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Abstract 
This paper describes an operational pipeline that exploits computational geometry to derive useful knowledge about 
the crystallization behaviour of materials composed of varying amounts of pure components. Starting from existing 
knowledge related to the pure components, we compute the Gibbs free energy of all their possible compositions in a 
given range of temperatures, both in liquid and solid phases. Then, we exploit the convex hull method to derive the 
coexistence of solid and liquid phases, and model the resulting liquidus hypersurface as a simplicial complex. On such 
a complex, we propose novel tools to robustly compute descent lines describing the crystallization path induced by heat 
loss for any initial composition in the system. 

 

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry 
and Object Modeling 

 

1.  Introduction 

Many interesting materials studied today are mixtures of 
several pure components. Typically, in Material Research the 
absolute amount of pure components constituting a complex 
material is not very important, while it is much more 
interesting to know their relative amount. For example, 
pseudowollastonite is always composed of 50% CaO and 
50% SiO2 in molar proportions independently of the bulk 
amount of the substance. In many cases, the characteristics of 
a mixture can be derived based on the characteristics of its 
components, their relative amount, and a number of other 
variables such as the temperature or pressure. It is often 
useful to know, for example, which is the minimum 
temperature at which a given material begins to melt. On the 
contrary, when lowering the temperature, it is useful to know 
at which point a molten substance begins to crystallize (e.g. 
at sea level, water becomes ice at zero degrees). Such a 
temperature of incipient crystallization depends on the 
crystallization temperature of the constituting pure 
components, but this dependence is not necessarily as easy as 
a linear combination. 

Given N pure components representing a thermodynamic 
system, the domain of all their possible “relative amounts” 
in a mixture can be modelled as a simplex. Within such a 
compositional simplex, one may define a multivariate 
function called the liquidus which associates, to each 
possible composition, the crystallization temperature of the 

corresponding material. At the vertices of the simplex the 
value of the liquidus corresponds to the crystallization 
temperature of the corresponding pure components, 
whereas in the interior of the simplex it varies in a non-
trivial manner. In general, the liquidus cannot be 
represented in closed analytical form, therefore the 
domain is typically sampled in a discrete manner. 

Computational geometry proved to be extremely useful to 
model and analyze complex thermodynamic systems from 
many points of view. First, the graph of the liquidus is a 
hypersurface, and this paper shows that it is convenient to 
represent it through a simplicial complex. We show how 
to exploit the computation of convex hulls to derive the 
liquidus starting from known properties of the pure 
components, and suggest a novel approach to analyze the 
liquidus hypersurface in order to predict crystallization 
paths for any initial composition in the system. The study 
of such processes is fundamental to understand important 
phenomena that involve molten materials such as, for 
example, the evolution of magma bodies and volcanic 
eruptions. 

2.  Related work 

This section reports some fundamentals of computational 
thermodynamics and useful notions of discrete 
differential geometry which are necessary to understand 
the contribution of the paper. 
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Computational Thermodynamics - Material research and 
engineering try to understand the characteristics of complex 
materials by studying the interrelationship of composition, 
microstructure and process conditions represented in phase 
diagrams  [8]. The calculation of phase diagrams 
(CALPHAD, for short) is one of the main objectives of 
computational thermodynamics. Roughly speaking, a 
mixture of pure components constitutes a thermodynamic 
system that may exist is different aggregation states (phases) 
depending on temperature (T), pressure (P) and composition 
(X). Depending on its initial configuration, a system may 
change dynamically in order to attain an equilibrium state. 
For example, ice tends to pass from solid to liquid at ambient 
P and T, when this last is slightly enhanced. A phase diagram 
is a chart describing how the various phases of a system 
depend on thermodynamic parameters such as T, P, and X. In 
1870, J.W. Gibbs proposed the equality f = c – p + 2 that 
relates the number of components c and the number of 
phases p with the number of degrees of freedom f of a 
system. Such an equality became famous as the Gibbs’ phase 
rule. 
Although it is not possible to establish a priori the typology 
of the various phases that may nucleate in a system we know 
that their number at given P,T conditions is constrained by 
the Gibbs’ phase rule and their composition by the Gibbs 
free energy (G) minimization principle: 

TSHTSPVUGG mintotal −=−+==             (1) 

(where U, V, S and H are internal energy, volume, entropy 
and enthalpy respectively), when operating at constant P,T 
conditions or by the Helmholtz free energy minimization: 

TSUFF mintotal −==                                                (2) 

when operating at constant V,T conditions. 
We also know that that the Gibbs free energy of the system 
(Gtotal) is composed of all the Gibbs free energies of the 
various phases in the system itself, defined by the chemical 
potentials of their components (µ). Algebraically, this is 
expressed as 

∑µ=
i

iitotal nG                                           (3) 

where ni is the number of moles of the ith component, µi is its 
chemical potential, and summation is extended to all 
components. For a system at constant T and P: 
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Chemical reactions proceed spontaneously in the direction of 
lowering of chemical potentials, and, based on eqs. 3,4 
minimization of chemical potentials correspond to 
minimization of the Gibbs free energy of the system. The 
topology of phase diagrams (e.g. the Schreinemaker’s 
projections of stable coexistence) is complicated by the fact 

that the chemical potential is a “partial molar property”  
i.e. a property whose “local” (partial) values, though 
referred to one mole of substance (molar) depends in a 
complex manner by the chemistry of the system. This is 
due to the fact that the various components interact 
among themselves in different ways according to the 
aggregation state (structure, local-, medium- or long-
range ordering) of the regions (i.e. “phases”) of the 
system, developing or absorbing heat according to their 
chemical affinity, eventually developing an excess 
volume, and so on. To offer a rationale in the 
interpretation of phase stability in complex systems it is 
common practice to represent the limiting regions that 
define the T-X condition of incipient crystallization (i.e. 
“ liquidus”) or incipient melting (i.e. “solidus”), and, 
eventually, their evolution with P. The use of piecewise 
linear manifold meshes  [1] to model and analyze such 
hypersurfaces requires discrete versions of differential 
concepts. 

Discrete Differential Geometry - Normal vectors can be 
estimated on non-differentiable surfaces such as triangle 
meshes. Clearly, internal points of a triangle are locally 
differentiable, hence their tangent plane is defined and its 
normal vector can be computed as the normalized cross 
product of two of the three edges. If necessary, the normal 
at a vertex can be estimated as a weighted average of the 
normal vectors at its incident triangles. 

Roughly speaking, the gradient of a real function defined 
on a surface is the vector of its partial derivatives, and its 
magnitude can be interpreted as the “slope” of the 
function at that point. Hence, the gradient provides a 
support for the computation of steepest descent paths on 
surfaces. For the sake of simplicity we introduce the 
concept for surfaces in R3, however the gradient can be 
defined on manifolds of any dimension. Let M in Rn be a 
(n-1)-manifold and f : M → R be a function of class Ck, k 
≥ 1; then, the gradient of f is defined as  

),,(:
1

fff
nxx ∂∂=∇ K                                        (5) 

and its magnitude is the “slope” of f at each point of M. 
As shown in  [1], the gradient can be estimated on a 
triangle mesh as well. In this case, the function f is 
typically associated to the vertices of the mesh, whereas 
for points belonging to the interior of a higher-order 
simplex (triangle or edge) a linear combination of the 
function values at the simplex vertices is normally 
considered. 
The gradient of a real function f defined on a triangle 
mesh M in R3 at each vertex position can be estimated as 
shown in  [9]. For the sake of computing steepest descent 
curves, however, we can calculate the gradient at points 
inside triangles instead of estimating it at vertices. Note 
that the interior of each triangle t is differentiable and 

therein the gradient tf |∇  is defined everywhere, is 

constant, and its value can be computed as the solution of 
the following 3x3 linear system [11]: 
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where t is a triangle made of vertices (pi, pj, pk) and whose 
normal vector is N. 

tf |∇  lies on the plane of the triangle and 

points towards the direction of maximum decrease of f. The 
gradient estimation in meshes of higher dimensions is a 
mostly unstudied problem. We provide a general solution for 
our application in Section 3. 

3. Liquidus derivation and analysis 

Overview - The operational pipeline that we propose is 
based on known information about the pure components 
constituting the material under analysis. Generally speaking 
we may divide the phases that may form in a system as 
pertaining to three distinct classes: a) mechanical mixtures; 
b) mixtures with partial miscibility; c) mixtures with 
complete miscibility. The term “mixture” (IUPAC notation) 
stresses that we treat all components in mixture in the same 
manner (i.e. same standard state of pure component in pure 
phase at T,P of interest). Mechanical mixtures do not actually 
mix in any proportion, partial mixtures have only a limited 
solubility while mixtures with complete miscibility accept all 
component in any proportion. For the sake of simplicity we 
will illustrate the case of a ternary system (CaO-Al2O3-SiO2; 
hereafter CAS system) where at first approximation we may 
treat all crystalline phases as mechanical mixtures and the 
liquid as a phase with complete miscibility (though with a 
discrete P-T dependent miscibility gap; see later). We will 
disregard for the moment the effect of the intensive variable 
P, hence we will not deal with the volume properties of the 
phases (cf. Eq. 1).  
In our framework, the domain of all the possible 
compositions is modelled by a d-simplex, with d+1 being the 
number of pure components (e.g. d+1 = 3 for the CAS 
system). For each analysis, the Gibbs free energy is 
evaluated at a fixed number of uniformly spaced sample 
points spanning the whole simplex (See step 1 below). Once 
the Gibbs energy is known for each phase, and at discrete 
temperatures within the desired ranges, we proceed by 
applying the convex hull method to extract the compositions 
that, at any given temperature, coexist in different phases 
(Step 2). Since these compositions are just samples over the 
domain of all the possible compositions, we interpolate them 
using a Delaunay triangulation to reconstruct a piecewise 
linear approximation of the ideally continuous liquidus (Step 
3). Within such a simplicial complex, the computation of 
descent lines may take advantage of a novel gradient-based 
approach (Step 4). 
Note that Steps 2, 3 and 4 in our pipeline make a strong use 
of concepts from computational geometry. Step 1 does not, 
but it is described here for completeness of the exposition. 

Step 1: Modelling the Gibbs energy for each phase 
Aim of this first step is to derive the Gibbs free energy for 
each possible composition of the pure components at each 
temperature in a given range. Thus for each temperature Ti 

we compute the Gibbs free energy of all the possible 
solids (mechanical mixtures) that may exist at that 
temperature. Also, we sample the compositional simplex 
and, for each sample composition, we compute the Gibbs 
free energy of the liquid at the same temperature Ti.  

The input to our process is represented by the standard 
state properties of both the pure components and all the 
possible solids being combinations of the pure 
components. In the practice, such input data is measured 
experimentally, and its total amount can be summarized 
in a rather small real-valued matrix (32x12 for the CAS 
system, see Tables A1,2 in Appendix I of  [10]). 

The Gibbs energy of mechanical mixtures - In 
mechanical mixtures the Gibbs free energy is simply 
defined in terms of their standard state properties and heat 
capacity integrals: 
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We must anticipate that though we know with sufficient 
precision the G(T,P) of a (compositionally invariant) 
mechanical mixture, we have no clues on the local values 
of the potentials of component in mixture unless we 
equilibrate the mechanical mixture with another phase in 
the system of interest. In fact, if two or more phases 
coexist stably in the system the potentials of a given 
component is equal in all phases stable at equilibrium. A 
single computation, based on equation (7) (when working 
at ambient pressure) and stemming from the standard 
state thermodynamic data will be generally sufficient for 
each mechanical mixture nucleating in the system of 
interest. In our example of the CAS system, the silicate 
liquid exhibits however complete miscibility at 
sufficiently high T, with miscibility gaps limited to the 
high-SiO2-content regions (see later). We may depict its 
bulk Gibbs free energy as composed of two distinct 
terms: - the weighted molar summation (i.e. in terms of 
molar fractions)  of the chemical potentials of the pure 
liquid components; - the Gibbs free energy of mixing 
(eventually but not necessarily split into ideal + excess 
contributions):  

excess,mixideal,mix
i

i
0

liquid,iT,liquid GGXG ++µ=∑       (8) 

The Gibbs energy of liquid mixtures - For the liquid we 
will use two distinct (but operationally similar) 
approaches: the Modified Quasi-Chemical Model (hereon 
MQC)  and the Hybrid Polymeric Approach (HPA) 
whose details are given in  [10]. MQC is a well tested 
model with important applications in Material Science, 
but it has the disadvantage of requiring high order 
interactions whose significance cannot be foreseen by the 
application of first principles. For example, if one wants 
to reproduce the topology of the liquidus in the CAS 
system, it is necessary to introduce two ternary 
parameters  [5] to the binary interactions  [10].  
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HPA is perhaps conceptually more complex but it has the 
advantage of avoiding high order interaction terms and of 
providing a conceptual rationale in the interpretation of the 
various forms of energy which concur to the overall stability 
of the amorphous substance. In the case of the CAS system it 
may be shown for instance that the previously mentioned 
ternary terms of the MQC model arise from entropic terms 
closely related to the Al-avoidance principle and known to 
hold in crystalline media  [6]. Once HPA binary interactions 
among the various components have been established, there 
is no need of further “ad hoc” parameterization, and the 
model may be virtually extended to n dimensions with no 
compositional limit.  
The various forms of energy are described in both models by 
continuous functions (see the relevant equations in  [10], 
Appendix I), but, for computational purposes, it is 
convenient to select a sampling grid in the system spanning 
in a uniform way the simplex. The adopted compositional 
step will depend upon the geometrical complexity of the 
liquidus and on the degree of accuracy one want to  achieve 
in terms of thermal assessment of bivariant, univariant and 
invariant points. In the case study we present here  (the CaO-
Al2O3-SiO2 system;  hereon CAS) we sampled the simplex 
along equally-spaced points differing at percentual level. The 
simple algorithm adopted is the following.  
 

 
npoint=99 
for i=1 to npoint { 
  XSiO2=1.0-0.01*i 
  tox=0.01*i 
  ntimes=npoint*(1-xsio2)+1 
  for iratio=0 to ntimes { 
    xtimes=(iratio*1.0)/(ntimes*1.0) 
    XAl2O3=tox*xtimes 
    XCaO=tox-XAl2O3 
  } 
} 

 
 
It may be conceived as a Toop’s projection with the pivotal 
point represented by the network-former SiO2. It may be 
eventually extended to higher compositional dimensions by 
addition of further nested loops.  

Step 2: Deriving the liquidus samples 
We recall that, at each point of its domain, the liquidus 
represents the temperature of incipient crystallization of a 
substance; in other words, at that temperature the solid 
coexists stably with the liquid mixture. This condition is 
verified if (1) the chemical potentials of the solid and the 
liquid are equal and (2) the Gibbs free energy is minimized. 
In a binary system (i.e. made of two pure components), for 
example, the compositions for which these two conditions 
are verified can be derived at a given temperature as follows: 
first, observe that the compositional domain is a 1-simplex 
which, in the Euclidean space, is a segment. Thus the Gibbs 
free energy of the liquid at a given temperature can be 
plotted as a curve in a 2D chart (see Figure 4, top row). In 
the same chart, we can add a point for each of the solids 

existing at that temperature. For each of these “solid” 
points, we consider the straight line passing through it and 
being tangent to the “liquid” curve. The tangency point 
represents a composition where the solid and the liquid 
coexist stably. For simplicity, in this example we assumed 
that there are no miscibility gaps. In a 2-dimensional 
compositional simplex, the straight line becomes a plane, 
and a liquid and two different solids may coexist stably. 
The approach can be extended to any dimension. 
Common numerical methods to compute phase diagrams 
based on the minimization of the Gibbs free energy of the 
system and equality of the chemical potentials of phase 
components at equilibrium require an initial 
approximation that is not always simple to tune, and in 
some cases a wrong choice may significantly spoil the 
result, especially when splitting solutions are expected 
 [12]. Thus, we employ a more robust approach based on 
the construction and analysis of convex hulls of the Gibbs 
energies. To the best of our knowledge, current solutions 
do not provide evidence of functionality on systems made 
of more than three components. For ternary systems, 
examples of use of the convex hull method can be found 
both in the literature (e.g.  [12]) and in experimental 
software prototypes (e.g. http://matforge.org). 
In our pipeline, the method of the convex hulls is 
dimension-independent and proceeds as follows. First, the 
Gibbs energies of all the phases at a given temperature T 
and pressure P computed in Step 1 are considered 
altogether, and all the sample points are put in a common 
reference system where the last coordinate identifies the 
Gibbs energy, whereas the other coordinates identify the 
composition. Formally, let the system have n components, 
so that each point x in the compositional domain can be 
represented using either n barycentric coordinates or n-1 
Euclidean coordinates within the compositional simplex. 
Our sampling is defined as S = {si ∈ ℜn : si = <e1, e2, …, 
en-1, Gγ(<e1, e2, …, en-1>)>, i ∈ [1,k], γ ∈ set of phases}, 
where k is the number of samples, ei are the Euclidean 
coordinates of the composition, and Gγ(x) is the Gibbs 
energy of the composition x in phase γ. 
Then, the convex hull Ch(S) of the resulting point cloud S 
is computed and each non-triangular facet (if any) is 
triangulated. After this step, the lower hull Lh(S) is 
extracted by selecting all the facets of the convex hull 
whose normal points downwards (i.e. the triangles whose 
normal’s last coordinate is negative). The projection D of 
the lower hull obtained by discarding its last coordinate is 
a Delaunay triangulation of the compositional domain. 
From now on, a vertex of D being the projection of a 
sample of the liquid energy will be called a “liquid” point, 
whereas a vertex being the projection of a sample of the 
energy of a solid phase will be called a “solid” point. 
Depending on the nature of its vertices, each triangle of D 
determines a region that, for temperature T and pressure 
P, can either belong to a single-phase, or represent a two- 
or three-phase equilibrium. 
To derive a section of the liquidus at the given T and P, it 
is sufficient to find all the edges of the triangulation that 
connect a solid point with a liquid point. Specifically, the 
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interface between solid and liquid phases is tracked by the 
liquid points of the triangulation which are connected to at 
least a solid point through an edge. The determination of 
coexisting liquids is a bit more tricky: in principle, an edge 
connecting two liquid points may indicate such a 
coexistence, but in practice we have used a finite sampling of 
the domain, and therefore an edge may be there simply 
because the two points are successive samples of the same 
portion of the energy hypersurface. In order to exclude such 
“fake” coexistences, besides computing the convex hull of 
the Gibbs energy samples, we also compute the Delaunay 
triangulation K of all the energy samples projected on the 
compositional domain, thus including both the vertices of the 
convex hull and the other “internal” energy points. Then, we 
declare that two liquids coexist only if their points are 
connected by an edge of D which is not in K. 
In our implementation, the freely available qhull software is 
used to compute convex hulls  [2]. 

 
 
Figure 1: Example of application of the convex hull method in a 
binary system. In the top row the convex hull is computed for the 
energy points of all the phases evaluated at 1803.1 K (left) and 
1813.1 K (right). In both the cases the red dots indicate liquid points 
which are connected to solid points through an edge. By performing 
the same task at all the temperatures in the range 1500 K – 2500 K 
with a step of 10 K, our algorithm could track the liquidus curve 
(bottom-left). The result of the FactSage software is reported for 
comparison (bottom-right). 

Step 3: Interpolating the samples 
After having repeated step 2 for each temperature and 
pressure within the range of interest, the resulting samples 
can be interpolated to define an explicit topology of the 
phase diagram. Once again, the Delaunay triangulation of the 
samples appears to be the best choice as it guarantees well-
shaped simplexes for robust computation. As an example, we 
have interpolated the liquidus samples computed as 
described in step 2 for a CAS system in a range of 
temperatures from 1400 C to 2600 C and at constant 
pressure. The result is shown in Figure 2. 

The CGAL library provides excellent implementations of 
Delaunay triangulation algorithms for any dimension (see 
 [4] for details on the algorithms and their complexity). 

Step 4: Gradient-based calculation of descent lines 
Being able to correctly identify the direction of steepest 
descent on the liquidus is important, and in some cases it 
might also help in the determination of the crystallization 
path (e.g. on cotectic lines connecting primary phase 
surfaces in ternary systems). Thus, we derived a formal 
approach to compute such a direction. 
At each point within the simplicial complex, the steepest 
descent direction is given by the inverse of the gradient 
vector. Since the function to be minimized is defined at a 
discrete set of sample points (i.e. the vertices of the 
simplicial complex), we need a procedure to estimate the 
gradient at all the other points of the domain. When the 
gradient in known, tracking the path reduces to 
computing a sequence of points of intersection of the path 
itself with non-maximal simplexes. Since deriving the 
gradient is a constant-time task, tracking the path costs 
O(np) operations, where np is the number of simplexes 
traversed by the path. 
In order to estimate the gradient within simplexes of any 
dimension we assume that the function value within such 
simplexes is a linear interpolation of the value at its 
vertices. Having said that, the gradient can be assumed to 
be constant across all the inner points of any simplex, and 
can be derived as follows. 

 
Figure 2: Liquidus of a CAS system in a range of temperatures 
between 1400 C and 2600 C at constant pressure. 

Gradient Estimation within Euclidean simplexes 
Our aim is to find the gradient vector of the piecewise 

linear function on a simplex defined by 
n+1 vertices, let them be 

. 
With the following described method we are able to give 
the analytic form, inside a simplex, of the (linear) 
function f  instead, and so the gradient vector is defined 
as: 

 
Step by step, a general idea of the gradient evaluation 
process is: 
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1. is explicitly defined just at mesh vertices; 
2. linear interpolation is assumed for points internal to each 

simplex; 
3. inside each simplex, the analytic form of f is computed; 
4. finally, the n gradient vector coordinates are extrapolated 

(first n coefficients of analytic form). 
 
When considered with its associated function f, an n-
dimensional simplex in Rn can be embedded in an (n+1)-
dimensional space where the additional coordinate represents 
the value of f. Within such a space, the hyperplane 
containing the simplex has the following analytical form: 

 
By resolving the determinant, for example with respect to the 
first row, we obtain the following expression of the plane: 

 
where λ are real numbers. The above expression can be 
rewritten as: 

 
which is the analytic form of the function f within the 
simplex. Thus, the gradient vector within the simplex can be 
estimated using the following expression: 

 

Conclusions 

Though the role of computational geometry in the study of 
phase diagrams is well established, we have shown that its 
potential impact might be more significant than expected. 
The exploitation of simplicial meshes to model the system 
proved to be useful in many aspects, starting from pure 
visualization issues, up to the development of robust 
algorithms to track lines of descent. Furthermore, the method 
of the convex hull employed to track isobaric-isothermal 
sections can be extended to systems of any dimension and, 
differently from standard approaches, does not require any 
initial approximation to be set and is less sensitive to 
numerical issues. Thus, simplicial meshes and the convex 
hull method are promising tools to be further investigated in 
the context of multi-dimensional systems. 
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