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Abstract
Computer-aided diagnosis for pre-operative planning and post-operative outcome evaluation is widely considered
an important topic for next-generation surgery. 3D models of the patients’ anatomical structures can be highly
valuable in this context. The accuracy of these models is strongly dependent on the classification and segmentation
algorithms acting at the very first stage of the modelling chain. A promising class of segmentation algorithms is
related to level set methods. Here, we briefly review some applications of level sets to medical image segmentation.

Categories and Subject Descriptors (according to ACM CCS): I.4.6 [Image Processing and Computer Vision]: Seg-
mentation, Level Sets, 3D, MRI, CT, Medical Imaging

1. Introduction

The rapid technological advances in digital medical imaging
devices have brought the attention of various medical com-
munities to computer-assisted diagnosis.

One of the trends of modern surgery is computer-aided
pre-operative planning and post-operative outcome evalua-
tion. Digital models of the involved organs or tissues can be
of great value both to predict and to evaluate the outcome
of a surgical intervention. In particular, planning and eval-
uation often involve the creation of a model from patient-
specific data, acquired by means of CT, MRI, and so on.
3D models of human body parts can be also useful for se-
lecting perfectly-fitting prostheses e.g., for knee replace-
ment [BBFI06] (using FEM stress analysis) and plastic
surgery [FIG∗06] (by means of ad-hoc geometric measure-
ments).

Acquiring volumetric data of internal organs by means of
CT, MRI, or PET, is common clinical practice both for diag-
nosis and pre-operative planning. Although this information
could be fruitfully exploited for quantitative measurements,
currently it is mainly employed qualitatively by surgeons.
This is mostly due to the lack of robust and reliable systems
to build precise 3D models of the structures of interest. A
large variety of segmentation methods have been developed
for medical image processing and segmentation. Nonethe-
less, ad-hoc solutions are often preferred to properly detect

complex structures, such as vessels, organs, or skeletal struc-
tures.

The main difficulties with CT, MRI, or PET images are re-
lated to acquisition noise, anatomical peculiarities, and low
resolution. Noise reduction is probably the easiest to cope
with, since lots of noise reduction methods have been devel-
oped for 2D images. However, care must be taken to extend
these algorithms to 3D anisotropic grids. Resolution causes
the partial volume (PV) effect i.e., a single voxel may contain
a number of different tissues. A common problem derived
from PV effect is the difficulty to separate bones in an ar-
ticulation. Resolution is going to increase in the near future
due to the fast technical advances in this field. Anyway, the
amount of radiation each patient can safely absorb will pose
a limit for most real cases. Finally, anatomical features may
vary in different patients and even at different parts of the
body of a patient (e.g., the density of a femur is remarkably
lower close to the articulation than in its central area).

All these problems rule out many traditional segmentation
algorithms. On the other hand, anatomy can be a valuable in-
formation to guide segmentation. Hence, geometric features
and shape priors can be fruitfully exploited for segmentation.

Active Contours, also called snakes [KWT88], can eas-
ily handle shape-driven segmentation by explicitly introduc-
ing geometric constraints, modelled as curvature terms in a
curve evolution setting. A binary segmentation is obtained
by separating the inner and the outer side of the evolving
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contour. The evolution of the contour is guided by differ-
ential equation, encompassing different geometric and im-
age contributions. The most common terms of the evolution
equation are a curvature term to smooth out cusps, an advec-
tion term (i.e., an inflation/deflation balloon force), and an
image gradient term to force the contour to stick to image
edges.

Snakes have been very popular and extensively studied
in the last decade, especially for medical image segmenta-
tion. Despite their success, they have two serious drawbacks.
First, topological variations occurring during the evolution,
such as region merging and splitting, are not handled easily.
When designing new evolution equations one must account
of a number of tricky special cases. Second, the contour
can overlap and fold during evolution (it is no more a sim-
ple curve), resulting in unwanted unnatural effects. Again,
avoiding folding can be hard and result in a time consuming
implementation.

In order to circumvent these problems, the Level Set
paradigm was introduced by Osher and Sethian [OS88] and
rapidly showed its potential for many applications. Among
them, medical image segmentation. In the following sec-
tions, we will give a short introduction to the level set for-
mulation and survey some of the most interesting medical
image segmentation algorithms since their introduction.

A joint project involving our lab and numerical analysts of
our Department has recently started to investigate the topics
addressed in this paper.

2. Level Set Basics

Most of the problems with active contours are due to
parametrisation. Basically, in order to evolve a moving con-
tour one should follow the path of each (infinitesimal) par-
ticle of the curve (Langrangian approach). Discretising the
evolving contour is far from being straightforward. One
could fix some knots at fixed equal distances along the curve,
and evolve the position of these knots. However, as pointed
out in [Set97], there is no means to detect if their relative
position along the curve will switch at some time during
the evolution, without re-parameterising the contour. This
inversion would then cause the curve folding over itself. This
problem could be solved by stopping the evolution and dis-
cretising again the curve. However, doing this can be com-
putationally burdensome, especially for surfaces in three di-
mensional space.

An even more problematic case is topology change due to
curve merging and splitting. In order to illustrate this prob-
lem, let us take a simple example of two growing circular
contours in the same plane [Set97]. At some time during
evolution, they will touch at one point and then merge. How-
ever, since time steps are discretised we may not be able to
track the exact time when the contours meet. Thus, it will be
hard to find and remove the exceeding knots lying inside the

merged contour, and restore the correct knot ordering. This
problem is even more complex in three dimensions.

Rather than following the evolution of contour particles,
the level set formulation tracks the time when the contour
crosses each point in space (Eulerian approach) [OF02]. An
extra dimension (time) is added to the problem, so that the
evolving contour is a section of a higher dimensional embed-
ding (a level set) at a given time. Doing this way, topology
changes of the contour are handled easily since no topol-
ogy change occurs in the embedding. Thus, the choice of
grid step is not crucial. Moreover, the problem of knots or-
der switching is avoided since the space is sampled, rather
than the evolving contour itself. Hence, none of the problems
cited above will come up and a discretisation as simple as a
regular grid will suffice. Other important advantages of level
sets with respect to active contours are that the mathematical
approach is independent from problem dimensionality and
that anisotropy of the grid can be easily dealt with. This is
particularly useful for medical image segmentation.

Before describing how level sets can be used for segmen-
tation, we briefly introduce some fundamental mathemati-
cal notions. Our discussion is based on planar curves; how-
ever, the same formulation can be used for higher dimen-
sional problems. Let C ∈R2 be a closed curve. Active con-
tours parameterise the curve as C(p)≡C(x(p),y(p)), where
p ∈ [0,1] is a parameter and C(0) = C(1). Level sets in-
stead use an implicit representation. Namely, an embedding
function Φ :R3→R such that Ct = {(x,y)|Φ(x,y, t) = k},
with k ∈R arbitrary (usually set to zero). Although there are
several choices for Φ, most applications use signed distance
functions since the resulting math is simplified and numeri-
cal approximations are more stable [OF02]. Setting to zero
the time derivative of Φ(x,y, t) = k we get

∂Φ

∂t
=−∇Φ · d~x

dt
=−∇Φ ·F (1)

where F is a function encompassing the partial derivatives
of Φ evaluated at~x≡ (x,y). F acts as an external force, driv-
ing the evolution of the contour. Equation 1 is referred to as
the level set equation. Note that if F is constant, the term
∇Φ · F (advection or convection term) acts as a contrac-
tion/expansion balloon force. If we focus on motion along
the normals to the contour (i.e., the tangential component is
zero), Equation 1 can be rewritten as

∂Φ

∂t
=−Vn|∇Φ| (2)

where Vn is the normal velocity i.e., the component of the
velocity in the normal direction. This is the case of motion
by mean curvature: Vn = c ·κ, where κ is the mean curvature
and c is a constant. Notice that c · κ|∇Φ| represents an in-
ternal force, since it depends only on the contour. Evolving
the contour using a curvature-driven flow, the high-curvature
features of the contour move significantly faster. It can be
shown [Gra87] that, under motion by mean curvature, any
simple closed curve evolves towards a circular shape and
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than collapses to a point. Hence, c · κ|∇Φ| acts as a regu-
larisation term. Putting together the balloon force and the
curvature-driven flow, the level set equation becomes

∂Φ

∂t
= (1− c ·κ)|∇Φ| (3)

Since here we are not interested in implementation details,
in the discussion above we did not mention any approxima-
tion scheme for the numerical solution of the level set equa-
tion. The interested reader is referred to [OF02].

3. Level Sets Applied to Medical Image Segmentation

Level sets can be usefully employed for image segmenta-
tion by adding an image-dependent external force to Equa-
tion 3. Since regions are bounded by edges, diffusion should
be arrested in correspondence to image gradients. Given an
image I, an edge detector can be defined as a positive de-
creasing function, ΨI(~z), of the image gradient∇I, such that
ΨI(~z)→ 0 for ~z→∞. A common image-dependent term
can thus be defined as

ΨI(∇I (~x)) =
1

1+ |∇Gσ ∗∇I(~x)|p (4)

where Gσ is a Gaussian of variance σ, ∗ is the convolution
operator, and p≥ 1 is usually 1 or 2. The effect of this term
is to force the evolution to slow down and stop when the
contour is close to intensity gradients. Plugging Equation 4
into the embedding function and setting to zero its derivative
as in Equation 1, we get

∂Φ

∂t
= ΨI(∇I)(1− c ·κ)|∇Φ|+ΨI(∇I) ·∇Φ (5)

Equation 5 is the level set formulation (see [YKK∗97]
and [ZOF01]) of the geodesic active contours, derived by
Caselles et al. [CKS97] and Kichenassamy et al. [KKO∗96].
It is a standard formulation used in most segmentation algo-
rithms.

An alternative formulation was proposed in [CV99]
and [CV01] for binary segmentation, and later extended to
cope with multi-region segmentations. Let µ1(Φ) and µ2(Φ)
be the mean intensities of the inner and outer regions of a
contour, C, in the embedding Φ. Then, the level set function
can be written as

∂Φ

∂t
= δε(Φ)

[
µ∇·

(
∇Φ

|∇Φ|

)
−ν− γ1(I−µ1)

2− γ2(I−µ2)
2
]

(6)
where µ is the strength of the smoothness (curvature) term,
γ1 and γ2 weight the internal coherence of the inner and outer
regions, and ν is a balloon force. The function δε(Φ) is a
smooth approximation to the delta function, where ε con-
trols its smoothness and should be related to grid step size.
A common choice for these parameters is µ > 0, γ1 = γ2 = 1,
and ν = 0. Two important observations must be made here.
First, even if only two regions can be constructed they can
be disconnected into a number of fine-scale components.

Second, the mean values µ1 and µ2 are global image oper-
ators. This is a remarkable difference between Equation 5
and Equation 6: While the former acts locally, the latter must
compute a global operator at image level. In the following,
global methods will be presented that compute global oper-
ators on the embedding that, as such, require Φ to be defined
in the whole domain.

3.1. Segmentation of Blood Vessels and Codimension
Two Objects

Blood vessels in a CT or MRI scan can be represented as
tubular structures in a 3D volume. Great care must be taken
using the level set equation to segment these structures for
two reasons. First, the smoothness term in Equation 5 is usu-
ally taken as the mean or as the larger principal curvature of
the surface. In contrast, when segmenting tubular structures
we require smoothness along the tube, orthogonally to its
section. The principal curvature generally captures the cur-
vature of the tube section which is greater. A simple solution
is to take the smaller of the two principal curvatures as the
curvature term in the level set equation.

A more subtle problem is related to tubes with infinites-
imal cross-section i.e., curves in space. We might be inter-
ested in these structures to describe, for example, the skele-
ton of a blood vessel. In this case, the points on the curve are
singular since the distance function is null on the curve and
positive elsewhere. This problem is avoided for surfaces due
to the sign change of the distance function from the inside to
the outside of the surface. In the case of curves in space, no
inside or outside is defined; the same is true for any object
with codimension greater than one (i.e., an object defined by
k variables embedded in aRd space, with k < d−1).

The solution proposed in [LFG∗01] is to embed the curve,
C, into distance field φ such that each isolevel is a thin tube
around C. The curve C itself is the zero level set of this em-
bedding. φ is then evolved using a special evolution equa-
tion, which we do not report here. After convergence, the
final curve is obtained extracting the zero level set of the
embedding.

A different approach is presented by van Bemmel et al.
in [vBSVN03] for segmentation of blood vessels in angiog-
raphy. They are not interested in curves in space, thus Equa-
tion 5 for codimension one objects is used to evolve the
contour. However, they drop the last term and, most impor-
tant, they use a strongly different definition for the image
term. ΨI is computed as the product of three terms: a gradi-
ent term Ψgrad , an intensity term Ψint , and a structure term
Ψvessel . Ψgrad pushes the contour towards gradient edges, in
the same spirit as in Equation 4, using an exponential func-
tion of the image gradient. Ψint is the normalised difference
of two Normal distributions fitting vessels and background
intensities in the data, respectively. This term captures the
bimodal behaviour of angiograms. The last term, Ψvessel , is
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a geometric term, encoding prior knowledge about the tubu-
lar geometry of the structures of interest. Three components
are computed to discriminate structures, respectively, with
respect to round/flat sections, tubular/bubble shapes, and in-
tensity variability (high variance is expected inside vessels).
These components are computed from the eigenvalues, λ1,
λ2, and λ3, of the image Hessian. The two largest eigenval-
ues, λ1, λ2, are related to the highest variations, thus rep-
resent the diameters of vessel cross-section. λ3 is related to
the orthogonal direction. Hence, for example, if |λ1| ≈ |λ2|
the tube section is round. Similarly, |λ3| � min(|λ1|, |λ2|)
implies a tubular structure.

The same formulation of the level set equation is used
in [MN04]. Equation 5 is used without the last term. Again,
the curvature term is set as the minor of the two principal cur-
vatures. In this case, however, the image term ΨI is defined
as the normalised difference of the number of voxels being
misclassified, respectively, as background or as vessel. Two
Gaussian distribution, fitted to the data by means of the EM
algorithm, are used to estimate the total classification error
for background and vessel regions. This is similar to the in-
tensity term, Ψint , in the previous approach. A small value
indicates a balance between misclassification errors. Hence,
evolution slows down and stops when this equilibrium is
reached. The problem of extracting tubes with infinitesimal
cross-sections (skeleton of the vessels) is solved by labelling
inner (vessel) and outer (background) voxels and then using
morphological thinning on vessel voxels. Rather than run-
ning the evolution on the whole volume, volumes of interest
(VOIs) are selected and the process repeated for each VOI
separately. A user-selected seed point is used to initialise
the first VOI. After the evolution converges, the voxels are
classified as vessel or background. The skeleton of the ves-
sel segment is then extracted, one endpoint corresponding
to the seed point. The other endpoint is used as a seed to
initialise a new VOI. After a new segment of the vessel has
been classified, it is combined using a simple OR with the
parts classified in previous steps. The work was later ex-
tended in [MVvL∗06], by adding a simple morphological
bone masking operation which employs two registered scans
with and without contrast fluid, respectively.

As a last example, we summarise the work presented
in [NYT04]. Equation 5 is used without the last term. The
image term, ΨI , models the closeness of a voxel to a vessel
border. During the evolution, a value ε is computed for each
voxel, representing the number of vessel voxels lying in a
ball of radius r centred in the voxel. ε is high for inner vox-
els and low for border cells. For each voxel, ΨI is set as the
sum of the values of ε for all neighbouring voxels in a ball
of radius r. To see why this measure can distinguish vessel
voxels from potential leaks when r is close to the expected
vessel radius, let us consider two border voxels, one lying on
a vessel border, the other on the border of a leak. All voxels
inside a vessel of radius r or less have at least one neighbour-
ing border voxel. Thus, ε is always lower than the size of the

neighbourhood. Conversely, for a structure wider than r the
entire neighbourhood of a voxel can lie inside the structure.
Hence, ε equals the neighbourhood size. In the first case, ΨI
is low since ε is low for all neighbours of the current voxel.
In the second case, ΨI takes a higher value since most of
the neighbours of the current voxel have high ε values. From
this discussion, it should be clear that ΨI is higher for voxels
lying in structures wider than r voxels. Hence, if we expect
that vessels have a maximum radius r, vessel voxels can be
discriminated checking the value of ΨI .

3.2. Introducing Priors into Segmentation

When the shape of the objects to be segmented is known be-
forehand, shape priors (i.e., a-priori shapes used when some
salient features of the final curve are known in advance) can
be employed to improve segmentation. One of such cases is
medical images: the shape of anatomical structures is well
known. There are several ways of introducing prior knowl-
edge into the evolution equation, such as local or global sta-
tistical analysis, shape priors, and implicit shape functions.
One such example is the last method introduced in Sec-
tion 3.1. Here, prior knowledge about vessel shape and width
is embedded into the image term as an implicit function. Ge-
ometric priors are used in the algorithm by van Bemmel et
al., described in the same section.

Methods employing shape priors are easy to use due to
the naturalness of their interface. Basically, drawing a shape
template will mostly suffice. However, defining templates in-
variant under rotation, translation, and scaling may be chal-
lenging. Invariance is addressed explicitly in [CTT∗02]. A
planar curve C is defined as a rotated, scaled, and translated
version of a template curve, C∗. The evolution equation con-
tains a shape term derived from a distance function that maps
each point of C onto the closest point of C∗. At each step of
the level set evolution, the rotation, translation, and scaling
parameters are computed by minimising this distance func-
tion, in order to adapt the template to the current segmen-
tation. Level set evolution is used for minimisation. After
the parameters have been optimised, they are plugged into
the curve evolution equation to update the evolving curve,
C. Notice that this algorithm requires a global minimisa-
tion of the parameters at each step of the evolution. It can
thus be prohibitively time consuming. In order to learn C∗

from a training set, a similarity measure is defined between
manually-drawn curves, based on the percentage of overlap-
ping internal area. All curves in the training set are aligned
by minimising this measure. The template, C∗, is set as the
mean of the aligned shapes.

The work in [CSS03] is motivated by the need to extract
expected objects of interest without excluding other objects
i.e., the template should be used only when needed. The idea
is to automatically estimate a function, L, encoding the simi-
larity between portions of the evolving contour and the prior
shape. The evolution equation is designed such that the prior
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shape influences only the portions of the contour which show
a high degree of similarity to the template. The evolution
Equation 6 is used, enriched with a shape term given by the
squared difference between the current embedding, Φ, and
the template, Φ0, scaled by the value of the template simi-
larity function, L. Then, the evolution equations of Φ and of
L are simultaneously minimised. L is evolved such that its
influence on the evolution of Φ is strong when the shape is
similar to the template, and negligible when this is not the
case. Notice that this method is not invariant with respect to
any motion or scaling parameter. This is due to the trivial
definition of the shape term as a simple difference between
Φ and Φ0.

Similarly to the previous method, Equation 6 together
with a shape term is used in [CZ05]. The shape term is sim-
ilar to the corresponding term of the previous method. Fur-
ther, another term is used to force the prior shape to give
a good segmentation of the image. That is, the influence of
the template is low if it does not fit the image. The transla-
tion, rotation, and scaling parameters of the prior shape are
simultaneously estimated similarly to the first method in this
section. Thus, this method is computationally intensive. The
effect is to fit the prior shape to the image, if possible, and
then evolve the contour towards the template.

Statistical priors are used in [LFGW00]. A Markov net-
work is used to relate the value of each cell to its neighbour-
hood. The posterior probability has an image term and a reg-
ularisation term. The image term is modelled as a weighted
mean of the distance functions from the contours in the train-
ing set. The regularisation term relates a cell with its neigh-
bouring cells. It is composed by a tangent and a normal con-
tribution, under the hypothesis of statistical independence,
related to curvature and to linearity, respectively. The nor-
mal term is modelled using central differences, while the tan-
gent term is computed as the deviation of the curvature from
the central difference in the tangent direction. The evolution
equation minimises the log posterior probability, obtained as
the composition of the three terms above.

Another method [LGF00] extends Equation 5 by adding a
statistical shape term, computed as the difference between
the evolving curve and the template, suitably rotated and
translated (no scaling is allowed). Shape and pose param-
eters are statistically estimated using a maximum a poste-
riori approach. Three terms are considered. The first one is
an inside term which decreases as more and more cells fall
outside the estimated final template curve. The second term
computes the deviation of the image profile along the curve
gradient from a Gaussian fitted to the data along the template
curve. The third term relates the shape parameters to possi-
ble prior shapes. Finally, a uniform distribution over pose
parameters is assumed.

4. Conclusions

We have reviewed some of the most interesting level set ap-
proaches to medical image segmentation. We chose an infor-
mal approach to focus on ideas rather than on the formalisms
used. We think that level sets with statistical and shape pri-
ors have the potential to overcome many of the limitations
of classical segmentation algorithms. We will thus devote
our research efforts to these methods.
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