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Abstract
Adaptivity to scene changes is a main requirement for video analysis. The interpretation of video streams can be
dealt by triggering different techniques depending on the scene properties. We present a work-on-progress for the
design of a video surveillance architecture where different tasks in the context of behavior analysis are addressed,
depending on the crowd level. A coarse estimation of the scene occupancy allows us to focus on single person or
groups, adopting appropriate strategies to model the dynamic information. This paper focuses in particular on
the crowd estimation problem: we propose a solution to detect and localize groups of people, able to provide an
estimate of the number of people in the scene.

Categories and Subject Descriptors (according to ACM CCS): I.4.8 [Image Processing and Computer Vision]: Scene
analysis—Motion I.4.9 [Image Processing and Computer Vision]: Applications—

1. Introduction

One of the main goal of the current research in video surveil-
lance is the design of methods able to automatically cope
with variable scene complexities and environment condi-
tions. In this work we refer specifically to the problem of
detecting and modeling behavioral patterns of different com-
plexities. The availability in our reference application of
long-time observations calls for solutions to be adaptive and
able to exploit knowledge coming from previously seen sce-
narios.
It has been experienced in the last decades how classical
problems of behavior analysis can be better dealt by cou-
pling traditional computer vision techniques with statisti-
cal learning from examples [GSRL98, HTWM04, HXF∗06,
PCV00, RR05, SG00]. If, on one side, the computer vi-
sion literature provides nowadays benchmark techniques for
video analysis, statistical learning methods, on the other
side, represent effective tools when an higher-level of gen-
eralization is needed.
In this paper we present a work-on-progress on the devel-
opment of an adaptive video surveillance pipeline to model
common behaviors by learning frequent patterns of activities
from huge sets of unlabeled data, with a very limited a-priori

information included into the pipeline.
To properly deal with the rich variety of possible scene con-
ditions, the adaptability of the system against time should
consider different aspects, from physical variations of the
layout, to illumination changes occurring during daytime,
also different level of occupation of the observed scene. This
paper focuses on the latter, since the adopted techniques are
dynamically selected depending on the scene complexity:

• When the occupancy of the scene is low then it makes
sense to consider the dynamics of single objects – people
in our case – or small groups (people behavior analysis);

• Instead, if the scene is densely occupied the global motion
of the crowd should be taken into account (crowd behav-
ior analysis).

For what concerns people behavior analysis, we proposed
and validated a pipeline to extract and model the dynam-
ics of single subjects (or small groups) based on clustering
temporal series (for more details see [NSO10, Noc10]). A
low-level analysis allows us to obtain, at each time instant,
static descriptions of interesting targets that are correlated
over time to obtain a representation of the dynamic evolu-
tion. We assume we are monitoring possibly complex sce-
narios from a distance where the "action of interest" is the
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Figure 1: The pipeline of our adaptive video surveillance architecture: depending on the estimated occupancy of the scene, the
dynamics of single person (and small groups) or the global crowd motion are modeled with learning from examples.

trajectory of a moving object as a whole, and no informa-
tion is available or needed on the motion of object’s parts.
We thus explicitly refer to data that may be modeled as tra-
jectories of instantaneous observations. A final higher-level
analysis detects frequent patterns of activities by analysing
the internal structures of a trajectories collection observed
during an appropriate amount of time.
The very final aim of our current work is to integrate into
this existing pipeline a module to cope with highly crowded
scenes (see Fig. 1). The first point is to establish how to
trigger the different analysis according to the scene require-
ments. Then, the presence of crowd will influence the spe-
cific techniques adopted during the modeling phase: when
the number of people is high, tracking fails to produce ac-
curate descriptions and it is thus advisable to focus attention
on the global motion of crowd rather than of single subjects.
After a brief introduction of the architecture we are develop-
ing, this paper focuses specifically on the crowd estimation
module, able to localize the people in the scene and provide
an estimate of their number. The remainder of the pipeline
(enclosed with a dotted rectangle in Fig. 1) is object of cur-
rent and future work.
As for crowd estimation, we start off from the method origi-
nally proposed in [KRJ∗08], that, at each time instant, relies
on an analysis of the image motion segmentation and ex-
ploits camera calibration. We propose some variations to the
original pipeline that improve the estimates and allow for
real-time performance.
We evaluated the pipeline on two experimental scenarios,
characterized by rather different complexities. In our evalu-
ations, we show how the pipeline is robust and able to adapt
to such very different conditions.

The remainder of the paper is organized as follows. Sec. 2
briefly reports the relevant related works for what concerns
people and crowd behavior analysis. In Sec. 3 we go into the
details of our architecture. We provide just a sketch of the
single person-based analysis, which is not the focus of this
paper. We also present the video surveillance scenario where
we mainly lead the experiments, enhancing how the camera
calibration problem has been addressed. The Sec. 4 is the
core of the paper, since it presents the details of the crowd
estimation module: we start from the original paper and then
present the variations we introduces. The discussion on the
experimental evaluation concludes the section. The final sec-
tion (Sec. 5) closes the paper with discussions on the future
developments.

2. Related work

The study and the understanding of human activities from
videos has been widely addressed in the last decades (see
for instance [SG00, GSRL98, PCV00, PMF08, AC08]), par-
ticularly with the availability of an enormous amount of in-
stalled video surveillance cameras. A huge amount of video
data are daily acquired, becoming more and more difficult
to be handled by human operators. This justifies the growing
need for computational methods to be adopted for the design
of intelligent system.
Learning from examples is a rather conventional way to deal
with data complexity. In the literature, approaches based
on both supervised [PCV00, BKS07] and unsupervised set-
tings can be found. The existing architecture we discussed
in [NSO10, Noc10] is more related to the second approach.
A good starting point for an overview of existing approaches
for unsupervised behavior analysis is a recent special issue
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[SI008]. Among the first contributions we mention the in-
fluential work by Stauffer and his co-workers [SG00]. More
recently [HXF∗06] proposed a pipeline based on k-means,
while in [PMF08] normal behaviors are associated to one
class only, learned with a one-class SVM. For a reading more
specifically focused on temporal series clustering a complete
survey is [Lia05].
An overview of the literature concerning the analysis of
crowd motion and behaviors shows lack of approaches, es-
pecially in the case of unsupervised settings. An impor-
tant ingredient of crowd-centered methods is optical flow. In
[RMAS04], as an examples, the authors consider the prob-
lem of detection crowd from a moving camera. They look
for characteristic patterns of a spatio-temporal representa-
tion based on optical flow. The analysis of crowd flows is
the core of [AS07], where Lagrangian Particle Dynamics is
used to segment high-density (thousands of people) crowds.
[GBB09, SBTM08] propose approaches based on tracking.
The first one considers a HOG-based tracker to recognize
crowd events with respect to a set of pre-defined models
learnt from the data. The experimental analysis shows the
appropriateness of the choice. In the second work the au-
thors apply a KLT tracker to build crowd motion vectors.
The very recent and interesting work in [MOS09] introduces
the concept of social force into a crowd analysis pipeline.
They detect and localize abnormal crowd behaviors using
again optical flow. In [GCR09] social behaviors are consid-
ered, using an approach built upon state-of-art algorithms for
pedestrian detection and multi-object tracking.
Considering approaches explicitly based on learning, we
mention the work in [KN08], based on HMM of spatio-
temporal motion patterns, and, for the unsupervised coun-
terpart, [BC06], which presents a data-driven bayesian clus-
tering algorithm to detect individuals on low and medium
crowded scenes.
In [SHN09] an evaluation of people tracking, counting and
density estimation in crowded environments has been pre-
sented. The authors proposed a method coupling a Cluster-
Boosted-Tree (CBT) pedestrian detector with a learning-
based hierarchical association tracker.

3. The architecture

In this section we provide an overview of the video surveil-
lance architecture we propose, shown in Fig. 1, clarifying
the experimental scenario where we lead the evaluation of
the method and discussing the structure of the system.

3.1. The experimental scenario

A video surveillance setup (the Imanalysis suite, we ob-
tained within a technology transfer program with the com-
pany Imavis srl, http://www.imavis.com/) monitors an
indoor open space (one of the main halls of our Department)

Figure 2: The real scenario we consider provides an ideal
test-bed for our video surveillance pipeline, being charac-
terized by difficult illumination and richness from the stand-
point of dynamic content. The frames report examples of
low density (above) and crowd (below). Above, examples of
points from the planes considered during the system calibra-
tion (see Sec. 3.1).

where a good amount of dynamic events occur during day-
time (see Fig. 2). Only people are supposed to be moving
in the scene: the monitored environment provides different
complexity with respect to the crowd level, which in turns
depend on several factors, such as day, temporal interval,
period of the academic year (presence of lessons, examina-
tions). The weather conditions strongly affect the scene ap-
pearance being the hall illuminated by windows (on the right
wall) as well as artificial lights.
The physical characteristics of the observed environment
and the variety of dynamic events occurring during daytime
make the setting of acquisition an ideal test-bed for evaluat-
ing the system with respect to the usability in a real video
surveillance setup, where computational efficiency and ac-
curacy of the results are important requirements.
Currently the acquisition system is not fully calibrated. Since
the implemented crowd analysis module required informa-
tion on camera calibration, we may simply estimate the ho-
mographies that maps the 3D world points into the corre-
sponding image points. For the problem under analysis, in
particular, it is important to obtain information on [HZ04]:

• The ground plane Πg
• A head plane Πh

In Fig. 2, above, two examples of 3D world points laying on
the ground plane (Pground) and on the head plane (Phead) are
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reported. From an appropriate set of points lying on the two
planes we can thus estimate:

• P = HgroundPground
• P = HheadPhead

where P is expressed in pixel coordinated, Pground and Phead
are in world coordinates. To compute a reliable estimation
of Hhead we assume that all people have a fixed height, h1.

3.2. The adaptive pipeline

As sketched in Fig. 1, the input video stream is first pro-
cessed with a low-level analysis: at each time instant, the
current frame is segmented with respect to motion informa-
tion by means of change detection (see an example in Fig. 3,
first row, left).
The condition to determine an approximation of people den-
sity (or level of occupation) in the scene is based on thresh-
olding the fraction of moving pixels in the binary map at
time t. Although such estimation might be unreliable due to
the noise when computing the change detection, it is a very
simple and immediate way to easily discriminate among low
density and high occupation (two examples are in Fig. 2) and
consequently activate different paths in the pipeline.

3.2.1. Person-based analysis

When the estimated people density is below a given thresh-
old, the system focuses on the dynamics of single person
or small groups. This task is addressed following the peo-
ple behavior analysis pipeline (see Fig. 1, above). Here we
just sketch the procedure, we refer the interested reader to
[NSO10, Noc10] for further details.
Each connected component in the binary map represent an
interesting target that is described with an appropriate set of
information at time t, more specifically the target position
in the image plane, its velocity expressed in terms of mag-
nitude and direction, and its size. The vectors that statically
describe a target at each time instant are then correlated over
time with a tracking procedure (Fig. 3, above, rigth). As the
system runs, the trajectories are gathered populating a col-
lection of temporal data (the training set) that provides a rep-
resentative sample of what is usually observed in the scene:
Fig. 3, below on the left, shows an example.
The final aim of the procedure is to study the internal struc-
ture of the training set to detect groups of coherent data, or,
in other words, common behaviors. Since in our case this
step is based on clustering, a data abstraction phase is re-
quired to make the data suitable for a learning framework.
We consider string-based representations based on a data
partitioning fully data-driven.
The map of Fig. 3, below, right, reports the patterns of activ-
ities finally detected by the system: as it can be easily visu-
alized, the patterns reflect very intuitive classes of activities
occurring in the hall.
The experimental evaluation of the method has been carried

out on two weeks of observations. During the first one, a
training set including 1200 dynamic events was gathered (a
sampling is shown in Fig. 3, below, left): the phase of acqui-
sition was followed by a simple cleaning procedure of the
data to avoid the contamination of the noise (change detec-
tion errors, tracking failures) on the models. A test set of
5700 dynamic events has been collected on a second week,
without cleaning the data. The training set has been man-
ually annotated with respect to 8 main behavioral patterns;
the test set included examples of the 8 known behaviors as
well as anomalies (dynamic events) and noisy trajectories.
We obtain a percentage of correct events classification of
about the 80%, a very good performance if one considers
the high complexity of the data.

3.2.2. Crowd-based analysis

As the number of people increases, the tracking fails to com-
pute reliable descriptions of the scene dynamics, because of
intersection and occlusion events frequently occurring in the
scene, and highly noisy change detection maps. The atten-
tion moves instead to the analysis of the global motion of
the crowd, requiring the adoption of appropriate techniques.
The corresponding plot in Fig. 1 shows that the first step to-
wards this direction is the crowd estimation, in the terms that
will be discussed in details in the next section. An interest-
ing side effect of our approach is the capability of providing
an estimate of the number of people composing the crowd,
task that could not be easily addressed by the direct analysis
of the binary map.
The dotted rectangle encloses the modules of the pipeline
that will be developed in the near future: once that a first
(maybe coarse) crowd estimation has been performed, sim-
ilarly to what done in the case of people behavior analysis,
the system will address the problem of modeling the crowd
dynamics. This goal will require to consider appropriate in-
stances for the data abstraction and the high level analysis
steps.

4. Crowd estimation

The focus of this section is on the current work on devel-
oping the crowd behavior analysis pipeline. In particular,
we will provide details on the crowd estimation module and
show how an interesting side effect of this initial representa-
tion is the capability of estimating the number of people in
the crowd.

4.1. Crowd estimation approach

The method we implemented is organized in two different
levels of analysis, a coarse analysis, that follows the ap-
proach proposed in [KRJ∗08], and a real-time refinement
that exploits temporal coherence.
The algorithm is based on the assumptions that only moving
people are observed in the scene and the space occupied by
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Figure 3: Above, an example of the resulting binary map after the low-level video analysis: the connected components (left) are
first extracted and described with a features vector, then correlated over time (right) by means of tracking to model their dynamic
evolution in the scene. Below, left, a collection of temporal data gathered on one week. The final step of higher level analysis,
based on clustering trajectories, allows to detect frequent patterns of activity, referred to with arrows on the environment schema
(right).

each person in a crowd is almost constant. In this setting, the
problem of estimating the number of pedestrians in a scene
can be restated as the problem of estimating the area occu-
pied by them on the ground.
Starting from the binary map resulting from the change de-
tection, we consider each connected component in the map
and estimate the corresponding area occupied on the ground,
A(πg), using camera calibration. Assuming a substantial ho-
mogeneity of the area occupied by each person in the crowd,
as already stated, the estimated area A(πg) will be propor-
tional to the number of people in the group.
The area computation is based on projecting the connected

component under analysis onto two parallel planes: (1) the
first one corresponds to the ground, (2) the second relates to
the plane at height h1 (see Fig. 4). If h1 is an appropriate
candidates of the real average people heights in the group,
then the area occupied by each person in the scene is the in-
tersection of his/her projections onto the two fixed planes.
This procedure results in a coarse estimation of the area.
In [KRJ∗08] the shape of the area is the input of a refining
step whose objective is to compute height and main axes of
a cylinder that projected on the image plane gives the most
similar shape to the observed one. The final area occupied on
the ground corresponds to the base area of the cylinder and is
associated to a statistical confidence estimated from the ob-
servations. The number of people in the group Nc is finally
approximated by dividing the area by a constant, learnt from

Figure 4: Given a group in the scene, the corresponding
connected component in the binary map is projected onto
two parallel planes, corresponding to the ground and an av-
erage height h1. Then the intersection of the projections lo-
calizes the area occupied by the group, that will be propor-
tional to the number of people belonging to it.

the data, that represents the space occupied, on average, by
a single person.
We slightly modified this algorithm in two points:

• We skip the cylinder based optimization step, that exper-
imentally showed to be inappropriate for highly crowded
scenes and computationally expensive;

• We modified the confidence computation and based it on
geometrical aspects.

In the remainder of the section we discuss in details the pro-
posed variations.
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Figure 6: System feedback for two samples video (from PETS09, left, and from DISI, right). The comparison between estimated
number of people and ground truth shows the robustness of our pipeline.

Figure 5: Different configurations of walking people may
generate a very similar change detection maps, introducing
instability in the results of the algorithm.

4.2. Double bound computation

The main source of instability of the method described in
the previous section is due to the connected components pro-
cessed as “input”: as shown in Fig. 5 with a simple example,
given a map of the change detection is impossible to estab-
lish if it is generated by a very compact group of N people
or by M < N people that are walking separately.
The algorithm in [KRJ∗08] assumes compactness of group,
but this is a too restrictive assumption for all settings of ac-
quisition where the angle between camera optical axis and
ground plane is very different from 90 degrees. Is this cases,
the data ambiguities induced by the mutual position between
camera and scene makes results of change detection highly
inaccurate and assumption of compactness not reasonable.
This consideration calls for some sort of confidence on the
system feedback that may help in evaluating the results. In
[KRJ∗08], the bounds were built by considering an interval
of confidence of size ε centered on the number of people
estimated by the coarse analysis, Nc: Nc ± ε. The constant
ε was statistically estimated on the training data. However,
as we will show in the experimental analysis (Sec. 4.4), this
solution tends to associate to the best confidence a overesti-
mated result, especially in low or medium crowded scenes.
We base instead our estimate on an interval of confidence
whose upper bound is given by the coarse analysis (Nc)
while the lower bound computation is based on very prac-
tical geometrical considerations. Considering again the con-
nected component coming from the change detection map,
our approach is based on looking for the minimum number
of people that could generate it. Let us consider the con-
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nected component corresponding to a crowd and a pair of
people, PF and PB, the first located in front of the second.
The idea we follow is that the distance between PF and PB
should be at least such that the projection on the image plane
of PB feet encloses the pixels of the head of PF . The proce-
dure is iteratively repeated until all the connected compo-
nent pixels have been associated to some person. By count-
ing the resulting number of people, the minimum that could
geometrically generate the connected component, we obtain
the lower bound on the estimates. The gap between upper
and lower bound finally represents the confidence (or uncer-
tainty) on the system feedback.

4.3. Temporal filtering of the results

The final refinement step that we introduced in the algorithm
is based on a temporal analysis of the gap between lower and
upper bound: at each time instant t, we keep in memory the
history of the estimates from the interval [t −∆t, t] and se-
lect as current feedback the one corresponding to the smaller
gap, that is the most stable and thus accurate result.
Considering the temporal evolution is helpful in a real set-
ting where errors might be due to particularly difficult peo-
ple configurations that cause data ambiguities, and to errors
in the change detection (due to, e.g., shadows, difficult illu-
mination, noise).
We experimentally observed that the scene dynamics help in
detecting errors coming from the change detection, that are
typically temporally limited, and in discriminating between
the ambiguous situations exemplified in Fig. 5. In fact, com-
pact groups of people typically generate blobs that remain
rather stable over time, as opposite to more spread groups.
Although our solution introduces a slight delay in the system
feedback, it significantly improves the performance with re-
spect to the original approach, as shown in the next section.

4.4. Experimental validation

We performed the experimental evaluation of the method
considering two rather different scenarios: the environ-
ment described in Sec. 3.1 and the benchmark dataset
from workshop PETS 2009 (available for download at
http://www.cvg.rdg.ac.uk/PETS2009/a.html#s1). In
what follows, they will be referred to as, respectively, DISI
and PETS09.
For PETS09 setting (Fig. 6, above, left) a full camera cali-
bration was provided, allowing for a better accuracy in the
results. Also, the mutual position between the camera and
the people moving in the scene does not cause data ambigu-
ities. As opposite, in the case of DISI dataset (Fig. 6, above,
right) the calibration is based on the use of homographies
and the acquisitions are characterized by possible high am-
biguities on the observations.
Fig. 6, second row, shows the estimated number of people for
two videos, one from each dataset, and compares the feed-
backs against the ground truth. The plots show, in both cases,

the robustness of our estimates.

Table 1: Comparison of the performances of our method
against the results reported in [SHN09]. The values rep-
resent the average errors per frame on 3 sequences from
PETS09 dataset.

Difficulty level CBTHT Our method
SEQ1 med. 7.19 4.1
SEQ2 med. 1.37 1.6
SEQ3 high – 2.25

We first compare on Table 1 the performances of our
approach on dataset PETS09 with the results reported on
[SHN09] and obtained combining a learning-based hierar-
chical association tracker with a Cluster-Boosted-Tree based
pedestrian detector. We refer to the method as CBTHT. The
values on the table, the average error per frame computed
separately on 3 sequences of different complexities, shows
that our method performs globally better.
To summarize the results we obtained on the two data sets we
consider, we evaluated the estimates with respect to 3 differ-
ent levels of scene occupation: if Np is the number of people
at a certain time t in the ground truth, we choose 2 thresholds,
τ1 and τ2, such that (1) Np ≤ τ1 denotes low occupancy, (2)
τ1 < Np < τ2 defines medium occupancy, while (3) Np ≥ τ2
represents high occupancy. Because of the difference in the
average number of people present in the data sets, we adopt
different thresholds for the two settings: τ1 = 8, τ2 = 25 for
PETS09, τ1 = 5, τ2 = 10 for DISI. Tab. 2 reports the obtained
results: it is immediate to note that, although a slight decreas-
ing in the performance on DISI due to its higher complexity,
the results for the two settings are accurate and comparable.
We finally show how the variations we introduced signifi-

Table 2: Global evaluation of the system feedback on the two
data sets, considering 3 different levels of scene occupation.

GT ≤ τ1 τ1 < GT < τ2 GT ≥ τ2
PETS09 97% 85% 98%

DISI 95% 82% 96 %

cantly improve the performance with respect to the original
algorithm, in particular for scenarios characterized by low
or medium occupancies. In Fig. 7 we report the comparison,
performed on a video from DISI dataset, between our ap-
proach (denoted as “filtered” to enhance the presence of the
temporal filtering caused by the final refinement, Sec. 4.3)
and the original method. The trend of the ground truth is
also reported. It is easy to observe how the original method
tends to highly overestimate the correct number of people, as
opposite to our approach where the temporal analysis allows
to reach a higher robustness. Notice that it is clearly visible
the delay, with respect to the ground truth, introduced into
the pipeline by the same temporal analysis.
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Figure 7: Comparison between our method (referred to as
“filtered”) and the algorithm in [KRJ∗08] for people count-
ing. It is immediate to observe how the latter tends to over-
estimate the correct number of people (shown by the ground
truth), while our approach, although a small time delay due
to the temporal filtering, produced better performances.

5. Discussion

In this paper we presented a pipeline for behavior analysis,
designed to adapt to different scene conditions in terms of
occupancy. A condition based on a coarse estimation of the
scene occupancy triggers two different pipelines of analy-
sis, centered on people or crowd. If the pipeline of people
behavior understanding has been previously presented and
evaluated, the one centered on crowd is at an initial stage of
development. This paper focused on the current work on a
module for crowd detection, whose main side effect is the
capability of estimating the number of people in the scene.
We started off from the method presented in [KRJ∗08] and
introduced some variations to improve computational per-
formances and results, as demonstrated in the experimental
analysis.
The future work will be devoted to the development of
the pipeline towards this direction. We will adopt statistical
learning from examples to model the crowd dynamics and
finally build general models of its activity. This will require
the adoption of appropriate data description (optical flow,
space-time features to describe the evolution of the crowd
on the video) as well as methods to compare and model the
obtained motion descriptions.
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