
Eurographics Italian Chapter Conference (2008)
V. Scarano, R. De Chiara, and U. Erra (Editors)

Fractal Compression Approach for Efficient Interactive
Terrain Rendering on the GPU

Ugo Erra1, Vittorio Scarano2 and Davide Guida2

1Università degli Studi della Basilicata, Italy
2Università degli Studi di Salerno, Italy

Abstract
This paper describes an efficient technique for the rendering of large terrain surfaces. The technique is based on a
simple rings structure: a sequence of concentric rings at different resolutions and centeredon the viewer’s position.
Each ring is represented by a set of patches at identical resolutions. Rings near the viewer have a finer resolution
than the rings further from the viewer. At runtime, the patches within the rings change resolution based on the
viewer’s position. The GPU decodes in real time height maps encoded by a fractal compressor from which sample
the height component of the terrain. Since adjacent patches of different rings can disagree on the resolution of
common edge GPU stitches the meshes in order to avoid any cracks or degenerate triangles. The rendered meshes
ensure the absence of cracks that may cause the appearance of visual artifacts. In addition, a tile manager support
is evaluated in order to maintain terrain datasets on disk storage avoiding a costly load of the entire datasets into
the memory.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture and Image Gener-
ation I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism I.3.7 [Computer Graphics]: Fractals

1. Introduction

Interactive rendering of terrain datasets is one of the classical
challenges in computer graphics. The rendering of very large
terrain geometry is important in a number of application do-
mains, such as scientific visualization, flight simulation, GIS
and recent computer games. From a developers point of view
terrain rendering is much more than just the real-time dis-
play of a landscape [RF02]. In these applications, the terrain
rendering is only a stage of a pipeline where the overall re-
sources must be balance accurately. In particular, it is only
one task among many others that have to be carried out for
each frame as for instance dynamic lighting, dynamic shad-
owing, and particle system and so on.

Therefore, such applications need an accurate visualiza-
tion of large terrain datasets at high frame rates without ex-
ceeding available graphics resources. Levels of detail based
approaches have been extensively used for interactive terrain
rendering. In these approaches, the CPU extracts the appro-
priate levels of detail in a view-dependent manner and the
geometry extract are sent to the graphics hardware for ren-

dering at each frame. If the CPU is not capable to efficiently
extracting the geometry from the datasets or the communica-
tion between the CPU and the GPU is bottlenecked the result
is an unacceptable low frame rate.

Current graphics hardware provides common features for
both vertex and fragment processors. These features are use-
ful for generating various effects such as displacement map-
ping. These mapping algorithms take sample points and dis-
place them perpendicularly to the normal of the macrostruc-
ture surface with the distance obtained from the height map
[SKU08]. In per-vertex displacement mapping the sample
points are the vertices of a tessellated mesh.

In this paper we present a novel framework for interactive
terrain rendering (Figure 1). At each frame, our algorithm
selects a set of active meshes in a view-dependent manner
from a rings structure. For each active mesh the fragment
processor decodes the associated height map which has been
off-line encoded by a fractal compressor. The sampling is
performed by vertex processor fetching the elevation com-
ponents from the height map. In addition, since it is more

c© The Eurographics Association 2008.

http://www.eg.org
http://diglib.eg.org

Ugo Erra et al. / Fractal Compression Approach for Efficient Interactive Terrain Rendering on the GPU

convenient to keep large terrain data in a hard drive we pro-
vided an out-of-core support to efficiently fetch and access
height maps through a caching mechanism.

Our approach provides the following advantages:

• Efficiency. The meshes are created in such a way that the
graphics hardware can process it quickly. Each vertex is
computed independently of the other vertices using only
a vertex shader within the inherently parallel GPU. This
leads to efficient interactive terrain rendering on GPU.

• Fully GPU based. Most of the computations are per-
formed by the GPU. Our approach implies using as little
CPU processing power as possible. In real life application,
such as computer gaming, this advantage would be very
valuable because, it frees the CPU to focus on physics,
AI, voice-over-ip, networking, etc...

• Seamless transition. During rendering each vertex is in-
formed about its neighbors’ meshes. In this way, the seam-
less transition between neighboring meshes with different
resolution is achieved by stitching edge vertices with the
finer tessellation level.

• Fast culling. The simple data structures used to recover
active patches from viewer position allows fast CPU lo-
calization of the geometry inside the view frustum.

• Compression. The terrain is stored as compressed tiles
using fractal compressor. The recursive nature of terrain
data fits well with the capabilities of fractal compression
allowing good image quality at low bit-rates. Besides,
fractal image compression offers interesting features like
fast decoding and independent-resolution which are very
useful for real time rendering applications.

• Simplicity. There are no complex data structures to
implement. Our algorithm promotes use of the GPU-
compatible data structures such as vertex buffer objects
and textures.

In the rest of this paper, we first overview the related work
in the area of terrain rendering. Then, we present each com-
ponent of our algorithm followed by implementations details
and results. Finally, we conclude this work and outline our
plans for future work.

2. Related Work

In this section we overview related work in level of detail
terrain rendering based on CPU and GPU.

In the CPU based approach, the investigation of multires-
olution methods to dynamically adapt render model com-
plexity is a very active computer graphics research area as
reported in the survey of Pajarola et al. [PG07]. In these al-
gorithms CPU selects the appropriate geometry which is sent
to the graphics hardware at each frame. To reduce CPU load
several approaches partition the terrain into patches at differ-
ent resolutions. In order to reduce communication between
the CPU and graphics hardware several algorithms utilize
geometry cache.

Figure 1: View of the Grand Canyon rendered by our algo-
rithm.

The advances in graphics hardware programmability al-
low developers to leverage GPU processing power for al-
gorithms that operate on terrain rendering. Geomorphes to
render terrain patches of different resolution have been used
in [Dan03, HDJ04]. In [LH04] the authors present a terrain
rendering algorithm based on clipmaps. The clipmap focus
follows the position of the viewer. Therefore the area near
the viewer can be rendered at high levels of detail while
the regions further away are displayed in a lower resolu-
tion. In [AH05] the authors improved the performance of
this method by moving nearly all rendering operations to the
GPU, leaving only decompression and clipmap updating to
the CPU.

A persistent grip mapping which covers the entire screen
has been used in [LSGES08]. Using perspective mapping
the GPU maps each vertex of the perspective grid onto the
terrain in such a way that the visible region is remeshed in a
view-dependent manner with local adaptivity.

In [LKES07] subdivide the terrain into rectangular
patches at different resolution. Each patch is represented by
four triangular tiles which are stitched using four tiles in a
seamless manner. Here, the different approach is that reso-
lution changes not across patches but within patches. The
GPU generates the meshes of the patches by using scaled
instances of cached tiles assigning elevation for each vertex
from the cached texture.

3. Our approach

We present an algorithm for interactive terrain rendering that
fully exploits the current graphics features, such as program-
mable vertex, displacement mapping and fragment proces-
sors.

Our algorithm involves two preprocessingstages. The first
is an off-line stage in which the terrain is partitioned into
rectangular tiles and each tile is encoded by a fractal com-
pressor. The second stage occurs just before entering in the

c© The Eurographics Association 2008.

82

Ugo Erra et al. / Fractal Compression Approach for Efficient Interactive Terrain Rendering on the GPU

inside vertex

odd edge vertex

even edge vertex

even corner vertex

level i level i-1

Figure 2: A patch at level i and a successive patch at level
i−1 with a schematic representation of vertices.

rendering loop. It generates several planar meshes, which
we called patches, at different resolutions without elevation
and color components. These patches are stored in the main
memory and will be used for displacement mapping in the
vertex shader during rendering.

At runtime the visible tiles are selected from a grid
structure based on view parameters. Whether it is required,
the fragment processor operates a real-time decompression
through a progressive refinement in order to obtain the height
maps from tiles with a quality proportional to distance from
the viewer. In the rendering phase, a vertex shader performs
displacement mapping based on elevation components sam-
pled from a height map taken as input.

3.1. Construction of patches

The geometry patches upon which to perform the displace-
ment mapping is a set of static meshes with different levels
of detail. Each level contains an n×n array of vertices stored
as a vertex buffer in video memory. As illustrated in Figure
2, in the level i− 1 the patch contains an array of vertices
which is one-quarter of level i.

To permit an efficient and simple way to stitch adjacent
edges of different patch resolution each vertex has a 4-tuple
(x,ypos ,z,wodd) record. The (x,z) is the vertex coordinate,
ypos is a flag used to mark its position that is, whether it is
a inside vertex, an edge vertex (up, right, down, left) or it is
a corner vertex and wodd is a flag used to indicate an odd or
even position (see Figure 2). The wodd attribute assures that
for any couple of adjacent vertices v0 and v1 on an edge, v0 is
in an odd position and v1 is in an even position or viceversa.

3.2. Rings structure

Using an approach similar to [LH04] we arrange the terrain
as a sequence of concentric rings at different resolutions and
centered on the viewer’s position as illustrated in Figure 3.

Figure 3: The rings structure. The center is occupied by the
viewer and has a patch with maximum LOD. Around the cen-
ter the rings at different level of details with a more coarse-
grained resolution as the rings move away from the center.

In the viewer position there is a central patch with maximum
resolution. For each level i of the structure, we define a ring
as a set of patches with a level of detail i (see Figure 4). In
this way, recursively as rings move away from the viewer
they have a progressive coarse-grained resolution.

NORTHNORTH
WEST

NORTH

EAST

EAST

SOUTHSOUTH

WEST

WEST

SOUTH
WEST

SOUTH
EAST

NORTH
EAST

CENTER

Figure 4: The rings structure with the center patch and a
generic ring at level i. The set of patches at level i are ori-
ented with respect to the position of the center patch.

During the viewer motion as the desired active rings de-
tect, the patches inside the rings should also update accord-
ingly. In particular, when the viewer moves from the central
patch to one of the eight adjacent patches it is selected as the
new central patch. Note that the central patch and patches of
the first ring have the same level of detail which ensures a
seamless transition from the central patch to one of the adja-
cent patches.

The rings structure is a simple bidimensional array stored
in the main memory. It is accessed toroidally through a mod
operation which allows a 2D wraparound addressing to per-
mit efficient incremental updates. The rings structure has a

c© The Eurographics Association 2008.

83

Ugo Erra et al. / Fractal Compression Approach for Efficient Interactive Terrain Rendering on the GPU

Figure 5: The patch grid. Note the different resolutions of
each ring and how the cracks are resolved between two ad-
jacent patches.

function updateRings(i, j). This function takes a new cen-
tral patch (i, j) as input and updates the structure creating
the concentric rings and different resolutions. Furthermore,
the orientation of each patch is marked with respect to the
new central patch (see Figure 4).

3.3. Rendering

At runtime, the rings structure is used to guide the selection
of the various concentric rings with correspondent levels of
detail based on view-parameters. For each frame, in order to
perform the displacement mapping using vertex shader the
CPU produces a stream of active patches. Then, we apply
view frustum culling as follows. For each patch, we main-
tain the minimum and maximum elevations values for the
local height map. Each patch is extruded to form an axis-
aligned bound box which is intersected by the frustum with
an optimized view frustum culling described in [AM00].

Before geometry of active patches is streamed to the
graphics hardware, the GPU decodes the associated tiles
whether it did not decode previously in the video memory. A
fragment shader decodes a tile as textures in a finite number
of steps n, where n could be selected based on the level of
detail of bounded patch (Sec. 4).

During the displacement mapping vertex shader must take
into account that two adjacent patches could be disagree on
the resolution of the common edges. Then, it is needed to
stitch adjacent vertices avoiding cracks and degenerate tri-
angles. To prevent possible cracks in the polygon represen-
tation, every patch edge is stitched with respect to the resolu-
tion of its adjacent regions. In particular, given two patches
with different levels of detail, the triangularization of the
edge with a level of detail i is rearranged with respect of
the edge with a level of detail i−1 as illustrated in Figure 5.

1
2

3
4 2 4

3

v
0

v
1

v
2

v
0,1

v
2

Figure 6: Stitching patch of level of detail i to i− 1. Only
odd position vertices are rearrangedwhile even position ver-
tices maintain their original position. The elevation values
are fetched from adjacent height map for both cases. The
triangle 1 turns into a degenerate triangle and will be dis-
carded during rendering.

The technique used to rearrange vertices on an edge is
based on where every single vertex is placed on the edge
and on an orientation of its patch as illustrated in Figure 6.
We rearrange a vertex using vertex attributes defined in 3.1
as follows. A vertex v1 is placed in the same position of ver-
tex v0 if v1 is an odd edge vertex and v0 is a previous even
edge vertex. Moreover, the elevation values for all edge ver-
tices are fetched from the height map of level of detail i−1.
The Table below summarizes the cases in which an odd ver-
tex edge must be rearranged based on its position and its
patch orientation.

Patch Orientation odd edge vertex position
up right down left

NORTH ×
EAST ×
SOUTH ×
WEST ×

All cases can be efficiently implemented using a look-
up texture inside vertex shader. In this way, all vertices are
processed independently for each other and in the same way.

4. Fractal Compression

Fractal methods are quite popular in the modeling of natural
phenomena in computer graphics as random fractal models
of terrain. The fractal compression is defined as the inverse
problem that is, given an image translated it in a simple for-
mula. Despite fractal compression has never achieved wide-
spread diffusion it has been proved that it is very effective
to achieve very high compression ratios while still maintain-
ing reasonable image quality [Kom97]. Moreover, it offers a
sophisticated form of interpolation sometimes referred to as
resolution enhancement and very fast encoding phase.

The basic idea of fractal compression is to find similari-
ties between larger and smaller portions of an image. This is
accomplished partitioning the original image into blocks of

c© The Eurographics Association 2008.

84

Ugo Erra et al. / Fractal Compression Approach for Efficient Interactive Terrain Rendering on the GPU

fixed size, called range and creating a shape codebook from
the original image of double size of the range, called domain.
Range blocks partition the image so that every pixel is in-
cluded while the domain blocks can be overlapped and/or to
not contain every pixel. Below we give an overview of fractal
compression, the mathematical theory about these principles
can be found on [Yuv94].

Encoding. Given a range block R we must find a domain
D from codebook such that R ≈ sD +o1 where s and o are
called scaling and offset respectively. These values define
the optimal transformation by which we can encode an im-
age portion using another part. The encoder must scan all
the codebook to find optimal D, s, and o. The domain block
must be shrunk by pixel averaging to match the size of range
block.

The method of least squares to find the optimal coeffi-
cients can be used. Given the two blocks R and D with n pixel
intensities, r1,. . . ,rn and d1,. . . ,dn , the quantity to minimize
is ∑n

i=1 (s ·di +o− ri)
2 where coefficients s and o are given

by

s =
n(∑n

i=1 diri)− (∑n
i=1 di) (∑n

i=1 ri)

n∑n
i=1 d2

i − (∑n
i=1 di)

2

o =
1
n

(
n

∑
i=1

ri − s
n

∑
i=1

di

)

In our work, the values s, o, and the position of the domain
block D are encoded and stored in a texture.

Decoding. The output encoder is a description of an opera-
tor which serves as approximation of the original image. An
operator T is defined over an image f as T f ≡ s f +o1. Thus,
starting from any initial image f0 and applying interactively
F to obtain

f1 = T f0 , f2 = T f1 , f3 = T f2 ,. . .

the sequence fi converges to an approximation fn of the orig-
inal image called attractor after few iterations.

Such decoding phase is very simple and it can be per-
formed using a very efficient fragment program. More pre-
cisely, we perform an image rendering to decode each pixel
pi+1 of image fi+1 . For each one we fetch scaling factors
s and o from a texture and its code block position which is
used to fetch pixels from fi and perform the following oper-
ation:

pi+1 = pi · s+o

Through experimentation, we have found that the height map
assigned to the patch with maximum resolution after 8 in-
teractions converges to the original tile. For patches with a
lower level of detail the encoding phase can be performed
with less interaction.

5. Implementations and Results

In our current implementation to handle large datasets we
have implemented an out-of-core support based on caching.
This scheme stores the height maps in disk storage and cache
in the video memory only the portions necessary for render-
ing. When the rendering stage needs a compressed tile, it
sends a request to tile memory manager which first checks
to see if it is resident in the video memory. If it is, an in-
stance is returned to the rendering stage. If the height map
is not resident in the video memory then it is loaded from
file system and placed in the video memory. For each en-
try in the cache we have two attributes. A timestamp used
to record last access time and the level of decompression of
the height map. When a cache miss occurs the tile manager
adopts a strategy based on last recently used as replacement
algorithm to select a victim.

We use a 16K × 16K grid of the Grand Canyon area as
our main terrain dataset. The terrain dataset has been di-
vided in 4096 tiles of 256× 256 pixels and is compressed
from 256MB to 96MB that is 24KB for each tile using a
range block of 4× 4 size. The mesh with maximum reso-
lution has 128× 128 vertices which involves a ratio of 4
pixel per vertex. The experiments have showed that these
values did not produce any visible artifacts. We have tested
our implementation on an AMD 3000 with 1GB memory,
and nVidia GeForce 7800 GTX graphics card with 512MB
texture memory. The rendering resolution is 1024×768.

The performances are measured using a predefined walk-
through of the camera around the scene. In Table 1 we sum-
marized the performance in case the tiles are decompressed
entirely to maximum detail. The frame rates depend mainly
on the number of triangles. The first row shows 490 FPS for
the base approach with view frustum culling for about 220K
triangles on average and a cache size of 40 entry, and the
third row reports 161 FPS with view frustum culling but all
the patches have the same level of detail for about 1M tri-
angles on average. Such observation reveals that selection of
active patches is negligible with respect to the total render-
ing time. Note that without frustum culling the performance
fall down rapidly due to the increasing number of triangles
as well as numerous cache misses.

The last row shows 521 FPS for an approach based on
the incremental fractal decoder particularity. For each tile we
use the level of detail of its patch and so the distance from the
viewer to determine the number of iterations in the decoding
phase. In such a way, the tiles farther from the viewer are de-
coded with less interaction and they are further decoded as
the viewer approaches more closely. In this case, it is clear
that we trade the quality required by the lower level of detail
patch with a very efficient decompression. From our experi-
ments this benefit produces high quality seamless rendering
without visible artifacts with a higher frame per second.

In order to compare the results of our algorithm with other
know terrain rendering algorithms on common base we use

c© The Eurographics Association 2008.

85

Ugo Erra et al. / Fractal Compression Approach for Efficient Interactive Terrain Rendering on the GPU

Approach FPS Min FPS Max FPS Med Cache Miss

Base 418 563 490 558
Base Without Frustum 6 8 6.9 23773
Brute Force 161 198 174 558
Brute Force Without Frustum 5 7 6.1 23773

Base Incremental 471 599 521 558

Table 1: Runtime performance. In first fours approach the decompression is performed entirely. In the last approach the de-
compression is progressive.

the expected performance estimated in [LKES07]. In this
work, the authors achieve 53M textured triangles per second
on average with our same hardware while on comparable
hardware expect that BDAM [CGG∗03], Clipmap [AH05],
and the approach used in [HDJ04] will achieve about 46M,
44M and 43M textured triangles per second, respectively.
Our algorithm manages to achieve 64M on average.

Figure 7 shows the textured and wire-frame representation
of a terrain generated from the Grand Canyon terrain dataset
using our algorithm.

6. Conclusion and Future Work

As has been pointed out in [Dan03], today computer graph-
ics applications such as games require for an attractive ter-
rain rendering about 10000 triangles which must be drawn
using as little CPU processing power as possible. In fact, in
real life application the CPU usually has more things to do
than just drawing terrain.

In this work, we have presented a novel approach for real
time large terrain rendering by utilizing advanced features of
current graphics hardware. The simple rings data structure
allows to reduce the CPU load and reduces communication
between the CPU and the GPU. Fractal height maps han-
dling offers significant saving storage and real time decom-
pression. These advantages fit well in applications where the
graphic resources must be balanced carefully with other real-
time graphics techniques.

Our current works include the geometry synthesis within
a geometry shader and fractal image compression for the
terrain textures. In the future, we are going to investigate
a client-server architecture for supporting interactive high
quality remote visualization of large terrain.

References

[AH05] ASIRVATHAM A. P., HOPPE H.: Terrain render-
ing using gpu-based geometry clipmaps. In GPU Gems II
(2005), Addison-Wesley, pp. 27–44.

[AM00] ASSARSSON U., M LLER T.: Optimized view
frustum culling algorithms for bounding boxes. Journal
of Graphics Tools 5, 1 (2000), 9–22.

Figure 7: A terrain view (up) and its wire-frame representa-
tion (down)

[CGG∗03] CIGNONI P., GANOVELLI F., GOBBETTI E.,
MARTON F., PONCHIO F., SCOPIGNO R.: Bdam -
batched dynamic adaptive meshes for high performance
terrain visualization. Computer Graphics Forum 22, 3
(Sept. 2003), 505–514.

[Dan03] DANIEL W.: Terrain geomorphing in the vertex
shader. In ShaderX2 :Shader Programming Tips & Tricks
with DirectX 9 (2003), Wordware Publishing.

[HDJ04] HWA L. M., DUCHAINEAU M. A., JOY K. I.:

c© The Eurographics Association 2008.

86

Ugo Erra et al. / Fractal Compression Approach for Efficient Interactive Terrain Rendering on the GPU

Adaptive 4-8 texture hierarchies. In VIS ’04: Proceedings
of the conference on Visualization ’04 (Washington, DC,
USA, 2004), IEEE Computer Society, pp. 219–226.

[Kom97] KOMINEK J.: Advances in fractal compression
for multimedia applications. Multimedia Syst. 5, 4 (1997),
255–270.

[LH04] LOSASSO F., HOPPE H.: Geometry clipmaps:
terrain rendering using nested regular grids. In SIG-
GRAPH ’04: ACM SIGGRAPH 2004 Papers (New York,
NY, USA, 2004), ACM, pp. 769–776.

[LKES07] LIVNY Y., KOGAN Z., EL-SANA J.: Seamless
patches for gpu-based terrain rendering. In 15th WSCG
2007 (University of West Bohemia, Univerzitni 8, Box
314, CZ 306 14 Plzen, Czech Republic, Jan. 2007), Skala
V., (Ed.), WSCG 2007 Full Papers Proceedings, WSCG,
University of West Bohemia. Full Paper.

[LSGES08] LIVNY Y., SOKOLOVSKY N., GRINSHPOUN

T., EL-SANA J.: A gpu persistent grid mapping for terrain
rendering. Vis. Comput. 24, 2 (2008), 139–153.

[PG07] PAJAROLA R., GOBBETTI E.: Survey on semi-
regular multiresolution models for interactive terrain ren-
dering. The Visual Computer 23, 8 (2007), 583–605.

[RF02] ROETTGER S., FRICK I.: The Terrain Rendering
Pipeline. In Proc. EWV ’02 (2002), OCG Schriftenreihe,
R. Oldenburg, Vienna, pp. 195–199.

[SKU08] SZIRMAY-KALOS L., UMENHOFFER T.: Dis-
placement mapping on the gpu - state of the art. Computer
Graphics Forum 27, 1 (Jan. 2008).

[Yuv94] YUVAL F.: Fractal Image Compression - Theory
and Application. Springer-Verlag, New York, 1994.

c© The Eurographics Association 2008.

87

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CurlzMT
 /DfW5Printer
 /DfW5PrinterBold
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /FelixTitlingMT
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrenchScriptMT
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /ImprintMT-Shadow
 /Kartika
 /Latha
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /MaiandraGD-Regular
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /Oc_020
 /Oc_021
 /Oc_030
 /Oc_200
 /Oc_210
 /Oc_211
 /Oc_220
 /Oc_221
 /Oc_251
 /Oc_260
 /Oc_270
 /OCRAbyBT-Regular
 /OCRAExtended
 /OCRB10PitchBT-Regular
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Pristina-Regular
 /Raavi
 /RageItalic
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /Shruti
 /SureThingDVDSymbolsII
 /SureThingSymbols
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Ucs_020
 /Ucs_021
 /Ucs_030
 /Ucs_200
 /Ucs_210
 /Ucs_211
 /Ucs_220
 /Ucs_221
 /Ucs_251
 /Ucs_260
 /Ucs_270
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.001 842.000]
>> setpagedevice

