Eurographics Italian Chapter Conference (2007)
Raffaele De Amicis and Giuseppe Conti (Editors)

Rendering Order Optimization for SVGStat Improvement

S. Battiato, G. Puglisi

Dipartimento di Matematica e Informatica, University of Catania, Italy
Image Processing Laboratory
http://www.dmi.unict.it/~iplab

Abstract

Vector representation of digital images offers a number of advantages over the more common raster represen-
tation, such as scalability and resolution independence. Many efforts have been made to deploy scalable raster
standards for photographic imagery addressed to portable applications. However, they lack the flessibility and
simplicity of vector representation. Vector graphics is a new and little explored alternative to the more common
representation. In this paper we present our raster to vector technique, called SVGStat, improved with a new

boundaries simplification algorithm.

Categories and Subject Descriptors (according to ACM CCS): Vectorization, Segmentation, SVG.

1. Introduction

Vector representation of digital images offers a number of
advantages over the more common raster representation,
such as scalability and resolution independence. These fea-
tures make it amenable for portable applications since it can
accomodate for a wide range different displaying conditions,
varying in resolution, quality, and level of detail.

Many efforts have been made to deploy scalable raster
standards for photographic imagery addressed to portable
applications, such as JPEG2K [JPE]. Anyway, since they
have been focused on raster images, they lack the flessibility
and simplicity of vector representation. On the other hand,
while many applications exist to enable artists to build vec-
tor images from scratch, converting photographic imagery
from raster to vector formats is a relatively new topic.

Recently, SVG (Scalable Vector Graphics), a new vector
format for web deployment, has been released ([DHHO02],
[QuiO3]). A number of applications have appeared to convert
raster images to vector graphics in the SVG format (Vector
Eye [VLDPO3], Autotrace [Web02], Kvec [Kuh03], VISTA
[PS05]). Anyway, most of these methods are devoted to syn-
thetic images with a small colour palette and strong neat
borders between image regions. They often fail to vectori-
alize photographic images, because they have blurred and
fuzzy edges and huge colour palettes. As we already shown
in ([BFPO6b], [BFP06a]), our technique SVGStat, outper-

(© The Eurographics Association 2007.

forms other methods both in terms of rendering quality and
overall compression rate. Moreover it is based on a single
input parameter that makes easy to find the correct trade-off
between final perceived quality, scalability and correspond-
ing file size. In this paper we have introduced a boundaries
simplification step in the algorithm that permits us to obtain
smaller file size without losing in perceived and measured
quality.

The rest of the paper is organized as follows. In section
2 we briefly review the main details of SVGStat. The suc-
cessive section describes the new boundary simplification
step whereas section 4 reports some experimental results de-
voted to compare the performances of the proposed approach
with respect to previous version of SVGStat. A final section
closes the paper tracking also direction for future works.

2. SVGStat

SVGStat is a raster to vector technique that consists of three
main steps:

e image partitioning in polygonal regions using SRM (Sta-
tistical Region Merging) [NNO4];

e borders tracking of segmented regions;

e regions coding by SVG primitives.

delivered by

www.eg.org

-G EUROGRAPHICS
: DIGITAL LIBRARY

diglib.eg.org

http://www.dmi.unict.it/~iplab
http://www.eg.org
http://diglib.eg.org

66 S. Battiato, G. Puglisi / Rendering Order Optimization for SVGStat Improvement

2.1. Image Partitioning by Segmentation

Segmentation is the process of partitioning an image into
disjoint and homogeneous regions. A more formal definition
can be given in the following way [LMO1]: let / denote an
image and let H define a certain homogeneity predicate; the
segmentation of / is a partition P of / into a set of N Ry,
n=1, 2, ..., N, regions such that:

° Ufy:lR,, =IwithR,NRy =0, n#m;
e H(R,) =true Vn;
e H(R,URy) = false VR, and R, adjacent.

Recently, thanks to the increasing speed and decreasing
cost of computation, many techniques have been developed
for segmentation of colour images. In particular we used the
Statistical Region Merging ([NNO04]) algorithm, a region
growing techniques with statistical test for region fusion.
This algorithm has several good features: it has a linear com-
plexity and a single input parameter that fixes the "coarse-
ness" of segmentation. SRM algorithm gives, for each seg-
mented region, the list of pixels belonging to it and the re-
lated mean colour. We use this output as starting point to
create a vectorial representation of image.

2.2. Contouring

To obtain a vectorial representation we have to find the bor-
der of segmented regions. This could be done more easily if
we considered the pixels belonging to several groups (fig. 1).
First of all pixels are divided in:

e internal pixels: pixels with all neighbours (in a 4-
connexity scheme) belonging to the same region;
e border pixels: remaining pixels.

Due to the overall complexity of border regions a further
setting into two groups is required:

e close pixels: pixels with at least an internal pixel as neigh-
bour (in a 8-connexity scheme);
® open pixels: remaining pixels.

Figure 1: An example of different kind of pixels: internal
(blue), close (red) and open (green).

After having assigned each pixel to the corresponding cat-
egory we describe regions in vectorial form. In particular
there are two types of curves: close curves and open curves.

In both cases we could approximate their boundaries through
segments with eight possible directions (fig. 2).

Figure 2: Possible directions of segments that approximate
the boundaries of regions.

2.2.1. Close Curve

9 [L]

Figure 3: An example of region with simple boundaries.

A close curve is a curve made up of only close pixels.
Initially, we consider a simple configuration (fig. 3) to ex-
plain how segments could be found from close pixels list.
The pseudo-code that describes the algorithm is the follow-
ing:

initialPixel = findFirstPixel();
currentPixel = findNextPixel (initialPixel);
direction = findDirection(initialPixel, currentPixel);
segment = createNewSegment (initialPixel, direction);
while (currentPixel != initialPixel) {
oldCurrentPixel = currentPixel;
oldDirection = Direction;
currentPixel = findNextPixel (oldCurrentPixel);
direction = findDirection (oldCurrentPixel, currentPixel);
if (direction != oldDirection) {
setFinalCoordinate (segment, oldCurrentPixel);
insertInSegmentsList (segment) ;
segment = createNewSegment (oldCurrentPixel, direction);
}
}
setFinalCoordinate (segment, currentPixel);
insertInSegmentsList (segment) ;

The functions are:

e findFirstPixel (): it chooses the top-left pixel as
initial pixel.

e findNextPixel (currentPixel): it looks for the
next pixel in the neighbourhood following a counter
clockwise direction.

(© The Eurographics Association 2007.

S. Battiato, G. Puglisi / Rendering Order Optimization for SVGStat Improvement 67

e createNewSegment (oldCurrentPixel, di-
rection):itcreates a new segment with first coordinate
oldCurrentPixel and direction direction.

e setFinalCoordinate (segment, oldCur-—
rentPixel): it sets the final coordinate of segment
segment at oldCurrentPixel.

e insertInSegmentList (segment): it adds seg-
ment in the list of segments that describes the close
curve.

Our algorithm chooses the top-left pixel of curve as ini-
tial pixel and, following the boundary in counter clockwise
direction, it creates the segments necessary for a vectorial
description.

2.2.2. Open Curve

Even if a good segmentation algorithm should create regions
with simple boundaries and not ragged this is not always the
case. For this reason we have divided border pixels into two
groups: close pixels and open pixels. The last are the pixels
devoted to describe the ragged above mentioned.

| | | =]] rs| =

e

Figure 4: An example of simple open curve.

For simple configurations (fig. 4) it is possible make use
of a simple contouring technique as above but just consider-
ing as starting point only pixels having a single neighbour.
Moreover when a pixel is chosen it is deleted form the list of
open pixels.

2.3. SVG Generation Code

After we have tracked the boundaries of curves it is nec-
essary to map the data by SVG primitives. In particular a
generic close curve could be represented in the following
way:

<path d="M x1,x1 L x2,y2 Lx3,y3 Z" stroke ="#RRGGBB"

fil1"#RRGGBB" />

where x1,vy1,x2,y2,x3,y3 are the vertexes coordi-
nates and RR, GG, BB are respectively the hex represen-
tation of red, green, blue mean value of the region that close
curve belong to.

An open curve could be represented in the following way:

(© The Eurographics Association 2007.

<path d="M x1,x1 L x2,y2 Lx3,y3" stroke ="#RRGGBB"

fill="none" />

Open curves are not filled (£111 = "none") and the
starting point is not equal to final point (Z parameter is ab-
sent).

In order to obtain small file size some optimization could
be done [Wor03]:

e path element permits to eliminate some separator char-
acters, to use relative coordinate (m, 1 command) and
h, v command for horizontal and vertical lines respec-
tively;

e <g> elements is used to properly ensemble common
graphic properties of various primitives.

3. Boundaries Simplification

Each identified region has been properly contoured by mak-
ing use of a list of segments. However, this representation
is not optimal in terms of coding efficiency; in fact each
border is considered twice. In order to reduce such redun-
dancy the rendering order is used to simplify some bound-
aries. Just for example considering two nearby regions R;
and R, some borders of R; can be extended under the im-
age region covered by R; with ordering such that i<j. Such
simplification strategy is useful to reduce the overall number
of points and primitives required by the classical boundary
description. Just before boundaries reduction a closing oper-
ation is applied just to smooth ragged borders.

In order to obtain boundaries reduction an iteratively three
step strategy has been implemented. The first simplification
step aims to make convex each involved region. In particular
it iterates over all segments setting as "blocked" (no further
optimization can be done) those that have nearby regions al-
ready drawn. Afterwards it considers couples of not blocked
consecutive segments (s1, sp) that form a concave region.
This method considers the segment s3 starting from the ini-
tial point of s; and ending on the final point of s;; if the
triangle formed by (sy, s, s3) segments can be added to cur-
rent region without including parts of other regions already
drawn, it simplifies the border removing s, s and introduc-
ing the new segment s3 (see figure 5).

The second step simplifies an oblique segment by using
two segments along the main axes (see figure 6). Like in the
first simplification step it is necessary to avoid to include
parts of regions already drawn.

The third and final step consists of a simplification of con-
secutive segments with the same direction. In particular it
iterates over all not blocked segments and, detecting con-
secutive sequences with the same direction, it replaces them
with one segment (see figure 7). In the case of segment with
opposite direction, this method simplifies these segments by
making use of an algebraic sum of their length.

68 S. Battiato, G. Puglisi / Rendering Order Optimization for SVGStat Improvement

The overall technique can be summarized by the follow-
ing pseudo code:

BorderSimplify (List RegionsList) {
OrderedRegionlList = sort (RegionList);
While (there are regions to process) {
currentRegion = getRegion (OrderedRegionList);
nearRegionsIdList = computeNearRegionsId(currentRegion);
count =
computeNumberNearRegionsAlreadyDrawn (nearRegionsIdList);
if (count ==0){
simplify = computeAndControlRect (currentRegion);
if (simplify) simplifyWithRect (currentRegion);
else {
iterativelySimplify (currentRegion);
}
} else if (count<size (nearRegionsId)
iterativelySimplify (currentRegion);
} else {
//1f all nearby regions has been already drawn no
simplification can be made.
}
}

iteratevelySimplify (Region currentRegion) {
simplify = true;
while (true) {
simplify = firstSimplification (currentRegion);
if (!simplify) break;
secondSimplification (currentRegion);
thirdSimplification (currentRegion);
}
thirdSimplification(currentRegion);

}
The functions are:

e sort (RegionList): it sorts, in decreasing order, the
regions list according to dimension of rectangle contain-
ing the regions.

e getRegion (OrderedRegionList): it returns the
first element of OrderedRegionList;

e computeNearRegionsId (currentRegion): It
computes currentRegion nearby regions identifiers;

e computeNumberNearRegionsAlreadyDrawn
(nearRegionsIdList): it computes the number of
regions, near currentRegion, already drawn;

e computeAndControlRect (currentRegion): It
verifies if currentRegion can be replaced with the
rectangle containing it. This simplification has not to in-
clude visible parts of regions already drawn.

e simplifyWithRect (currentRegion): It sim-
plify currentRegion with the rectangle containing it;

e firstSimplification (currentRegion): It
implements the first simplification step described above.
It returns true only when a simplification has been made.

e secondSimplification (currentRegion): It
implements the second simplification step described
above.

e thirdSimplification (currentRegion): It
implements the third simplification step described above.

As it can be seen in figure 8, regions produced with the
boundaries simplification step are simpler than those of the
previous version of SVGStat.

4. Experimental Results

In [BFPO6a] we have shown that SVGStat, without the
optimizations introduced in this work, outperforms other

Figure 5: First simplification step: this method adds the tri-
angle (s2, s3, s9) to region A. Moreover the region B doesn’t
allow to include the triangle made up of s6, s7, s10.

Figure 6: Second simplification step: this method includes
the triangle (s9, s11, s12) into region A.

Figure 7: Example of third simplification step; this method,
in this case, simplifies segments si, s11 and s12, s4 (see fig-
ure 6) into s13 and s14 respectively.

(© The Eurographics Association 2007.

S. Battiato, G. Puglisi / Rendering Order Optimization for SVGStat Improvement

(a)

(@

(b)

(e)

69

©

®

Figure 8: Comparison between old and new rendering of regions. Regions considered by new algorithm (see d, e, f) are simpler

than those of the old algorithm (see a, b, c).

similar approaches like VectorEye [VLDPO3], Autotrace
[Web02], VISTA [PS05], SVGenie [BBD*05] and SWaterG
[BCDNOS] in particular for photographic images. Maintain-
ing the same level of perceived (an measured by PSNR) vi-
sual quality, SVGStat [BFP06a] obtains better performances
in terms of compression rate. In this paper we have proposed
a new step in SVGStat that, simplifying regions boundaries,
allows obtaining, without losing in visual quality (see fig-
ures 9, 10, 11), greater compression rate. In particular, con-
sidering visually agreeable images, we obtain an average
gain in file size of 11,5 percent for photographic images (see
figure 12) and of 21,9 percent for clip art images (see fig-
ure 13). This happens because our boundaries simplification
technique is only devoted to close curves and clip arts, due
to their simplicity, are described principally by this kind of
curves. Moreover as shown in figure 14 the optimized ap-
proach outperforms the previous version of SVGStat also
varying the quantization parameter. In fact the new SVGStat
PSNR-bpp curve is always above the other.

5. Conclusion and Future Works

In this paper we have proposed a new boundaries simplifica-
tion algorithm in order to improve SVGStat performances.
Moreover, we have carried out several experiments show-
ing that, without losing in visual quality of images, the new
version of SVGStat obtains better compression rate. Future
researches will be devoted to design advanced region merg-
ing heuristics by making also use of Bezier curves and filter
enhancements.

(© The Eurographics Association 2007.

References

[BBD*05] BATTIATO S., BARBERA G., D1 BLASI G.,
GALLO G., MESSINA G.: Advanced SVG Triangula-
tion Polygonalization of Digital Images. In Proceeding
of SPIE Electronic Imaging-Internet Imaging VI- (2005),
vol. 5670.1.

[BCDNO5] BATTIATO S., COSTANZO A., DI BLASI G.,
NICOTRA S.: SVG Rendering by Watershed Decomposi-
tion. In Proceeding of SPIE Electronic Imaging-Internet
Imaging VI- (2005), vol. 5670.3.

[BFPO6a] BATTIATO S., FARINELLA G. M., PUGLISIG.:
Statistical Based Vectorization for Standard VectorGraph-
ics. In Fifth Int. Workshop on Computer Graphics and Ge-
ometric Modeling(to appear) LNCS (2006), vol. 5670.3.

[BFPO6b] BATTIATO S., FARINELLA G. M., PUGLISI
G.: SVGI Vectorization by Statistical RegionMerging.
In Proocedings of Fouth Conference Eurographics Italian
Chapter (2006), Catania (Italy).

[DHHO2] DUCE D., HERMAN 1., HopGOOD B.: Web 2D
Graphics File Format. Computer Graphics forum 21, 1
(2002), 43-64.

[JPE] ISO/IEC JTCI/SC29/WG! N1646: JPEG2000
final committee draft v1.0. http://www.jpeg.org/
jpeg2000/.

[Kuh03] KuHL K.: Kvec 2.99, 2003. Copyright KK-
Software, http://www.kvec.de.

[LMO1] LUCCHESE L., MITRA S.: Color Image Segmen-
tation: A State-of-the-Art Survey. In Proc. of the Indian
National Science Academy(INSA-A) (Mar. 2001), vol. 67
A, pp. 207-221.

http://www.jpeg.org/jpeg2000/
http://www.kvec.de

70 S. Battiato, G. Puglisi / Rendering Order Optimization for SVGStat Improvement

(b) Lena vectorized by new SVGStat (PSNR=27.9,
bpp=17.56).

Figure 9: Visual comparison between image Lena vectorized
with our old e new solution. The quality of image produced
with our techniques is the same but the optimized approach
produces a smaller svg file.

Figure 10: PSNR comparison between old and new version
of SVGStat for photographic images.

Figure 11: PSNR comparison between old and new version
of SVGStat for clip art images.

Figure 12: Bpp comparison between old and new version of
SVGStat for photographic images.

Figure 13: Bpp comparison between old and new version of
SVGStat for clip art images.

(© The Eurographics Association 2007.

S. Battiato, G. Puglisi / Rendering Order Optimization for SVGStat Improvement

Figure 14: Relation beetwen PSNR and bbp for Lena image
in the new and old version of SVGStat.

[NNO4] Nock R., NIELSEN F.: Statistical Region Merg-
ing. IEEE Transaction on Pattern Analysis and Machine
Intelligence 26, 11 NOVEMBER 2004), 1452-1458.

[PSO5] PRASAD L., SKOURIKHINE A.: Raster to Vector
Conversion of Images for Efficient SVG Representation.
In Proceedings of SVGOpen’05 (August 2005), NL.

[QuiO3] QUINT A.: Scalable Vector Graphics. IEEE Mul-
timedia 3 (2003), 99-101.

[VLDP0O3] VANTIGHEM C., LAURENT N., DECKEUR
D., PLANTINET V.: Vector eye 1.0.7.6, 2003. Copyright
SIAME e Celinea, http://www.siame.com, http://
www.celinea.com.

[Web02] WEBER M.: Autotrace 0.31, 2002. GNU
General Public License, http://www.autotrace.
sourceforge.net.

[Wor03] WORLD WIDE WEB CONSORTIUM: Scalable
Vector Graphics (SVG) 1.1 Specification, 2003. http://
www.w3.0rg/TR/2003/REC-SVG11-20030114/.

(© The Eurographics Association 2007.

71

http://www.siame.com
http://www.celinea.com
http://www.autotrace.sourceforge.net
http://www.w3.org/TR/2003/REC-SVG11-20030114/

