C

when λi ≥ 0 and λ1 +λ2 +λ3 = 1.

The transformation to obtain the position of point p in
relation to the new reference triangle is the following:

q = T (p)
= T (λ1A+λ2B+λ3C)
= λ1T (A)+λ2T (B)+λ3T (C)
= λ1D+λ2E +λ3F

After studying and analyzing the mathematical model, the
application development chapter 3.3 will explain how these
techniques can be implemented in order to obtain the desired
deformation.

3. Development phases

The project has been divided into different phases: image ac-
quisition (3.1, detection of feature points (3.2), image warp-
ing (3.3), texturing/rendering of the model (3.4) and finally
user interaction (3.5).

3.1. Image acquisition

The first step is the image acquisition. The user must provide
an image to the application, and he can do this in two ways:
by taking a picture "on-the-fly", or using an existing photo.
Once that the picture has been selected, a special module ver-
ifies the goodness of the image and notifies the users of the
necessity to take the picture again (or choose a better one).
In the specific case, a good image is an image that has
good contrast, good lighting, a well-defined background and
where the face of the person portrayed is clearly visible,
making possible a full-automatic face detection step. To
identify the face, the Android face detection feature has been
used; thanks to this feature, it is possible to correctly locate
the face, and center it into an ellipse that will be then used
to cut the image. For best results it is necessary that the user
modifies the ellipse to contain the face. Through the use of
finger gestures, the user can zoom in or out at will; once the
size of the oval is adjusted it’s possible to move to the next
phase, the detection of facial feature points.

c© The Eurographics Association 2011.

42

S. Boi, F. Sorrentino, S. Marras, and R. Scateni / 3D-ize U! A Real-time 3D Head-model Texture Generator for Android

3.2. Feature points

The feature points are the key element in the process. A
good tradeoff in terms of quality and quantity needs to be
achieved, because on the one hand too few points produce
unreliable results and poor accuracy, while on the other hand
too many points make the application computationally heav-
ier and less practical to use. As seen in [SB08], the most im-
portant points to be identified are represented by the eyes, the
nose and the mouth. For best results, however, the eyebrows
and the silhouette of the face should also be used. Let’s ana-
lyze every feature point used in the process (see Figure 2):

• 4 points for the left eye;
• 2 points for the left eyebrow;
• 4 points for the right eye;
• 2 points for the left eyebrow;
• 3 points for the nose;
• 4 points for the mouth;
• 12 points for the face silhouette;

Figure 2: All feature points taken with the user interaction.

The 12 points of the face silhouette are automatically ex-
tracted from the ellipse placed over the image by the user.
The acquisition of the remaining points is performed in a
sequential manner, using a specific panel that tells the user
which part of the face he has to pick. The application shows
a cursor made of by a vertical and a horizontal line intersect-
ing the point touched. The user can scroll with the fingers in
order to refine the selection and maximize the accuracy.
Usually, the texture contains all the information to represent
the entire surface of the 3D model; in this case the model
is a head, so the texture should include information about
the front, the sides and the back. In this work the choice has
been to acquire a single frontal picture, and as a result of
this, the resulting texture is incomplete. This problem will
be addressed and solved in section 3.4.

For each point the user has to press a dedicated button
to confirm the coordinates indicated, that saves the current

(a) (b)

Figure 3: Oval fitting activity, point selection activity

point and displays the image of the next point to be identi-
fied.

This assisted acquisition allows to create a point-to-point
correspondence map between the acquired picture and the fi-
nal texture, and this will be particularly useful for the warp-
ing phase . At the end of this procedure every point is known
and the process of warping that will generate the texture to
apply to the 3D model will start.

3.3. Image processing/warping

After the acquisition of the feature points, the image has to
be warped in order to fit a pre-existing template image. The
goal of this step is to modify the original image in order to
use it for texturing the three dimensional model of the head.
Thanks to a 3D model deep analysis, the application knows
both the coordinates of the texels associated with the feature
points and the correspondences with the points of the 3D
model. The information is then used to build the template
that will serve as reference for the warping.
Since the system can’t detect the position of feature points
in an automatic way, the detection of this points is an user
duty. As soon as the user locates the points, it becomes
possible to warp the original picture in order to fit on the
template. The warping operation is performed using the
concept of barycentric coordinates ([Pic06]). The first step
of this process consists in carrying out the triangulation of
the feature points indicated by the user. Since the position of
the feature points in the acquired image is known, and also
the corresponding template points are known, it is possible
to triangulate the image to obtain its discrete subdivision,
working locally on the pixels. The triangulation is a classic
Delaunay triangulation computed incrementally (imple-

c© The Eurographics Association 2011.

43

S. Boi, F. Sorrentino, S. Marras, and R. Scateni / 3D-ize U! A Real-time 3D Head-model Texture Generator for Android

mentation provided in [Che07]). This technique makes
possible to incrementally build the triangulation while
the user picks the feature points; in this way, both trian-
gulation and selection of feature points end at the same time.

First, the algorithm builds a triangular bounding box such
that every point of the triangulation, named as set P, falls
within it.

Figure 4: Delauney triangulation of feature points

For every point belonging to P, it is necessary to search
for the triangle where it lies. This triangle is then split into
three new triangles. This operation is trivial for the first
point, when the only existing triangle is the bounding box.
Subsequently, a test is performed over the newly created
edges in order to avoid the presence of illegal edges. In
case of illegal edges, the structure is updated to solve the
problem. This is the incremental way to build the Delaunay
triangulation of the feature points; the triangles are stored
keeping track of the correspondences between the original
triangles and the new ones.

The algorithm performs only one triangulation using the
set of feature points defined by the user, then build a hash
map containing the correspondences between those points
and the ones located on the template image. In this way, for
each triangle T of the image triangulation, exists a triangle
T ′ that has three vertices corresponding to the 3 feature
points of T . The only difference is that these points have
different spatial coordinates. To overcome this problem, it
is possible to represent every pixel of the image by means
of barycentric coordinates, with the assumption of knowing
which triangle contains the specified pixel. Then, every
pixel is processed locally, moving it from the old reference
system (the triangle that contains it) to the new reference
system (the corresponding triangle with moved vertices).

Once identified the new location of the pixel it is possi-
ble to assign it his old color. Repeating this process for each
pixel leads to the desired transformation. However, the im-
age may require some other adjustment to avoid that some
pixels may appear incorrectly. The reason is that, because of

the discrete nature of pixels, by undergoing this transforma-
tion not every pixel of the final texture happens to be the des-
tination of a pixel of the original image. Applying a smooth-
ing filter that, for every not colored pixel, gives him the aver-
age intensity of the 8-neighbor pixels, overcomes this prob-
lem. Each pixel of the neighborhood is taken into account to
calculate the mean if and only if his intensity is not zero.

Figure 5: Delauney triangulation overlying the texture

The choice of this technique has been made after find-
ing out that achieving the image deformation by means of
a global transformation was too time expensive, and result
could not be achieved in a reasonable amount of time.

Several tests are in fact been made with tools such as Mat-
Lab, using cubic and bi-cubic interpolation, obtaining very
good results; however, even if a good computer could com-
pute these functions quite fast, the problem turned out to be
too heavy to be carried on by a mobile device. Obtaining the
texture from a single picture has the drawback that there is
not enough information to texture the sides and the back of
the head. In this work, the developers preferred to exclude
the details of hair, which would require to be independently
studied and that can be integrated in the application after-
wards.

For this reason, the model obtained has no hair and the
choice to assign the color to the skin in the back of the head
has been achieved using some kind of averaging of the avail-
able information.

Working on the morphology of the human face, it is possi-
ble to state that except in some areas such as eyes, nose and
mouth, the skin has the same regular pattern everywhere, ex-
cluding the area on the jaw where, especially in men, there
may be a thick hair that hides the natural color of the skin. To
complete the texture, gaining a realistic effect, the informa-
tion on the pattern of the skin is taken directly from cheeks
and forehead. To improve this result and reduce the differ-
ence between the color of the facial skin and the synthetic
skin, the color of the facial image is modified, applying a
different enlightenment, similar to the one of the pattern just
computed. In this way the color difference is almost not no-
ticeable. The texture is then ready to be adapted to the model.

c© The Eurographics Association 2011.

44

S. Boi, F. Sorrentino, S. Marras, and R. Scateni / 3D-ize U! A Real-time 3D Head-model Texture Generator for Android

3.4. Texturing and rendering

The Android operative system provides a subset of the
OpenGL graphics library to render 3D objects. The only
thing needed is a parser that read and build the model, while
the visualization part is carried by the os. It’ obvious to no-
tice that the more complex the model, the more slow the vi-
sualization. See [PAM∗07] for further details on OpenGL for
mobile system.
Another constraint to consider is the number of vertices and
faces that is representable by an array of short integers, lim-
iting the complexity of the models displayable. Besides that,
the number of vertices and faces has been limited to 1016
vertices and 1999 faces due to the excessive computational
cost, and also because on small screens is not necessary to
have highly detailed objects to get a good result. In the test-
ing phase the model has been directly inserted in the applica-
tion package as a RAW file, then the file is parsed to retrieve
the coordinates of the vertices, information about faces, ver-
tex normals and the texture map. Notice that it is possible
to save the texture map on a file because those information
never change going from a texture to another. The model is
now ready for the visualization; after the model is rendered,
the user can finally interact with it.

3.5. User interaction

As said before, the aim of this work is to create an appli-
cation that would allow a number of future developments
having in common the use of custom 3D models and real
time texturing using photos taken from the mobile device.
Currently, the user can interact with the model like any 3D
viewer: he can zoom, rotate and scale the displayed object.
Furthermore, having different models with different facial
expressions, it will be possible to replicate different expres-
sions depending on user interaction.

4. Performance

Having some useful / funny / cool features is not enough
to make a "good" application. A good application needs to
perform these operations quickly. During several tests the
time spent by various processes has always been monitored,
to identify the steps in which the code was computationally
too expensive.

In detail, the application has been tested on a device with
internal processor Qualcomm MSM7201A 528 Mhz and
192 Mb RAM. Since phase 1 and 2 are strictly depending
from the user, they aren’t taken into account, while phase
3 requires in average 53 seconds and phase 4 requires 43
seconds. Times are hardware dependent; brand new smart-
phones have 1.5Ghz dual core processors, and these opera-
tions can be performed in much less time. Table 1 provides
timings with respect to different mobile devices. An interest-
ing way to speedup the process is the use of a remote server

for executing the third phase and fourth phase; this alterna-
tive will be better discussed in following chapter.

5. Conclusions

5.1. Results

The results of the work reflects the objectives set at the be-
ginning of the development phase: developing an application
for the growing mobile world, based on the Android plat-
form, that allows the user to have a real time textured 3D
model, where the texture can be obtained just taking a pic-
ture of someone’s face. Actually the application can:

• take a picture, or choose it from the sd card;
• recognize the presence of a face in the picture and draw

a silhouette around it; eventually, the user can manually
adjust it;

• help the user to identify the feature points, and pick them;
• warp the image so that it can be used as a texture for the

3D model;
• show the 3D model and let the user interact with it through

touchscreen, as a classic 3D viewer.

5.2. Limitations

The points 1,2 and 3 are tightly linked and the navigation
between screens is very fluid; on the other hand, since the
application is currently in a test phase, the points 4 and 5
are executed as stand alone applications, but can be easily
integrated with the others modules. When the testing phase,
particularly long on Android because of the availability of
several different devices, will be over, the above-mentioned
points will be well connected and the application will be re-
leased, making possible for others developers to integrate
new modules. During this work some problems has risen,
mainly due to the devices used.
Another problem solved during the development concerns
the warping of the image. This deformation is necessary
for our work to obtain a texture easily applicable to the 3D
model, but the warping is based on mathematical functions
that can be very complex, and the tradeoff between com-
plexity and quality result is not fair. Despite the fact that the
results are truly better using complex functions than using
simple ones, the quality difference doesn’t justify the gap in
computation time. Hence, on mobile platforms, linear func-
tions must be used in order to have the output back in a
reasonable amount of time; in particular, the transformation
used is based on the idea of barycentric coordinates, there-
fore a linear transformation.
Despite of the decision of working with linear functions and
although the triangulation algorithm has been optimized us-
ing a trapezoidal map, since the device used for the testing
phase is a first generation Android mobile phone it became
impossible to use high resolution images in the warping
phase. This device happened to be around 970 times slower
than a mid-level laptop computer.

c© The Eurographics Association 2011.

45

S. Boi, F. Sorrentino, S. Marras, and R. Scateni / 3D-ize U! A Real-time 3D Head-model Texture Generator for Android

Table 1: Table reporting the timing for the execution of step
3 of the algorithm.

Device Release Year Approx. Time (sec)
HTC Magic 2009 56

Samsung Galaxy S 2010 30
Samsung Galaxy S2 2011 2

HTC Sensation 2011 2

Some little problems, due to the Android platform, rose dur-
ing the phase of the acquisition of the image. When the im-
age is acquired, the device takes some time to store it either
in the internal memory or in the SD card, delaying any work
on that image until the storing process is finished.

5.3. Future works

The purpose of this work is merely to build a base onto
which it will be possible to create similar applications. The
use of 3D customized models offers several ideas to develop
in the near future.

For example, it would be interesting to make an applica-
tion where people could try different hairstyles or hair color,
or see themselves with beard or mustache. It would also be
possible to use the images of a future father and mother to
have an idea of the face of their son, or use the images of
a father and his son to highlight the common features and
see how the grown up child will appear, or warp the faces to
see how our friends would be if they were fat, thin, elder or
younger.

An even more interesting application could use other 3D
models, for example glasses, applying them on the existing
head. Glasses, earrings, hats or any other head-related ac-
cessory could help to make an interesting application. From
a ludic point of view, it could be fun to texture different 3D
models like animal heads or even common items with the
image of its own friends. In the end, it could be even possi-
ble to create a community to share the contents; the future
developments are lots and very different from each other.

References
[BKP∗10] BOTSCH M., KOBBELT L., PAULY M., ALLIEZ P.,

LÉVY B.: Polygon Mesh Processing. A. K. Peters Ltd., 2010. 2

[Che07] CHEW L. P.: Voronoi/delauanay applet, 2007.
www.cs.cornell.edu/home/chew/chew.html. 4

[com11a] Android lifecycle and working, January - August 2011.
http://developer.android.com. 1

[com11b] Android story and evolution, January - August 2011.
www.androidiani.com. 1

[com11c] Android tutorials, January - August 2011.
www.anddev.org. 1

[Mar10] MARKETS M. .: World mobile applications mar-
ket - advanced technologies, global forecast, August 2010.
www.marketsandmarkets.com. 1

[MN06] MULLENS S., NOTLEY S.: Image morphing.
www.stephenmullens.co.uk. 2

[PAM∗07] PULLI K., AARNIO T., MIETTINEN V., ROIMELA
K., VAARALA J.: Mobile 3D Graphics: with OpenGL ES and
M3G. Morgan Kaufmann Publishers, Inc., November 2007. 5

[Pic06] PICKOVER C. A.: The Mobius Strip. Thunder’s Mouth
Press, 2006. 3

[SB08] SOHAIL A. S. M., BHATTACHARYA P.: Detection of fa-
cial feature points using anthropometric face model. In Signal
Processing for Image Enhancement and Multimedia Processing,
vol. 31 of Multimedia Systems and Applications Series. Springer
US, 2008, pp. 189–200. 3

[VFG∗09] VELHO L., FRERY A., GOMES J., VELHO L., FRERY
A., GOMES J.: Warping and morphing. In Image Processing
for Computer Graphics and Vision, Texts in Computer Science.
Springer London, 2009, pp. 387–412. 2

c© The Eurographics Association 2011.

46

