
Eurographics Italian Chapter Conference (2008)
V. Scarano, R. De Chiara, and U. Erra (Editors)

Topological Operations on Triangle Meshes
Using the OpenMesh Library

Fabio Guggeri, Stefano Marras, Claudio Mura, and Riccardo Scateni

Dipartimento di Matematica e Informatica, Università di Cagliari, Cagliari, Italy

Abstract
Recent advances in acquisition and modelling techniques led to generating an exponentially increasing amount of
3D shapes available both over the Internet or in specific databases. While the number grows it becomes more and
more difficult to keep an organized knowledge over the content of this repositories. It is commonly intended that in
the near future 3D shapes and models will be indexed and searched using procedure and instruments mimicking
the same operations performed on images while using algorithms, data structures and instruments peculiar to the
domain.
In this context it is thus important to have tools for automatic characterization of 3D shapes, and skeletons and
partitions are the two most prominent ones among them. In this paper we will describe an experience of building
some of this tools on the top of a popular and robust library for manipulating meshes (OpenMesh). The preliminary
results we present are promising enough to let us expect that the sum of the tools will be a useful aid to improving
indexing and retrieval of digital 3D objects.
The work presented here is part of a larger project: Three-Dimensional Shape Indexing and Retrieval Techniques
(3-SHIRT), in collaboration with the Universities of Genoa, Padua, Udine, and Verona.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Geometric algorithms,
languages, and systems

1. Introduction

In this work we show some preliminary results we obtained
in extracting topological features from triangle meshes us-
ing a generic and efficient data structure for representing
and manipulating polygonal meshes. We will present how
several known algorithms were implemented and integrated
using the library and the improvements and additions we
did and we are planning to do. The aim of this paper is to
present in a common framework several tools developed for
the common problem of characterizing 3D shapes, index-
ing them and compare different objects among them for re-
trieval purposes. It is part of a larger two-years project to
which people coming from different fields (interactive com-
puter graphics, image processing, computer vision) are col-
laborating for building a system for indexing and retrieval of
3D objects.

The rest of the paper is organized as follows: in section 2
we will tell why it is important to extract and classify topo-
logical characteristics from triangle meshes, and briefly re-

call the work upon which our system is built over, in sec-
tion 3 there will be a short description of OpenMesh and its
features, sections 4 and 5 will be dedicated to describe the
results we obtained up to now, and in section 6 we will draw
our conclusions and explain how the work will continue in
the future.

2. Topological features of triangle meshes

Skeletonization and 3D segmentation are both useful tools
for representing 3D meshes for indexing and retrieval pro-
posals.

Skeletons are compact representations of the models they
are extracted from and carry both topological and geomet-
rical information in a simple and exhaustive form. Medial
axis and topological skeleton are very interesting features
of three-dimensional objects that can be used in many ap-
plication fields ranging from shape description to medical
imaging. While defining what the skeleton is in 2D is pretty

c© The Eurographics Association 2008.

http://www.eg.org
http://diglib.eg.org


F. Guggeri, S. Marras, C. Mura, and R. Scateni / Topological Operations on Triangle Meshes Using the OpenMesh Library

simple (the geometric locus of the centers of maximal disks
contained in the original object [Blu67]), extending the defi-
nition to 3D is surprisingly difficult since it is formed by sur-
faces and medial curves (thought as an extension of medial
axes). Restricting the skeleton to 1D brings it to be formed
only by curves. Since there is a strict correlation between
medial surfaces and skeleton, in literature the two terms are
often used interchangeably. Once extracted one can use the
skeleton both to define the object shape [SMD∗05,OFCD02]
and to help in performing the segmentation; they are partic-
ularly useful in describing complex models.

A working definition skeleton is given in [CSM07]: the
locus of centers in maximal inscribed balls. Formally, let
X ⊂ R3 a 3D shape; a ball of radius r centered at x is defined
as r(x) = {y ∈ R3,d(x,y) < r} where d(x,y) is the distance
between x and y. A ball is maximal if it is not included in
any other ball. The set including all the centers x of maxi-
mal balls is the skeleton of X . It is possible to give also the
definition of skeleton in terms of properties it holds [ZT99]:

homotopy the skeleton must be topologically equivalent to
the original 3D shape, that is it should have the same num-
ber of connected components and holes;

thinness it is, in fact, desirable that it is just a set of curves
to make it possible an easy transformation in a graph
where each curve segment is an arc and each junction is a
node;

centeredness each point of the skeleton is, theoretically
equidistant from the two closest points of the mesh;

robustness with respect to noise on shape surface;
smoothness it should be as smooth as the original surface

and, possibly, catch the discontinuities and reduce them.

Different algorithms for skeleton extraction have been
proposed and discussed [SLSK07]. In [GS99], D. Silver and
N. Gagvani present an algorithm for parameter controlled
volume thinning that, starting from a volumetric represen-
tation of a 3D object, uses a combination of distance and
a user-defined parameter, referred as thinness parameter, to
detect skeleton voxels.

Segmentation is a vast and complex domain, both in terms
of problem formulation and resolution techniques. It consists
in formally translating the delicate visual notions of homo-
geneity and similarity, and defining criteria which allow their
efficient implementation. The goal is to partition the source
data into meaningful pieces, i.e. those parts corresponding
to the different entities, in the physical and semantic sense
of the application envisioned. In the realm of 3D data, sev-
eral surveys report interesting approaches for different data
representations such as unorganized points, range image, or
3D polygonal meshes [AA93, HJBJ∗96, Pet02, AKM∗06].
Roughly speaking, the segmentation methods can be cate-
gorized into two main classes: edge-based and region-based
[Pet02]. In the former, features corresponding to part bound-
aries are first detected and then regions are built, each one
formed by sets of points delimited by the same bound-

ary. In the latter, points sharing the same similarity prop-
erty are grouped together. In particular, three are the most
popular approaches to region-based segmentation: split-and-
merge methods, identified by a top-down paradigm; region-
growing methods, that adopt a bottom-up paradigm, and
clustering-based methods, based on the projection of the
points onto a higher dimensional space where the clusters
(i.e., segments) are recovered by defining some particular
distance functions [JMF99].

3. The OpenMesh library

OpenMesh is a data structure, developed by the Computer
Graphics Group RWTH (University of Aachen) [Ope], for
representing and manipulating meshes. OpenMesh is able to
handle and manipulate mesh composed by arbitrary poly-
gons, for general cases, but it’s obviously specialized in
triangle meshes. For each triangle, information about ver-
tices, half-edges, edges and faces are stored; also informa-
tion about connectivity (half-edge incident to a face, vertices
of an half-edge, etc) and topology are stored. Each element
contains also specific information (normal for vertices, color
for faces, etc), but the entire structure is customizable, so
new information can be added to an element when needed.
Spatial coordinate system is the standard x− y− z, and co-
ordinates can be represented using float precision or double
precision.

The elements of the mesh (vertices, half-edges and faces)
form the kernel of the mesh; element of the same type (for
example, faces) are stored in a doubly-linked list, imple-
mented using array. For each element, a data structure called
handle is specified; the handle is used as an index of the ar-
ray, but it is also used in order to access information about
the element. Attributes of the elements (predefined or user-
defined) form the traits of the mesh. More in details, basic
operations on mesh element (add/remove/access) are defined
in the BaseKernel class; attributes are added using the
AttribKernelIt class, and, finally, the class ArrayK-
ernelIt performs basic operations directly on the array.
Each element is defined in its specific class (HalfEdgeT,
FaceT, VertexT); particular data structures, called itera-
tors, are used in order to pass from an element to another ac-
cording to the connectivity and the topology of the mesh. For
example, the Vertex-Edge iterator is used to visit all edges
(half-hedges) incident in a vertex. User-defined features can
be added modifying Property of elements.

The particular structure of OpenMesh has the advantage
of keeping memory usage as low as possible (no dynamic
allocation, no virtual function tables, etc) and, at the same
time, OpenMesh tries to be easy to use and to manipulate,
and it is highly adaptable for multiple uses and algorithms.

OpenFlipper is a framework offering great support for the
development of OpenMesh-based applications: it provides
classes for loading .off meshes into a scenegraph and for

c© The Eurographics Association 2008.

74



F. Guggeri, S. Marras, C. Mura, and R. Scateni / Topological Operations on Triangle Meshes Using the OpenMesh Library

performing the most common operations on them. It also of-
fers an intuitive and clear graphical interface, which results
particularly handy when the user wants to interactively ap-
ply some effects on the loaded meshes, such as lighting and
coloring effects. Appropriate classes and methods allow to
translate, rotate and scale meshes, to select single mesh items
(or a subset of them), to obtain information about them and
to apply several different visualization options; a special op-
tion allows the user to get snapshots of the working environ-
ment and to save them in standard formats. Another relevant
feature is an embedded text console which can be used to
show a textual output during computation, particularly use-
ful for application debugging.

It is worth to notice that this operations can be performed
both through the GUI and by using C++ code inside one’s
own application: this is probably the most important aspect
for programmers who might want to provide a graphical
front-end to their programs. In particular, OpenFlipper was
designed to simplify its extension by creating plug-ins, since
there is a special set of classes that provides a standard in-
terface for those who want to create their own plug-in. Plug-
ins consist of dynamic libraries, are highly independent and
make OpenFlipper a highly modular environment. Each user
can personalize the set of plug-ins he wants to use, by sim-
ply selecting and copying them in the appropriate applica-
tion folder.

OpenFlipper can be run under Linux systems, it is writ-
ten in C++ and uses QT4 libraries [Qt] for the graphical in-
terface, while OpenGL APIs are used for visualization pur-
poses.

4. Voxelization and skeletonization

Since the algorithm in [GS99] needs a voxel-based repre-
sentation, a first step to be accomplished is to switch from
a mesh-based shape to a volumetric representation of the
shape itself. This can be done by putting the mesh into a suit-
able data structure: using an octree is quite a natural choice.
The cells of the octree will be marked as shape or back-
ground, using a flag; background voxels are discarded, since
they are useless in the extraction algorithm. While perform-
ing the voxelization we keep track of which voxel contains
which element of the mesh (e.g., if a vertex is inside a voxel,
then the voxel will contain a pointer to the vertex and its in-
cident faces) in order to keep O(1) the order of magnitude
of the search for neighbor voxels. In this way, it is possible
to pass from the voxel-based structure to the original mesh,
and back as needed.

During the implementation of the octree data structure,
many technical issues raised. Think, for instance, to the man-
agement of an octree that has to handle a set of points in
space: it is not a particular complex problem; but things
change when the octree has to handle a larger quantities of
different data: points and faces, keeping the correct topol-

ogy and connectivity. Choosing the right, efficient and ro-
bust methods for testing intersections between voxels and
faces is not an easy task, and, even if in literature there are
different solutions proposed, it’s not easy to choose the most
suitable for our purposes.Another fine technical issue related
to the implementation of the data structure is the distinction
between object voxels and background voxels. As a matter
of fact, usual meshes don’t provide any method for distin-
guishing between inside and outside, so we developed differ-
ent approaches to the problem: the main idea was to select
a subset of voxels, marked as internal, and then use them
as seed points to individuate internal cell, searching in the
neighborhood of seed voxels. Selection of seed voxels can
be done using centroids, for convex meshes, or using a kind
of discrete curvature approximation to search point on the
surface, and then propagate the voxelization inward. Both
this approaches were implemented, and the user can choose
the best for his needs.

The first step of the skeletonization algorithm consists in
computing the minimal distance between each voxel in the
interior of the object and the boundary of the object itself,
that is the layer of voxels containing the mesh. This dis-
tance, called Distance Transform (DT ), at a voxel p = x,y,z
is defined as DTp = min{d((x,y,z),(i, j,k)) : (i, j,k) ∈ BV}
where d is the distance between voxel p and voxel (i, j,k),
and BV is the set of boundary voxels. DT can be com-
puted using several metrics, the simplest one is a standard
< 3−4−5 > metric (where 3 is the distance between vox-
els sharing a face, 4 between voxels sharing an edge, and 5
the distance between voxels sharing only a vertex). A default
value of 3, 4 or 5 is assigned to each voxel in BV ; then, com-
putation is propagated inward, in order to assign the right
DT value to each voxel of the object. At the end of the first
step, every voxel will be labeled with its DT value indicat-
ing how far it is from the boundary. Ideally, skeleton will
contain points that are as far as possible from the boundary
to respect the centeredness property.

In the second and last step of the algorithm, the voxels
belonging to the skeleton are identified using maximal balls.
In fact, centers of maximal balls are individuated using rela-
tionship between the DT of the voxel p and the DT of the
26 neighbors of p. Let S be the skeleton of the object, then
p ∈ S if the mean of neighbors’DT ’s (MNT ) is lower than
the DT of the voxel p (DT p). Using only this condition,
the skeleton could not be completely thinned, and some sur-
faces could be still present in the skeleton. To avoid this, the
thinness parameter T P is introduced, and a voxel p ∈ S if
the MNTp < DT p−T P . Use of T P makes it possible to
arbitrary set the thinness of the skeleton. Ideally, T P should
be choose in order to complain with the thinness property
and obtain a 1-voxel thin skeleton.

In order to correctly implement the algorithm, we ran into
some problems. First of all, the OpenMesh library, as the
name suggest, does not provide any information about vol-

c© The Eurographics Association 2008.

75



F. Guggeri, S. Marras, C. Mura, and R. Scateni / Topological Operations on Triangle Meshes Using the OpenMesh Library

Figure 1: The leftmost image shows the 3D object under analysis; in the other three images we can see its skeleton extracted
using three different parameters setups for the octree and the thinning algorithm. From left to right: T P = 1.5 and LOD = 8;
T P = 1.75 and LOD = 8; T P = 1.75 and LOD = 9.

umetric representations of objects, and has no data structure
already implemented, so it was necessary to develop from
scratch an octree data structure while preserving the infor-
mation on mesh topology. The other main issue to face was
related to the choice of the thinness parameter T P , which
should be small enough to minimize spurious component,
but also large enough to preserve the skeleton connectivity.
It is recommended to refine the skeleton in a post-processing
steps (e.g., connecting components not connected at the end
of the computation), or eliminating spurious voxels. Figure 1
shows the results of the computation of the skeleton of a
mesh of 9856 faces and 4930 vertices using different values
both for the level of refinement of the embedding octree, and
T P . The fourth skeleton is computed using a different level
of refinement for the octree, while the second uses a different
T P .

5. Segmentation

5.1. Fuzzy clustering

The segmentation obtained is based on a strictly geometric
criterion: the more distant two faces are, the less likely they
are to belong to the same patch, while if two faces are near
there exists a high probability that they belong to the same
patch. Both angular and geodetic distances are taken into ac-
count when computing distance between two faces, accord-
ing to the following formula: α∗distang +(1−α)∗distgeod ,
where α, the weight in the formula, is tipically quite high to
ensure that the segmentation is done according to the min-
ima rule. Once distances between adjacent faces have been
computed, an all-pair shortest paths (APSP) algorithm is run
on the dual graph of the mesh, as described in [KT03]. The
core of APSP is a slightly modified version of the original
Dijkstra shortest-path algorithm [Dij59], which takes advan-
tage of the fact that the dual graph of a mesh is actually an
undirected graph. Once distances have been computed be-
tween each pair of faces, a set of representative faces (one for

each patch) is chosen and for each face the probability of be-
longing to each patch is computed. Faces are then clustered,
inserting all those faces which are almost as likely to belong
to a patch as to the other in a fuzzy region [KT03]. These
faces tipically belong to a boundary between two patches.
To determine whether a face in the fuzzy region belongs to a
patch or to another, a network flow graph is constructed and
Edmonds-Karp algorithm [EK72] is run on it. Finally, when
segmentation is completed, each patch is given a color, and
each face is colored according to the patch it belongs to.

In this context, OpenMesh and OpenFlipper offer a great
support to an efficient implementation. First of all, the Open-
Mesh data structure allows for an easy and quick naviga-
tion of the mesh, by providing ad-hoc iterators and circu-
lators: this is particularly useful in this algorithm, since it
often implies performing operations on the dual graph of the
mesh. Having a simple and efficient way to iterate through
faces and edges, there was no need to implement an alterna-
tive data structure for the mentioned graph. Since it offers a
large number of navigation functions, OpenMesh proves to
be very useful for a quick deployment of applications which
work on meshes. Moreover, this data structure can be easily
extended using traits and dynamic properties, which showed
particularly useful to store distances and to flag visited faces
during the APSP execution, and to store the id of the patch
whom a face belongs to during clustering and border refine-
ment steps. Another relevant feature is the possibility of set-
ting a color for mesh items (edges, faces, vertices): this is
very useful to obtain a visual result and to show in an intu-
itive and immediate way the effect of the segmentation.

If OpenMesh is a valid basis for the core of the applica-
tion, OpenFlipper offers a set of functions that are particu-
larly useful for those programmers who want to embed their
applications in an interactive graphical environment, based
on QT4 libraries. OpenFlipper can be easily extended by
creating personalized plug-ins, which consist of .so files.

c© The Eurographics Association 2008.

76



F. Guggeri, S. Marras, C. Mura, and R. Scateni / Topological Operations on Triangle Meshes Using the OpenMesh Library

Figure 2: From left to right: color coding of the probability distribution (green to blue); a red band encodes the uncertain faces;
the assignment completely resolved.

A set of C++ headers containing some interfaces (classes
which encompass only virtual functions) to be implemented
is available for the programmer, who can thus create a per-
sonalized class and insert standard QT4 objects in it. We de-
veloped a plug-in, integrating a Tool Box in the global in-
terface: some QSliders objects allow users to tune the
most important parameters used in the algorithm, (such as
the above-mentioned α weight); different QButtons are
placed on the Tool Box, and each of them is connected to
a function that implements a single step of the algorithm, so
that the user can see the effects of each phase of the seg-
mentation. Besides, a set of available plug-ins provide an
easy way to manually select either single or multiple mesh
items, to obtain information about them and to save the se-
lection for further use: this proves useful both to perform a
visual debug of the algorithm and to collect data to be used
in subsequent phases. In Figure 2 we can see images show-
ing three different stages of the segmentation process: ini-
tially we identify the two furthest faces (using geodetic and
angular distance) and we compute the probabilities for each
face to belong to the segment containing each of the two
faces; then we classify the faces in three cluster, one con-
taining the faces with a reasonable probability to belong to
one segment, one containing the faces belonging to the other
segment using the same criterion, and a third containing the
faces which attribution is uncertain (the fuzzy band); at last
the we resolve the uncertainty using the min-cut max-flow
algorithm.

5.2. Morphing

Defining correspondences between meshes is an important
step in the morphing process. In order to obtain a more vi-
sually appealing effect for the user, one would like to have
some parts of the source mesh to be morphed directly to sim-
ilar parts of the target mesh, for example, a viewer would

expect that the head and paws of a camel would correspond
to the head and paws of a cow during a continuous morphing
visualization. This means that a morphing process should be
aware of which vertices should be constrained to be mapped
directly each other. This kind of vertices are called feature
points (f.p.), and are selected by the user. After selecting
the feature points in both meshes and defining the direct
correspondences between the f.p.’s in the first (source) and
the second (target) mesh, the goal is to provide a common
base domain for the mapping in order to create the morph-
ing function as a combination of the three mapping functions
(target to base domain, source to base domain, base domain
to base domain) [KS04].

The base domain is defined as a set of topologically equiv-
alent triangular patches whose vertices are the f.p.’s selected
by the user. This means that we aim to construct a triangula-
tion of the f.p.’s of both meshes so that these triangulations
have the same topology, leading to a simple one-to-one map-
ping for the "base domain to base domain" mapping func-
tion. This triangularization defines a segmentation of the two
meshes starting from the feature points: the MatchMaker al-
gorithm [KSG03] is used to obtain this topologically equiv-
alent segmentation, defining patch borders as shortest paths
on the mesh between feature points and then removing the
paths that don’t preserve the topology constraint.

First of all, candidate paths are computed as shortest paths
between feature points using Dijkstra’s algorithm over the
mesh edges. Every new path is then checked to see if it sat-
isfies three conditions:

1. No paths should intersect, except at their end-vertices;
2. The new path does not block any necessary future paths;

this means that if a new path generates a closed region,
the feature points included in the region should be the
same in both meshes;

c© The Eurographics Association 2008.

77



F. Guggeri, S. Marras, C. Mura, and R. Scateni / Topological Operations on Triangle Meshes Using the OpenMesh Library

Figure 3: On the top row the two meshes, flat and Gouraud shaded, with the feature points highlighted; on the bottom row:
the meshes before the segmentation starts, a single patch covers the whole figure (left), the segmented meshes: colors code the
topological equivalence of the patches.

3. The regions should have the same orientation on both
meshes.

Paths are then added to the final segmentation until no
more paths can be added. If a triangular segmentation is ob-
tained, the common base domain construction is finished. If
not, further steps of refinement are needed.

Implementation of the MatchMaker algorithm using
OpenMesh is simplified by the ability of the data structure
to dynamically store properties relative to elements of the
mesh (vertices, edges and faces). This feature is useful when
running algorithms on the mesh such as Dijkstra’s shortest
path search, where the distance for each vertex to the source
vertex can be easily recalled as a dynamic property created
with OpenMesh. Feature points are user-selected using the
OpenFlipper picking interface, and stored in two vectors de-
pending on the mesh they belong to. A boolean property,
created for each vertex, tells whether the vertex is a feature
point or not. When the user is done with feature points selec-
tion (see first three images of Figure 3), selecting more than
three f.p.’s on each mesh (and the same number between the

meshes), the algorithm computes the shortest paths between
those vertices using a modified version of Dijkstra’s algo-
rithm in order to force a path between two feature points
not to step over a third feature point, a fact that would cause
a degenerate topology in later computations. To avoid that,
feature points are considered as end-nodes of a graph and the
outgoing edges aren’t added in the cut-set, so that a path that
reaches a feature points can’t go further to reach a second
one.

Similarly, when recomputing a candidate path that over-
laps a definitive one, we use another version of the shortest
path search where vertices that are already part of a patch
border are avoided and are not stored in the queue, so that
the recomputed path cannot intersect any of the definitive
patch borders. It’s easy to differentiate between free vertices
and vertices which form a border thanks to the previously
mentioned dynamic properties; a boolean property that acts
as a flag for each component is set to show whether it has
a special role in the topology construction or not. The same
is done for edges that form a border, faces that belong to a

c© The Eurographics Association 2008.

78



F. Guggeri, S. Marras, C. Mura, and R. Scateni / Topological Operations on Triangle Meshes Using the OpenMesh Library

patch (where the property is an integer that represents the
index of the patch it belongs to), and any other information
directly connected with mesh’s elements.

After the computation of the shortest paths, on each it-
eration, the pair of corresponding paths whose sum is the
smallest among every pair is analyzed to see if it can be-
come a definitive border satisfying the topology constraints.
The second constraint is satisfied if the vertices found inside
the patch at the right (or left) side of a path correspond to
the ones found at the right (or left) side of the correspond-
ing path on the other mesh. This control is implemented as a
front propagation from the right side of each path and storing
every feature point encountered by the front inside the start-
ing patch. Comparison between the two encountered sets is
made easier and faster by storing an user insertion index on
each feature point and, then, implementing the sets as pri-
ority queues based on such index, checking if the top value
on each queue is the same and popping and re-checking until
the queues are empty or the condition fails. If this is the case,
then one of the paths would be blocking paths not yet com-
puted and, then, the pair cannot be accepted as definitive.
Elsewhere, the pair is stored as a definitive border on each
mesh and overlapping candidate paths must be recomputed.

If it’s impossible to find a new path during recomputing,
the pair is simply removed from the pool. When a new path
is added, if it creates a closed loop with previous definitive
borders, it creates a new patch and the mesh is updated con-
sequently. A new color is randomly chose in order to visually
underline the different segments that the algorithm is creat-
ing. The third topology constraint is checked by a cyclical
ordering around the endpoints of the new definitive path, that
is, candidate paths that share an endpoint with the new path
must start in the same segment on both meshes. For exam-
ple, if on the source meshes the candidate path from 1 to 2
is in the segment limited by the definitive paths from 1 to
3 and from 1 to 4, the corresponding path should be in the
segment limited by the two paths corresponding to the ones
said above. If not, one of the paths is recomputed with this
constraint. As in overlapping paths recomputing, paths that
cannot be found after the constraint are removed from the
candidate set.

When the set of paths is empty, the algorithm is over. If
the patches obtained after the computation are triangular, we
can start the mapping part of the morphing algorithm. If not,
some steps of refinement are needed. If a patch isn’t trian-
gular it means that some of the vertices have no free edges
on which construct a new path. So, triangularization of the
patches is done creating face paths, meaning that a new bor-
der is created searching for a path over the faces and then
creating new vertices on the mesh when the path can’t step
over the existing ones. The last image of Figure 3 shows the
final result of the segmentation of the two meshes.

6. Conclusions and future work

We have presented here a suite of tools, developed upon a
free library, to extract topological information from triangle
meshes.

Regarding the skeletonization we have completely imple-
mented the voxelization step, and we have implemented a
skeleton extraction algorithm, without any post-processing
refinement tool. Skeleton extraction still have to be further
developed. We only have reached some partial result, and
a first approximation of the skeleton has been successfully
extracted from the mesh, but there are still some issues to
face: in most cases the skeleton is not thin and it is not com-
pletely connected. The implementation of a refinement pro-
cess is, thus, the first thing to do. Another unsolved question
is related to how formatting the output of the algorithm: a
graph-based skeleton description, or an approximation with
equations or splines are the possible choices.

Regarding the segmentation we have completely imple-
mented the fuzzy clustering algorithm and we are trying to
speed it up using graph cuts to accelerate the APLP step. Ini-
tial results are very promising and we plan to be able to work
even on larger meshes using such acceleration techniques. In
the morphing field we are planning to change the strategy of
triangularization still for speeding up the shortest paths iden-
tification. Another thing to be done is the actual morphing
between the two meshes which we consider a relative easy
task to tackle.

All the meshes used for the experiments were created with
OpenMesh.

Acknowledgements

This work has been partially financed by the PRIN grant 3-
shirt, (n. 2006010149_003, year 2006) of the Italian Ministry
of University and Research. We are indebted to Leif Kobbelt
and Ian Moebius of the Computer Graphics & Multimedia
Group of the University of Aachen for helping us in becom-
ing familiar with OpenMesh.

References

[AA93] ARMAN F., AGGARWAL J. K.: Model-based ob-
ject recognition in dense-range images: a review. ACM
Comput. Surv. 25, 1 (1993), 5–43.

[AKM∗06] ATTENE M., KATZ S., MORTARA M.,
PATANE G., SPAGNUOLO M., TAL A.: Mesh segmenta-
tion - a comparative study. In Proc. Shape Modeling and
Applications 2006 (SMI’06) (June 2006), IEEE Computer
Society Washington, DC, USA, pp. 7–18.

[Blu67] BLUM H.: A transformation for extracting new
descriptors of shape. In Proc. Models for the Perception
of Speech and Visual Form (Nov. 1967), pp. 362–380.

c© The Eurographics Association 2008.

79



F. Guggeri, S. Marras, C. Mura, and R. Scateni / Topological Operations on Triangle Meshes Using the OpenMesh Library

[CSM07] CORNEA N. D., SILVER D., MIN P.: Curve-
skeleton properties, applications, and algorithms. IEEE
Transactions on Visualization and Computer Graphics 13,
3 (May/June 2007), 530–548.

[Dij59] DIJKSTRA E. W.: A note on two problems in con-
nexion with graphs. Numerische Mathematik 1 (1959),
269–271.

[EK72] EDMONDS J., KARP R. M.: Theoretical improve-
ments in algorithmic efficiency for network flow prob-
lems. Journal of the ACM 19, 2 (1972), 248–264.

[GS99] GAGVANI N., SILVER D.: Parameter-controlled
volume thinning. Graphical Models and Image Process-
ing 61, 3 (May 1999), 149–164.

[HJBJ∗96] HOOVER A., JEAN-BAPTISTE G., JIANG X.,
FLYNN P., BUNKE H., GOLDGOF D., BOWYER K., EG-
GERT D., FITZGIBBON A., FISHER R.: An experimen-
tal comparison of range segmentation algorithms. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence 7, 18 (1996), 673–689.

[JMF99] JAIN A. K., MURTY M. N., FLYNN P. J.: Data
clustering: a review. ACM Comput. Surv. 31, 3 (1999),
264–323.

[KS04] KRAEVOY V., SHEFFER A.: Cross-
parameterization and compatible remeshing of 3d
models. ACM Transactions on Graphics 23, 3 (Aug.
2004), 861–869.

[KSG03] KRAEVOY V., SHEFFER A., GOTSMAN C.:
Matchmaker: Constructing constrained texture maps.
ACM Transactions on Graphics 22, 3 (July 2003), 326–
333.

[KT03] KATZ S., TAL A.: Hierarchical mesh decomposi-
tion using fuzzy clustering and cuts. ACM Transactions
on Graphics 22, 3 (July 2003), 954–961.

[OFCD02] OSADA R., FUNKHOUSER T., CHAZELLE B.,
DOBKIN D.: Shape distributions. ACM Transactions on
Graphics 21, 4 (Oct. 2002), 807–832.

[Ope] OpenMesh. www.openmesh.org.

[Pet02] PETITJEAN S.: A survey of methods for recover-
ing quadrics in triangle meshes. ACM Comput. Surv. 34,
2 (2002), 211–262.

[Qt] Qt 4.3 Whitepaper. www.trolltech.com.

[SLSK07] SHARF A., LEWINER T., SHAMIR A.,
KOBBELT L.: On-the-fly curve-skeleton computation for
3d shapes. Computer Graphics Forum 26, 3 (Sept. 2007),
323–328.

[SMD∗05] SHOKOUFANDEH A., MACRINI D., DICKIN-
SON S., SIDDIQI K., ZUCKER S. W.: Indexing hierar-
chical structures using graph spectra. IEEE Transactions
on Pattern Analysis and Machine Intelligence 27, 7 (July
2005), 1125–1140.

[ZT99] ZHOU Y., TOGA A. W.: Efficient skeletonization
of volumetric objects. IEEE Transactions on Visualization
and Computer Graphics 5, 3 (1999), 196–209.

c© The Eurographics Association 2008.

80


