
Indirect illuminance computation on GPU
for lighting CAD using CIE Basic Method

S. Mazzocchi1 F. Musante2 M. Rossi2 D. Selmo1

1 D.I.Co. - Università degli Studi di Milano
2 Dip. In.D.A.Co - Politecnico di Milano

Abstract
In this work, we focus our attention to near real time illuminance for Lighting CAD. The implemented model is
the Basic Method CIE which is a simplified method used in interior lighting design; a pre-computational phase
is required, for form factor evaluation, and it is done by the CPU while GPU is used for the direct component
evaluation to render the pseudo color map of the computed result. Our approach offers a further improvement in
comparison with traditional lighting CAD, since it allows lighting designer to obtain an interactive solutions and
the interactivity is reached using graphic hardware, in fact the pre-computation process is independent from the
position of luminaries into the scene. The presented method is applied on a simple geometry, a parallepided room,
where the surface is assumed to show a Lambertian’s behaviour, but the model can be improved to remove these
limitation.

Categories and Subject Descriptors (according to ACM CCS):
I.3.7 [Computer Graphics]: Colour, shading, shadowing, and texture
J.6 [Computer Applications]: Computer-aided design (CAD)

1. Introduction

Predicting the radiative flux transfer from sources to re-
ceiving surfaces is fundamental to all lighting CAD soft-
ware; lighting calculation is done with mathematical model
of complex physical phenomenon which occurs within a
lighted space and since these model are never accurate in ev-
ery detail, all the computation can be considered an approxi-
mation of real situation. The accuracy of calculated values is
defined as the degree which exist between predicated values
and reality. The goal of lighting CAD is to make available
a tool to choose between design alternatives or to refine a
particular design and these calculations are performed dur-
ing the design stage to achieve important information about
the lighting system performance. For lighting CAD compu-
tation in interiors, we are not interested in producing fine
rendering but in providing the lighting designer with a tool
for positioning and orienting luminaries through a technical
real time representation of illuminance of surfaces. The main
purpose of our method is to light a real scene by the use of
a real light source described by an intensity table which is
derived from a IESNA file formats [LM-02], [LM-05] . In

the past we proposed a method for real time representation
of direct illuminance level on the surface of a parallelepiped
environment through the use of GPU calculation capabili-
ties [SMR06]. Now, the proposed algorithm takes in account
the direct contribution of the luminaries placed in the scene
and the indirect contribution of the room surface which is
considered as a Lambert’s perfect diffuser.

2. Previous works

The first attempt to use the hardware acceleration to compute
global illumination is dates long time before programmable
graphic hardware should be wide available on the market.
Keller [Kel97] uses OpenGL to accelerate the radiosity com-
putation, he creates a quasi Monte-Carlo particle simulation
for light transport on CPU and he uses the OpenGL point
light sources, placed at particles position, setting the power
of them in accordance with the particle’s power along the
random walk path. The contribution of the particles are inte-
grated by using an accumulation buffer. Some of the previ-
ous work use a precomputed form factor to compute and dis-
play radiosity solution in real time. Coombe et al. [CHL03]

Eurographics Italian Chapter Conference (2008)
V. Scarano, R. De Chiara, and U. Erra (Editors)

c© The Eurographics Association 2008.

http://www.eg.org
http://diglib.eg.org

use progressive refinement radiosity for computing a global
illumination solution of diffuse environment; this technique
don’t use explicit storage of the radiance’s matrix and the
model can be displayed as the solution progress. The radios-
ity and residual energy are stored as a texture connected to
geometry model of the scene; to mesh the scene, instead
of subdividing the geometry as in classical radiosity ap-
proach the authors use a texel, the scene is rendered from
the shooter’s point of view and the result is stored in a item
buffer, for each receiving polygons and for each receiving
textel, if the textel is visible in the item buffer, the form fac-
tor is computed and the energy and residual are computed
and stored as a texture.

Carr at al. [CHH03] use a floating-point texture format to
hold the radiosity matrix and given a precomputed form fac-
tor the algorithm is able to compute and display the radiosity
solution entirely on the GPU. While the geometry model of
the scene is fixed, the emittance of surface’s model is not,
and the GPU algorithm is able to support modification either
of patch reflectance and dynamic relighting. The algorithm
makes use of Jacobi iteration formula which can take better
advantage from the GPU architecture, and it creates a texture
atlas to store indices from form factor array and it uses these
to create the surface texture which contains the calculated il-
lumination values.
Another type of algorithm makes use of cube maps to cap-
ture the light emitted by the light source or bounced by other
surfaces of the synthetic scene. Cube maps are traditionally
used for hardware simulation of reflection of environment
on shiny surface and the novel idea is to use them for global
illumination. Nijasure et al. [NPG05] create an algorithms
which simulates the transport of light in a digital environ-
ment by following the light emitted from the light sources
through multiple bounces on the scene’s surfaces. They di-
vide the volume of the 3D scene into a uniform volumetric
grid and then the algorithm creates 3D maps for each subdi-
vision which values represent the incoming light field at the
grid point. A cube maps (cube maps are the projections of
the environment on the six faces of cube with camera posi-
tion placed at the centre of each faces) is rendered at each
grid point of the volumetric grid and in this way it is pos-
sible to capture the incoming radiance field due to the light
reflected off by the surface’s scene.
Other approach to achieve interactive global illumination
is to change the rendering equation in accordance with the
GPU capabilities; anyway a precomputation stage on CPU is
required. Sunshine et al. [SF06] propose a precomputation-
based approach for real time rendering of scene which in-
cludes complex lighting phenomena such as radiosity, sur-
face scattering and allows interactive modification of the
camera and lighting parameters. The main idea of the
method is a new parameterization of the rendering equation
based on a set of offset transfer maps. An extension of In-
stant Radiosity is proposed by Segovia et al. [SI06]: the sug-
gested method is based on building several estimators and

efficiently combine them to find a set of virtual point light
sources which is relevant for the scene seen by the camera.
In this way the presented algorithm is much faster than clas-
sical solution to global illumination rendering. The aim of
the algorithm is to find a virtual set of point light source to
describe the radiant field and use these source to render the
areas seen by the camera position.

2.1. L.I.D. representation and interpolation

Figure 1: LID texture encoding example.

In order to make available intensity values, encoded in
Light Intensities Distributions (L.I.D.), during pixel shader
execution, we need to store this information in a data texture
file. In illuminating engineering, L.I.D is normally measured
and represented in a parametric form (the candlepower dis-
tribution I(C,γ) of a lamp or luminarie is the variation of
luminous intensity around the C plane and around the verti-
cal angle γ) which can be used to build the texture file. So
we can easily create a map M from intensity values I(C,γ)
to texels T (s, t) of a gray-level texture as shown in figure 1.

M : I(C,γ) 7→ T (s, t) (1)

C ∈ [0,2π] γ ∈ [0,π] (s, t) ∈ [0,1]

During shader execution, we need to get an intensity
value, from the L.I.D., in order to compute illuminance for
each point of the scene geometry. Given a point P, we can
calculate the relative normalized direction D (from P to
L.I.D. center) with the respect of the L.I.D. reference frame.
Texture lookup can be easily implemented using the inverse
mapping M−1 applied to angles derived from direction D.
In particular u,v coordinates for texture lookup can be cal-
culated as:

u =
{

arctan(Dz/Dx) if arctan(Dz/Dx) > 0
arctan(Dz/Dx)+2π if arctan(Dz/Dx) < 0

(2)

v = arccos(clamp(Dy,−1,1))/π (3)

3. Direct illuminance calculation

If the source is punctual (the light is originating from a point
but not with an isotropic angular distribution), the direct illu-

S. Mazzocchi et al. / Indirect illuminance computation on GPU for lighting CAD using CIE Basic Method

c© The Eurographics Association 2008.

138

minance Ev on the surface can be calculated as a function of
light intensity Iv, falling on surface with an angle θ to surface
normal and with a distance r from the light source.

Ev =
Iv1000lm(C,γ)Φ

r2 cos(θ) (4)

where Iv1000lm is the luminous intensity in cd/1000lm.

4. Global Illumination calculation

Since we are not primarily interested in obtaining aestically
pleasing images,but in computing a technical representation
for lighting CAD in interior, our algorithm is derived from
the CIE Basic Method [40-78] . The method is called Basic
because it is a basis for a lot of applied method [52-82]. Our
implementation can be applied if the following hypotheses
are satisfied:

• The interior is a rectangular parallelepiped
• The room’s surface reflects the light uniformly in accor-

dance to the Lambert’s law; the reflection factor consid-
ered during the calculation’s stage are:

– r1: reflectance of ceiling
– r2: reflectance of frieze (this is the part of vertical wall

lies between the ceiling and the plane of luminaries)
– r3: reflectance of the wall (defined as the vertical sur-

faces between the working plain and the plane of the
luminaries)

– r4: reflectance of working plane

• The direct flux on working plane doesn’t vary signifi-
cantly if the luminaries are rotated along the their vertical
axis; this is the case of most fluorescent luminaries used
in interior lighting

For interflection calculation we consider only four sur-
faces and in details these surfaces are:

• the ceiling
• the frieze
• the walls
• the working plane

The total flux received by a surface j is equal to the sum
of the Fj direct radiate to the surface and the flux IFj derived
from interreflections:

Φ j = Fj + IFj (j = 1,2,3,4) (5)

where Φ j is the direct flux received from the j surface of
the room and IFj is the interflection component on j surface
of the room.

The flux due to interflections is given by the expression :

IFj =
4

∑
i=1

gi, jRi

Ai
Φi (j = 1,2,3,4) (6)

where gi, j is the exchange coefficient between the surface
i and j, Ri the reflectance of surface and Ai the area of surface
i

After substitution of equation (6) in (5), the resulting ex-
pression, can be written as:

Φ = F +gRA−1Φ (7)

where Φ is the column matrix with coefficients Fj (j =
1,2,3,4), F is the column matrix with coefficients Fj (j =
1,2,3,4), G is the matrix (4,4) with coefficients gi, j, R is
the 4-th order diagonal matrix with ri (i = 1,2,3,4) and A
is the 4-th order diagonal matrix storing surfaces area (i =
1,2,3,4).

Equation (7) can be rewritten as:

F = [I−gRA−1]Φ (8)

After same equation manipulation, the resulting expres-
sion can be written as:

[I−gRA−1]−1F = Φ (9)

Now, we can solve the last equation and replace the value
of Fj in the equation (5) and solve respect the IFj term to
obtain the indirect illuminance mean value on surface j:

IFj = Φ j−Fj (10)

The illuminance value of indirect component can be com-
puted as the ratio between the luminous flux and the surface
which is receiving the flux:

IE j = IFj/A j (11)

where IE j is an offset value which to be added to the direct
component at each pixel of the room surface j.

5. Implementation details

The CIE basic method has been implemented into commer-
cial lighting software as simplified method for illuminance
calculation. Our approach offers a further improuvements
since it allows lighting designer to obtain an interactive solu-
tions. Interactivity has been reached using graphics hardware
capabilities. Indeed our implementation is strongly based on
GPU computation. In particular, the application divides the
illuminance calculation in three steps.

S. Mazzocchi et al. / Indirect illuminance computation on GPU for lighting CAD using CIE Basic Method

c© The Eurographics Association 2008.

139

5.1. Pre-computation phase

In this stage the exchange coefficient are calculated between
the different surface’s room as we have described in the pre-
vious paragraph Indirect contribution calculation. All the
computation in this step is done in CPU.

5.2. Shader Activation and execution

The direct lighting is calculated in GPU using shaders writ-
ten in the OpengGL Shading Language [KBR04]. The scene
is rendered using texture-enconded photometric webs eval-
uating special purpose vertex and pixel shaders. The first
shaders used are direct.vert and direct.frag to perform the
calculation of the direct illumination’s component of the
scene; in detail the vertex program task is to manage the
surface geometry and to calculate the normal of the scene
object (this information is used to perform the direct illumi-
nance calculation, as described in [SMR06]). Direct illumi-
nance calculation pseudocode is presented below, each term
of equation (4) is calculated and the result is displayed by
a luminance gradient color map [RA05]. Since the LID has
been coded into a texture, intensity values are retrievied us-
ing texture lookup function. Texture coordinates for lookup
are evaluated converting directional information into angular
information.

// cos(q) calculation
NdotL = max(dot(normalVector,

normalize(toLightDirection)), 0.0)

// texture lookup coordinates based on
// light angle u = sphericalTheta(lightVector);
v = sphericalPhi(lightVector);

// read light intensity from texture and
// takes only the first component
vec4 = texture2D(LIDtexture ,vec2(u,v));
float intesity = textcolor.x;

// Illuminance Calculation
float illuminance = NdotL*flux*intensity /
(distance* distance);

// normalize the illuminance value in [0,1]
float normIlluminance =

(clamp(illuminance/maxIlluminance,
0.0, 1.0));

// calculate the color for the normalized
// illuminance value
vec4 mappedColor = texture2D(colorMapTexture,
vec2(normIlluminance, 0.5));

// write final color to fragment
gl_FragColor = mappedColor;

The algorithm creates six textures, one for each surface,
where it stores the illuminance distribution created by the di-

ceiling 80%
frieze 55 %
walls 55 %
working plane 40 %

Table 1: Reflection factors (in percentage) for each surface
in the example room.

rect illumination component. Illuminance values are stored
using floating point textures in order to maintain numerical
accuracy. In detail, for each luminarie in the scene, the mean
illuminance value on the room’s surface is calculated by the
use of orthographic projection of room’s surfaces, in such a
way there isn’t a perspective distortion of the image due to
different distance of observed object from the camera posi-
tion. The image is stored in a texture (render-to-texture pro-
cess) where only red channel is used; the buffer is read and
all data are used to calculate the mean illuminance value.
The described process is repeated until all the luminaries in
the scene have been considered by the calculation process.
On the basis of direct illuminance values calculated for each
surfaces, indirect component is found as described in the
previous section; in this way an offset value, one for each
surfaces, which represents the mean indirect contribution of
room’s surface to illuminance, is added to each pixel of the
corresponding surface.

5.3. Final Texture creation

For each surface of the environment, a texture is created by
the use of calculated values at previous stage and then the
texture is applied to each surface. The final pseudo color
representation is obtained by the use of the 1D color map
texture which is linear interpolated in accordance with the
calculated illuminance value.

6. Results

Our method has been implemented on a Windows worksta-
tion using a single core Intel Centrino 1.7 Ghz processor,
1 Gb memory and ATI 9600 graphic card. For testing pur-
poses, a simple rectangular room has been used and lumi-
naries has been placed in different positions in order to ob-
tain heterogeneous illuminance levels on room surfaces. The
installation height is the same for all considered luminaries
and the reflection factor for each surface is presented in the
table 1. The considered luminarie shows a double distribu-
tion, a part of luminous flux is direct toward floor and a part
is addressed toward the ceil of the room; in this way we can
test a real common situation in interior lighting design. The
figures from 2 to 4 represent the illuminance value, which
has been calculated by the algorithm, for two different con-
figuration of the luminarie; position and orientation of each
luminarie can be interactively modified by the user in accor-
dance with the wished illuminance value on each surface.

S. Mazzocchi et al. / Indirect illuminance computation on GPU for lighting CAD using CIE Basic Method

c© The Eurographics Association 2008.

140

N. Lum Acq Sum Rendering Calc Total
1 0.165 0.451 0.012 0.338 0.966
2 0.33 0.464 0.015 0.378 1.187
3 0.508 0.463 0.015 0.37 1.356
4 0.644 0.498 0.012 0.391 1.545
5 0.847 0.492 0.015 0.404 1.758
6 1.028 0.488 0.015 0.394 1.925
7 1.137 0.557 0.017 0.436 2.147
8 1.311 0.561 0.014 0.454 2.34

Table 2: Execution times (all times in seconds). Columns
show: number of luminaires (N. Lum), textures acquisition
time (Acq), textures accumulation time (Sum), rendering
time, CPU calculations time (Calc) and total time.

The table 2 shows execution times for the described exam-
ples and it presents the relationship between the execution
times and the number of luminaries placed in the scene.

Figure 2: Example 1: Direct illuminance calculation. Room
measures: 6 x 2.5 meters, height 4 meters.)

7. Conclusion and future works

The main aim of this research is not focused on quality ren-
dering but in real-time interactive tools providing the de-
signer with function for the positioning and orientation of
luminaries. Technical results of lighting computation are dis-
played on the fly as color map representing the illuminance
values on surfaces, and these results strictly conform to light-
ing engineering standards. The future algorithm’s improve-
ment will concern two different aspects. The first one is con-
nected with the calculation of indirect component distribu-
tion and not only the mean value as in current implemen-
tation which is treated as an offset value to add to direct
component distribution in each pixel. The second one is the
environment’s shape which could be different from a rect-
angular room and the geometry should be defined by user;

Figure 3: Example 1: Illuminance values representation
with indirect illuminance contribution. Room measures: 6 x
2.5 meters, height 4 meters.

Figure 4: Example 2: Direct illuminance calculation. Room
measures: 5.8 x 2.5 meters, height 5.8 meters.

to reach this objective the Combe [CHL03] approach seems
to be a feasible solution, but it must be extended for consid-
ering real luminaries with LID. The proposed method could
also be easily applied to exterior lighting calculation, for ex-
ample in road or tunnel lighting: in these particular appli-
cations even the illumination calculation over the interest’s
surface can also consider the luminance evaluation problem
through the material response that should be introduced in
the model calculation.

References

[40-78] 40-1978 C.: Calculations for interior lighting:
Basic method. CIE Pubblications (1978).

S. Mazzocchi et al. / Indirect illuminance computation on GPU for lighting CAD using CIE Basic Method

c© The Eurographics Association 2008.

141

Figure 5: Example 2: Illuminance values representation
with indirect illuminance contribution. Room measures: 5.8
x 2.5 meters, height 5.8 meters.

[52-82] 52-1982 C.: Calculations for interior lighting:
Applied method. CIE Pubblications (1982).

[CHH03] CARR N., HALL J., HART J.: Gpu algorithms
for radiosity and subsurface scattering, 2003.

[CHL03] COOMBE G., HARRIS M., LASTRA A.: Radios-
ity on graphic hardware. Graphics Hardware (2003).

[KBR04] KESSENICH J., BALDWIN D., R.ROST: The
opengl shading language. Language Version 1.10 (April
2004).

[Kel97] KELLER: An instant radiosity. In Proc. SIG-
GRAPH 97 (1997), 49–56.

[LM-02] LM-63-02 A.: Ansi approved standard file for-
mat for electronic transfer of photometric data and related
informationn. IESNA Pubblications (2002).

[LM-05] LM-74-05 I.: Iesna standard file format for the
electronic transfer of luminarie component data. IESNA
Pubblications (2005).

[NPG05] NIJASURE M., PATTANAIK S. N., GOEL V.:
Real-time global illumination on gpu. Journal of Graph-
ics Tools 10(2) (2005), 55–71.

[RA05] ROSSI M., ALGERI T.: Real-time 3D color scale
representation of computed illuminance levels. SIOF-
Color Conference (October 2005), 1–8.

[SF06] SUNSHINE B., FACULTOS P.: Photorealistic light-
ing with offset radiance transfer mapping. Proceedings
of the 2006 symposium on Interactive 3D graphics and
games (2006), 15–21.

[SI06] SEGOVIA, IEHL J.: Bidirectional instant radiosity.
Eurographics Symposium on Rendering (2006).

[SMR06] SELMO D., MUSANTE F., ROSSI M.: Gpu

based direct illuminance values computation for interac-
tive lighting cad. In Eurographics Italian Chapter Con-
ference (2006), pp. 219–224.

S. Mazzocchi et al. / Indirect illuminance computation on GPU for lighting CAD using CIE Basic Method

c© The Eurographics Association 2008.

142

