
Eurographics Italian Chapter Conference (2010)
E. Puppo, A. Brogni, and L. De Floriani (Editors)

Composition of texture atlases for 3D mesh multi-texturing

R. Pagés, S. Arnaldo, F. Morán and D. Berjón†

Grupo de Tratamiento de Imágenes, Universidad Politécnica de Madrid, Spain

Abstract
We introduce an automatic technique for mapping onto a 3D triangle mesh, approximating the shape of a real
3D object, a high resolution texture synthesized from several pictures taken simultaneously by real cameras sur-
rounding the object. We create a texture atlas by first unwrapping the 3D mesh to form a set of 2D patches with
no distortion (i.e., the angles and relative sizes of the 3D triangles are preserved in the atlas), and then mixing
the color information from the input images, through another three steps: step no. 2 packs the 2D patches so that
the bounding canvas of the set is as small as possible; step no. 3 assigns at most one triangle to each canvas
pixel; finally, in step no. 4, the color of each pixel is calculated as a smoothly varying weighted average of the
corresponding pixels from several input photographs. Our method is especially good for the creation of realistic
3D models without the need of having graphic artists retouch the texture.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Three-Dimensional Gra-
phics and Realism—Color, shading, shadowing, and texture

1. Introduction

We face the problem of automatically and efficiently map-
ping a texture onto a closed, manifold triangle mesh appro-
ximating the surface of a real 3D object, of which several
pictures have been taken simultaneously by calibrated ca-
meras surrounding it. The process of obtaining the 3D mesh
itself is not of our concern in this paper. In the wider system
for which we have developed the technique presented here,
we follow a typical space carving approach [Kut00]: we first
build a cubic visual hull from the object silhouettes in the
different pictures, and then process it with the well-known
marching cubes algorithm.

Our aim is to add realism to the 3D mesh through clas-
sic texture mapping, i.e., choosing or creating a texture, and
assigning a pair of texture coordinates to each mesh vertex.
Whatever the origin (synthetic or natural) of this texture, it
has to be stored/transmitted along with the naked mesh to-
pology and geometry, and it is thus beneficial that it be as
small as possible. In order to reduce the texture size, gra-
phic artists typically aggregate all images to be mapped onto
different mesh regions into a single texture atlas containing
information for all the triangles in the mesh: see Figure 1.
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Figure 1: Typical human-generated texture atlas

As we explain in Section 2, where we review the state of
the art related to our technique, there are many ways of ag-
gregating the images, most of which imply unwrapping the
mesh by portions, cutting it along certain edges and flatte-
ning its triangles so that they lie on the same plane. As we
also explain in Section 2, most mesh unwrapping methods
introduce some distortion when the 3D triangles are trans-
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Figure 2: Steps of our algorithm (WC: World Coordinates,
float; DC: Device Coordinates, int)

ferred to the 2D texture atlas, so that the number of cuts is
minimized [SP05]. But this distortion can be avoided enti-
rely to have the size of the 2D triangles in the texture atlas
be proportional to that of the original 3D ones (preserving
their angles). One of the features of the technique we pro-
pose is precisely that its 3D mesh unwrapping mechanism
achieves zero distortion while being very efficient in doing
so. The main contribution of our work, though, is the way in
which we merge the color information from different pictu-
res to calculate the value of each pixel in the texture atlas.

We start with a group of images corresponding to a set of
views of the 3D object, so it is relatively simple to determine
which camera sees best each mesh triangle, and therefore to
establish a relationship between triangles and pictures. Un-
fortunately, if only one camera/picture is assigned to each
triangle, seams across false mesh regions are almost gua-
ranteed to appear in the rendered result, due for instance to
different illumination conditions for different cameras. To
solve this, we have developed a three step algorithm to opti-
mize the texture that (see Figure 2): i) packs the 2D patches
yielded by our unwrapping method so that the bounding can-
vas of the set is as small as possible; ii) assigns at most one
triangle to each canvas pixel; iii) calculates the value of each
pixel as a smoothly varying weighted average of the color in-
formation provided by different cameras, thus avoiding dis-
continuities in the textured 3D model.

2. Previous work

As mentioned above, unwrapping a 3D mesh is one of the
most common approaches for the elaboration of a texture
atlas where the information of several images is compiled.
Typically, the mesh needs to be split into different portions,
as it is done in paper crafts, before they can be unwrapped
with the least error possible in what are called 2D patches
or charts. The decision of where to cut the mesh usually
requires the input of an experienced artist, although there
are some methods to do it automatically. Of the many ways
to approximate the surface of a 3D mesh with simpler pla-
nar surfaces to avoid complex patch shapes, some search for
the minimum error [STL06] or use generalized cylinders re-

presented by sets of triangles (not always taken from the
mesh) [MGE08]. But the most common approach to mesh
unwrapping with a given distortion is to use some kind of
parametrization: for example, Floater’s shape preserving pa-
rametrization [Flo97] leads to visually smooth surface ap-
proximations, whereas others seek to optimize the patches
with respect to metric distortion or shape quality [KLS03].
The main problems of these approaches are the presence of
the unavoidable (although limited) distortion, and the com-
plexity of the mathematics behind the algorithms, which ma-
kes their implementations much slower than it is desirable.

Once the different mesh patches are obtained, it is im-
portant to lay them out on the texture canvas as efficiently
as possible, while still avoiding overlapping. This is known
as the NP-hard pants packing (or “tetris packing”) pro-
blem [Mil98], and many solutions to it have been reported.
It is possible to try and pack the different charts conside-
ring the space left between the curves defined by their (com-
plex) shapes [LPRM02], but most approaches are based on
packing the bounding rectangles of the patches. Algorithms
achieving very good performances in terms of lost area mi-
nimization, but not as good in terms of computational re-
sources, are described in [MFNK95, HK09]. An example of
the specific use of block packing for texture mapping is des-
cribed in [SSGH01].

Our most important contribution is perhaps the merging of
color information from all pictures of the 3D object to com-
pose the texture atlas. Since the cameras surround the object,
which may not even be contained entirely in every photo-
graph (e.g., it may be a human body, and some cameras may
focus on its torso or face), it is necessary to combine them
into the texture atlas. Most of our effort consists in dividing
the mesh into different regions related to one camera/picture
each. This was also done in [LI07] where the texture is back-
projected onto the 3D surface before undergoing a Markov
random field energy optimization process. This approach
produces seams which are later mostly, but not always com-
pletely removed using a leveling process. In order to avoid
any potential seams, a subsequent approach [GWO∗10] uses
additional flexibility for choosing the texture projection pa-
rameters, and solves possible problems in camera registrati-
ons or surface reconstruction. However, it is an iterative and
very time consuming algorithm. Because of that, we decided
to design an algorithm that fuses the information from dif-
ferent cameras, even within the same texture triangle. If we
unwarp the images, it is possible to merge the color informa-
tion of the cameras we prefer, so illumination and occlusion
problems are easilly solved, thanks to an algorithm which,
in fact, does not take much time.

3. Proposed technique

3.1. 2D patch creation

As already mentioned, the first step of our algorithm un-
wraps the original 3D mesh into 2D patches with no distor-
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tion, meaning that the 2D triangles in the patches are exactly
the same size as in the 3D mesh (for the moment, both 3D
and 2D coordinates have floating point precision: we are still
far from talking about pixels and integers). We have cho-
sen this approach because it is easy to optimize, and the-
refore very fast. However, it produces bigger texture atlases
with more patches, and therefore many potential seams. This
could be regarded as a drawback but, in fact, it simplifies
the mixing of color information from different photographs,
which will be done later.

This algorithm is based on triangle adjacency information
of the mesh, so it is necessary to calculate this first. Each
new patch starts with a random seed triangle which is placed
into the plane. After that, its neighbors are calculated and
also placed in their position. This process is repeated with
every triangle (marking each one as “used” so it is not placed
twice), but it is necessary to establish several conditions to
avoid intersections or irregular growth which could generate
“octopus-shaped” patches.

Before a triangle is added to the patch, two conditions are
checked. The first is that its edges do not intersect any edges
of the triangles already in the patch. To detect an intersec-
tion, we check if the two new sides added to the patch corre-
sponding to the new triangle intersect with any of the sides of
the current patch perimeter. Any conflicting triangle is dis-
carded and left for another patch. The second check is per-
formed to prevent an inefficient patch growth. To do so, we
consider a bounding box for each patch, defined by its mini-
mum and maximum values for both the x and y coordinates.
We also keep track of the total area covered by triangles in-
side this bounding box, so that at any point we are able to
obtain the ratio between the area occupied by triangles and
that of the box. The higher this ratio, the better, so, if adding
a triangle makes it go under some threshold (which can de-
pend on the number of triangles already added to the patch),
the triangle is discarded to avoid patch boxes with big empty
zones. If a candidate triangle does not fulfill both conditions
simultaneously, it is discarded for the current patch. After all
candidates of the patch boundary have been discarded, it is
time to start a new patch with a new random seed.

3.2. Block packing

After examining all the solutions to the problem explained
in Section 2, we decided to elaborate a simplified version of
the rectangle packing algorithm where one dimension (e.g.,
width) is fixed, and the other is minimized. This approach
may be less efficient space-wise, but it is much simpler and,
therefore, faster. Figure 3 shows an example of a possible
block packing result with our simplified algorithm.

3.3. Assigning triangles to pixels

The texture atlas is created by placing a (square) pixel grid
onto the general bounding box and coloring each pixel. The

Figure 3: Example of packing algorithm results

Figure 4: Pixel to triangle mapping

size of each pixel cell in the grid is determined by an argu-
ment of the algorithm, therefore, it is possible to change the
final resolution of the texture atlas depending on its future
uses or the conditions of the transmission channel. In this
section we explain how we assign a triangle T to each tex-
ture pixel centered at P. We need T to unambiguously back-
project P onto a 3D point P3D (lying on T ), to then merge the
colors captured by the different cameras at P3D and calculate
the final color assigned to the pixel. In the next section we
explain the color averaging process.

In general, we assign T to the pixel centered at P if P lies
inside T , even if the pixel is only partially covered by T : see
Figure 4. However, we sometimes find a partially covered pi-
xel whose center does not lie inside any triangle, but whose
edges intersect one or more edges of one or more triangles;
we assign such a pixel the triangle which covers the largest
area inside its square. And of course, there are completely
uncovered pixels (the fewer, the better) that are not assigned
any triangle. When a pixel has been assigned a triangle, it is
convenient to express the position of P in barycentric coor-
dinates, i.e., as a weighted average of the positions of the
three vertices, A, B and C, of T : P = aA + bB + cC (note
that a + b + c = 1 is always true, but that 0 ≤ {a,b,c} ≤ 1
holds true if and only if P lies inside T ). Of course, the same
equation, with the same barycentric coefficients a, b and c, is
equally valid to express P3D in terms of A3D, B3D and C3D,
the three vertices of the 3D triangle on which P3D lies.

3.4. Pixel coloring

Coloring the final pixels of the texture atlas is the most im-
portant step in the whole process. Since not all cameras see
necessarily P3D equally well (in fact, some of them may not
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Figure 5: Occlusion test

see it at all), we need a way to rank them according to how
appropriate they are to contribute to the color of the pixel
centered at P. Below we explain how we establish the ca-
mera ratings, and then how we calculate the final pixel color
through weighted averaging.

Prior to executing the camera rating algorithm, a
vertex rating one must be run to fill in a matrix
vtx_ratings[nCam][nVtx] (nCam being the number
of cameras and nVtx that of vertices in the 3D mesh):
vtx_rating[c][v] tells us how well camera c is suited
to give us information about vertex v. To get there, we first
calculate another matrix tri_ratings[nCam][nTri]
(nTri being the number of triangles in the 3D mesh) gi-
ving the rating of every camera for every triangle. Using
the calibration parameters of each camera c, each triangle t
is projected onto the corresponding image. We measure the
projection area in pixels, that is, how much information this
camera “knows” about t. This area is calculated using the
cross product of the vectors that represent two of the edges
of t. The area is half of the magnitude of this vector, while
its sense gives us information on whether the triangle is fa-
cing forwards or backwards. As in closed manifold meshes
back-facing triangles are always occluded, we can assign a
null rating right away to all triangles whose projected area is
negative. However, front-facing triangles may also be occlu-
ded: our algorithm considers t (a front-facing triangle) to be
occluded if at least one of its vertices is occluded by another
triangle. In the same manner, a vertex v is occluded by a tri-
angle t if the projection of v lies inside the projection of t
and the plane containing t lies between v and the position
of the camera c (see Figure 5).

For each triangle, we run this test for the vertices that lie
inside of it in the projection. If the result of the test is that
v is occluded (t is closer to the camera than v), then all
its adjacent triangles are given a null rating (i.e., this ca-
mera cannot reliably provide information about them be-
cause they cannot be seen entirely). If the result is that t
is occluded by v, then it is t that is given a null rating. To
all the triangles that have not yet been given a null rating,
we give a positive rating proportional to their area. Once
the camera-triangle ratings have been obtained, the camera-
vertex ones can be calculated: vtx_ratings[c][v] is
the (unweighted) average of the ratings, for camera c, of the

triangles sharing v (unless any of these ratings in null, in
which case, vtx_ratings[c][v] = 0).

After the ratings are calculated, we loop over the tex-
ture pixels and, thanks to that matrix and to the barycentric
coordinates of P, we obtain in a straightforward manner the
rating of each camera for the pixel. Next, we select the n
best cameras (n is a parameter of our algorithm and is typi-
cally chosen depending on the quality of the input images),
ci | i ∈ [1; . . . ;n], with respective ratings ri, and we calculate
the final pixel color Clr as a weighted average of the colors
provided by each camera for P3D, Clri:

Clr = ∑i riClri

∑i ri

To obtain Clri, we must take into account the calibration
parameters of camera ci to project P3D onto the image captu-
red by ci, and then calculate Clri by interpolating bi-linearly
or bi-cubically the colors of the nearby pixels.

3.5. Dilation of the 2D patches

If we check the texture after the previous steps, we will
be able to notice a big amount of seams in the 3D model
which are due to imperfections in the mesh extraction pro-
cess and in the precision of texture coordinates. Because of
that, in patch frontiers, the image background color is some-
times extracted instead of the the texture atlas color. To avoid
this situation, a image dilation process as the one described
in [Dou92] is used. A structuring element (in our case, a 3x3
pixel box) travels along the edge of the patch adding new
pixels to the current patch. The color of each new pixel will
be an average of the colors obtained from the nearest pixels
in the patch. This process may have to be repeated several ti-
mes until seams disappear (in our experience, five iterations
have always been enough).

4. Results

The first obvious result of this process is a reduction in the
amount of information needed to store or transmit the tex-
ture data. Besides, 3D renderers work much more efficiently
when using a single texture image instead of many. Another
advantage is the scalability of the output image: it can be ad-
apted to different storage/transmission requirements. As for
processing times, the one required for the unwrapping step
is more or less linear with the number of vertices/triangles.
This can be seen in Table 1, which presents the results for
two sample meshes (see Figure 6). The test machine specs.
are as follows: CPU: Core 2 Quad @ 2.66 GHz; RAM: 4 GiB
DDR2 @ 667 MHz; Graphics card: nVidia GTX280 with
1 GiB of RAM. Our current implementation always runs the
unwrapping step on the CPU, since it is not easy to paralle-
lize it. Conversely, the “atlas painting” step does lend itself
very well to GPU programming, so we have obtained very
different results for the time spent in this step on CPU and
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Figure 6: Test mesh 2 (test mesh 1 is similar but has less
triangles in the head area)

GPU: when run on CPU, the atlas painting time depends li-
nearly on the atlas size (number of pixels); when run on the
GPU, there is an overhead cost for the transfer of informa-
tion from the CPU to the GPU and back, and there is not a
linear dependency. Despite this constant cost, GPU proces-
sing times are strikingly lower than those of the CPU. If we
compare these time results with the ones in [GWO∗10], it is
possible to see a huge difference. While our algorithm takes
less than one minute for a mesh with near 11000 triangles
(see Table 1), their method needs seven. When the resolu-
tion is increased to 12000 triangles, our time remains nearly
the same, while theirs is doubled.

Contrary to the method presented in [LI07], we combine
the information of several images, which avoids alignment
problems among texture sections. Thanks to that, visually,
the results are stunningly precise, as the transitions between
triangles are not noticeable and the color fading inside each
triangle is also smooth. Figures 7 shows an example texture
atlas resulting from our algorithm, and Figures 8 and 9 show
different 3D meshes once the corresponding atlases have
been mapped onto them. Notice that, although the face is
split across several patches in the atlas of Figure 7, in the top
mesh of Figure 9 the texture appears perfectly seamless.

5. Conclusions

Given the increasingly high demand of more realistic 3D
models using textures coming from several actual photo-
graphs, we have developed the innovative, high definition
multi-texturing system for 3D meshes presented in this pa-
per. We combine and merge the color information provided
by all images taken by a set of different calibrated cameras
into a single texture atlas, so only one image has to be sto-
red/transmitted to be mapped later onto the 3D triangle mesh

Figure 7: Automatically generated texture atlas

approximating the surface of the object. The amount of time
required to process all the images in order to compose the at-
las depends of course on the spatial texture resolution (num-
ber of pixels) needed, but this delay is incurred once, and
always off-line. Besides, this step, and especially the inter-
polation of the colors from the original images, are highly
parallelizable, and therefore it is easy to increase their speed
by using specialized processors such as GPUs. Moreover,
this algorithm works perfectly with meshes with very high
triangle resolution with the only consequence of an increase
of the number of 2D patches.
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