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Abstract

We propose to use an explicit function for adaptive tessellation of parametric curves and surfaces. This function
behaves as a new parametrization from the surface domain (or curve domain) to the domain itself; it is build using
information about derivatives and curvature: a fixed tessellation may be re-arranged in an adaptive tessellation,
which takes care of those parts of the curve or surface which need to be tessellated more and those which may use a
poorer tessellation. We show how to produce and how to use the kernel function with four example: a simple cubic
curve, a spline curve, a cubic bezier triangle and a cubic quadrilateral patch. For every example, we compare
the fixed tessellation with the adaptive one: the number of vertexes used is always the same, but the points are
re-arranged in a better way. At the end we show how to use commonly known forward differencing methods to
evaluate both the explicit parametrization and the curve or surface; we also show how simply this method may be
implemented on common graphics cards.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Line and Curve Genera-
tion,Display algorithms, Line and Curve generation 1.3.5 [Computer Graphics]: Surface Representation, Geomet-

ric Algorithms, Splines

1. Introduction

Consider the curve in Figure 1: it is a cubic beziér curve
defined in [0, Tnax]. It has been rendered has a sequence of
segments: in the first case ( the upper one ) we used a fixed
tessellation; in the second case the tessellation is also fixed,
but the points are re-arranged by an f function. In the rect-
angles Al and A2 you can see that the straighter part of the
curve is segmented with fewer segments, while the part with
more curves is described with more points; the number of
points is always the same, but they are used in a better way.
This simple principle is useful also for parametric surfaces,
where the function f must be defined over all the surface do-
main.

2. Segmentation And Tessellation

Segmentation and tessellation are two very important pro-
cesses in graphics, always used when we want to render a
curve or a surface which is not described as a set of linear
elements. When curves and surfaces are described in a para-
metric form, they can be generally evaluated with a uniform
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tessellation, taking advantages of the most common forward
differencing techniques, as it has been done in [Mor0O1]. An
alternative to forward differencing, may be Central Differ-
encing, for example [DeLL99] shows this alternative on bez-
iér cubic patches. Differencing schemas are very fast, but the
drawback of fixed tessellation is that it uses too much points
when the curve (or surface) is very closed to be linear, and
not enough points when the geometrical model has an high
curvature. To solve this problem, [LP87] proposed to use an
adaptive way to chose the step length in forward differencing
during rendering when needed.

A more interesting solution is the known technique that
can be found for example in [AAO0O], where the tessella-
tion is produced in a recursive way: if a piece of surface
does not approximate the surface well, it is tessellated with
more finer triangles to get the necessary precision. This so-
lution requires algorithms which avoid cracks on the surface
( [LT96] and [Bri99] illustrate this problem ).

Given a parametric curve expressed over the domain D =
{t/tmin <t < tmax } an explicit adaptive tessellator is a func-
tion defined as f(z) : D — D, which has these properties:
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Figure 1: The first example: we use a function f to construct
a re-parametrization of the parametric form of a curve. The
parametrization moves the points so that more points are
placed where they are more needed. (A) On the top you can
see the curve rendered with fixed tessellation, (B) in the mid-
dle the curve with explicit adaptive tessellation and (C) in
the bottom the the function f{t).

of

5 > O0vieD (1
f(tmin) = tmin (2)
f(lmax) = tmax (3)

Every fixed tessellation over D
{tmim tmin + At by + 20t ~~~7lmax} can
be changed in a new tessellation

{f(tmin)7f(tmin + At)»f(tmin + ZAt)7 -n,f(l‘max)}, which
is a crescent sequence of points, because of condition 1.

Given a parametric surface expressed over the do-
main D = {(u»v)/umin < u < umax and Viin <V < Vinax}
an explicit adaptive tessellator is a set of functions
{fu(t):D— D, f,(t) : D— D}, which have these proper-
ties:

aai: > 0V (u,v) € D %)
J (tmin, 0) = tmin ®)
J(umax,0) = tmax (6)
% > 0V (u,v) € D @)
J(0,Vimin) = Viin )
F(0,Vmax) = Vimax Q)

dfu ofy

afuafv
S et > 09 () € D (10)

which has an effect similar to the case seen before. The
conditions on partial derivatives ensure that the vector func-
tion { fu,fv} maps always to different values of (u,v) ( so
there aren’t repeated values of (fy, f)).

In the next subsections we are going to see some im-
portant considerations about the construction of the f(r) or
{fu, fv} functions.

2.1. Avoiding cracks between surfaces

A very important task in tessellation is to avoid cracks be-
tween adjacent surfaces (see Figure 2). It is important that
every surface produces the same points on the common
edges: to ensure this, when we want to determine the func-
tions { fu, f} for a parametric surface, we firstly find a func-
tion f;(¢) for every edge of the patch, and then we reconstruct
{fu, fv} using the information produced in the edges.

For this reason we are going to speak mostly about curves.
In section 5 we are going to see how to use informations on
edges to construct a patch tessellator.
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Figure 2: (A) Two patches are adjacent, but they are tessel-
lated in a bad way, so we have cracks. (B) We construct an
f function firstly on the curve defined on the common edge;
the tessellator for the patches is constructed in a way that
allows the common edge to be tessellated in the same way
the curve tesselator do.

2.2. Defining the f tessellator function for a curve

In this contest we use always the same model for the f(t)
tessellator of a curve:

f(6) =a’ + b +ct +d (11)

that is a cubic in t. t is supposed to be in the interval [0, 1];
it is very easy to extend this to the general case. We have to
satisty the conditions for the tessellator (formulas 2 e 3).

f0)=d=0 (12)

f)y=a+b+c+d =1 (13)
So we take b = 1 —a — c¢. The model may be reduced to
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Figure 3: The Area in red+yellow represent all the values
of a and c for which the cubic tesselator satisfy all the tas-
sellator conditions. To make this control easiest, we propose
to work with the reduced red area.

fO)y=a’®+ (1 —a—c)i* +ca (14)

The last condition (formula 1) tells that:

E;—J;=3at2+2(1—a—c)tJrc>0Vt€[0,1} (15)

The solution of this condition is given by:

@:c>0 (16)
m:a—c—|—2>0 a7
ot
if o< 17979 o (1)
3a

2, 2

a+c¢"—ac—2a—2c+1 <0 (19)
3a

The last condition says ’if the second derivative has a zero
between 0 and 1, in that value of t the first derivative must
be positive’, that’s we ensure f to be crescent and without
oscillations. Figure 3 gives the form of the resulting set of
possible solutions. Every time we construct a tessellator with
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this model, we have to ensure that its parameters a and c are
inside that red+yellow setandbtobe b=1—a—c.

2.3. Defining the model parameters

The parameters may be defined with every possible value,
but to have a useful automatic instrument, we need an eval-
uation of how the curve we are drawing is bending.

In general we need a way to decide "how much the curve
bends’ starting from the point #; and ending in the point #; +
or.

2.3.1. Error analysis

The first solution we propose is to evaluate the error made
by a step dt. If we have a curve P=P(t) and we are in #;, P
may be expressed as

P(1i +81) = P(1;) + dP ” +Z I,dj;f’ & (o)

where 0f is (r —¢t;).If we consider a step 87, we can con-
struct the line which pass through P(t;) and P(r; + 8T) as

P (t; +8t) = P(t;) + (P(t; + 8T) —P(t,-))ss—; 3
/(o _ dP(tz) 1 d’ P(ll) Jj—1
P/ (1 +81) = P(1;) + = =8t +Z T dv 8T/~ ot
(22)
so the error function in ¢t = ¢t; + &t is
E(t; +8t) = P (t; + 8t) — P(t; + t) (23)
. _ v de( ) j—1 j—1
E(t; + &) 7;21! <0 BT/~ =&/ (29

This error function is 0 in 8f = 0 and 8¢ = 8T It has three
components, that is the error for the x component, for the y
component and for the z component. One possible solution
is to find the integral of the three absolute values of the three
functions, and then sum them. The formula of the integral is

. S 1 de(li) J+1 1 1

This way can get good results but it has a little drawback:
it is based on the parameters. Consider this example of sim-
ple curve:

A
t=0, x=0 t=1, x=3
B

| e —— ]
C
L S — s
Figure 4: (A)The line is a straight line, so there are no rea-
sons to use more then one segment to approximate it. (B) On
the domain t, it is defined a color map; the mapping between
color and t is linear, but the mapping between the x value and
t is not linear, so the colors appear to change in a non linear

manner. (C) If we approximate t with only one segment, the
colors are rendered in a wrong way.

Figure 5: The Area A is the Area between the curve and the
approximating segment.

x=1+1+1,y=0,€10,1] (26)

If we take 7o = 0 and 8T = 1 we find the error % and
this suggest that the curve should be segmented with a more
little step ST, but the truth is that we are working with a
straight line. The problem is to decide if for us it is important
only to consider the geometry of the curve or even values of
parameter t: in fact if t is used for other aspects of rendering
(such as texturing, time control and so on) an error based on
t is important.

2.3.2. Curvature Analisys

The curvature is a perfect measurement instrument if we
want to consider only the geometric form of the curve (so
without any interest on the curve parameter). In fact it can
be shown that the integral of the curvature is a good evalu-
ation of the area between the curve and the approximating
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segment (Figure 5). If we are considering only the curve in
the screen space, the curvature may be written as

K(t) _ drar dt ﬁlé Q7N
dx2 | dy? 2
(47+4)

Unfortunately, given a value #; and a step 87, it is not so
simple (or not very fast) to evaluate the integral of the cur-
vature function in that formula. For the rest of this paper, we
are considering only the Error Analisys seen in the subchap-
ter before.

2.3.3. Finding the model parameters

There are a lot of possibilities in order to find values for a
and c, given a method to evaluate how the curve bends. For
example one may use a lot of samples and evaluate the result
with a least squares method.

Our solution is a bit simpler. The first curve we want to
work with is a Bezier Curve of third degree, defined over
four points Py:

P(t)=Py(1—1)° +P3t(1 —1)> + Py (1 —1) + P3t> (28)

Given a value 7, and a step 87, the error due to a linear
approximation is (see 24)

1 d*P(t, 1d3P(1s
E(r) = E%(ST—&)Swﬁy

P R (AL

(29)

Now we can chose if we want to treat the error as a three-
dimensional error or a screen based (bi-dimensional) value.
In the first case we evaluate the sum of the integrals of x, y
and z.

_ 1 @x(t) | () | dat) g3 (11

1187 = 5 ar t e Tt (33 +

d*x(1, APy (1. &t
B+ S Eher (3 4)

In the second case we don’t consider the z-component.
The difference is that in the first case we are constructing a
tessellator useful in every contest, while in the second case
we are constructing it using screen coordinates, so optimized
for a particular point of view, and we have to repeat the op-
eration every time (but the results are better).

When we have this error function, we divide the domain
into three parts and get the integral of the error in every parts:
S| = 1(07%),52 = I(%7%),S3 = I(%,%) Now we consider
this fact: if the error is high, we desire the tessellator to be
slow, so that with the same segments it approximates a more
little part of the curve; if the error is little, we desire the
tessellator to change rapidly, so that every segment is used
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Figure 6: This figure is an explication of the procedure
we suggest to find values a, b and c for a cubic tessella-
tor. (A) We evaluate the errors S1,S> and S3 that we get if we
approximate the curve with three segments with equal step
8T = %; observe that Sy has the biggest value (only in this
example, it depends on the curve). (B) We construct a cu-
bic curve which interpolate the points (0, 0),(%7 %),(%, % +
S%)’(LSLI + S% + S—ls) (C) We adapt the curve so that they
are satisfied the condition on the tessellator. (D) If we tessel-
late t with a fixed step, we get that the tessellation points are
concentrated near Sy (as we could considerate from consid-

erations in (A))
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to approximate a big part of the curve. To manage this, we
firstly construct a cubic tessellator () = Ar> + B> +Ct in
this way

1

ST
f’l(g) =A) +B$+Clg = fll + 4 (30
() =A+B+C=+ 5+

When we have this cubic, we reduce it to a cubic that has
value 1 for ¢ = 1, in this way

1
(a7ba(‘)_(A7B7c)m 3D

It is not enough. We have to satisfy 16,17 and 18 to ensure
that the f function is a crescent function. Figure 3 show the
values for a and ¢ which satisfy condition 18: we prefere,
for simplicity, to use a subset, the quadrilateral with vertexes
(0,-2) (3,1) (3,4) and (0,1); after the application of formula
31, we test the a and c values and if they are not inside that
domain, usually we find the (a’,c’) point of the red domain
nearest to (a,c). Of course, b’ is always set as bV=1-d -

3. Rendering the Curve

When we have an f function, rendering is obvious. A simple
pseudo-OpenGl code would be similar to this:

int DIVISIONS=20;
float step=1.0f/DIVISIONS;
float t,x,v,2;
glBegin (GL_LINE_STRIP);
for(int i=0; i<=DIVISIONS; i++) {
t=ixstep;
t =((axt+b) +xt+c);
x=getX (t);
y=getY (t);
z=getZ(t);
glvVertex3f (x,v,2z);
}
glEnd () ;

A faster solution is to consider a forward differencing
method. It is obvious, but let as show this: the function
P(f(t)) may be written as

d d2 d3
P(£(1)) = P(fo) + I;(;O)Sf+% 5}50)8f2*é 5}{% ¥
(32)
2 3
8 =fo+ dg;°)8t+ % d £g0)5z2+ é%@sﬁ 33)

Combining these two equations bring us to an evaluation
system for the curve based on simple sums.

4. Working with a Bezier Spline

We have considered the extension of the case of a single
curve to the case of a spline curve (Figure 7). We use a fixed
step knots vector, with step equal to one, so 7; = i. We con-
struct a simple tassellator for every curve in the spline. Then
we associate to every curve P! a weight which is

(S1;4+82; +53;)
29’:0(31j+32,-+s3,)

(34)

w;i =

So if a curve is highly curved, it get an high weight, while
if a curve is a straight line it can either get a w; = 0. Usually,
if w; = 0, we set w; = €, with € very little, because a value 0
can get the curve behave in a wrong manner.

When we have finished, we reconstruct the curve with the
new knots vector defined as ) =0 and #;;| =#; +w;. A fixed
step tessellation along the set of t values, produces the effect
you can see in figure 7B

5. Working with a Bezier Triangle

We have worked with a Cubic Bezier Triangle (Figure
8)which is constructed in this way:

31
Z b u'v/wk,w:lfufv,u,v,wzo

b(u,v) = i jk k!
itjthk=3 = UK

(35)

As we explained in subsection 2.1, the simplest way to
define a tassellator for a Bezier Triangle which doesn’t pro-
duce cracks is to define the tassellator on the information
produced by the tassellators for the edges. We propose as
explicit tessellator a cubic function too, that we formalize in
this way:

fur(wy) =Y djjuv’ utv<1, uy>0  (36)
i+j<3

The domain is always the same. The edges of the surfaces
are cubic curves and the edges of the tassellator are cubic
tessellator functions for that edges. In fact, for example, if
we set v =0, we get

i .
b(u,0)= Y biOk%u'(l—u)k7 0<u<1l (37)
i3 i'k!

F,0)=Y dou' u<1, 0<u<1 (38)
i<3

Now we must describe the functions f (u,v) and fy(u,v).
If Py(u,0), P1(0,v),P(u,1 —u) = Py(1 —v,v) are respec-
tively the edge tessellator for the edge v = 0, for the edge

(© The Eurographics Association 2007.



A. Martinelli / Explicit Adaptive Tessellation based on re-parametrization on Graphics Hardware 37

/ ~
/
/
B
I
e
.»:\_q\o_\;\
"~
\.z\ ‘
), 4
/
A /

Figure 7: The same bezier spline: (A) Rendered with a fixed
step (B) Rendered with an adaptive tessellator along the set
of bezier curve: the first and last curves are straight lines, so
they are rendered in a fixed manner:

u = 0 and for the edge u = 1 — v. We use the following func-
tions:

Fulu,v) = Po(u,0) + (P (u, 1 — ) —Po(u,()))lfvu (39)

Folwy) = PLOY) 4 (P31 = vv) = PLOW)) T (40)

In this way the tessellation is based only on the edges tes-
sellators (it is in fact an interpolation of the edges tessella-
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tors). It is easy to demonstrate that if Py(u,0), P;(0,v) and
Py(u,1 —u) = Pj(1—v,v) satisfy the tessellation conditions
for a curve, fu(u,v) and f,(u,v) satisfy the conditions for a
patch.

6. Extension to a quadrilateral Patch

The extension to a quadrilateral patch is truly obvious. For
example consider this cubic quadratic patch:

Suy(u,v) = Z Z di_]-uiV'i u+v<1l, uv>0 (41)
i<3j<3

A possible cubic tessellator is in the form:

fup) =Y ¥ dijlv u+v<1, uv>0 (2
i<3j<3

We must consider the tessellators for the edges, as we
have done before. Given Py(u,0),P;(0,v),P(u,1),P3(1,v)
we construct the two tessellators

Su(u,v) = Py(u,0) + (Pa(u, 1) — Py(u,0))v (43)

Solu,v) = Pr(0,v) + (P3(1,v) = PL(O,v))u (44)

That is, they are a linear interpolation of the opposite
edges.

7. Explicit Adaptive Tessellation on GPU

It is very easy to introduce explicit adaptive tessellation on
GPU: we are considering mostly the work from Boubecker
( [BS]). We worked on a common ATI x1600 card ([ATI]),
using OpenGL ([JLO4]) binded to java code using the JOGL
framework ([JOG]). We have defined the rendering proce-
dure into more steps:

e We send a fixed tessellation to the graphic pipeline using
a display list. This procedure must be done only once.

e For every patch we send to the graphics hardware all the
parameters of the pacth and of the tessellator.

o The graphical pipeline is charged at the Vertex Stage with
a vertex program which firstly evaluate the new values for
u and v given the ones of the fixed tessellation, then eval-
uates the x,y and z for the patch.

e For every patch we call the list sent before.

On a common Pentium 4 at 1.66 Ghz of clock, we have
found that we can evaluate with a java procedure the tessel-
lators for cubic patches with a frequency of 6.9 10° patches
per second, and for a cubic curve with a frequency of 1.9 10°
curves per second. This is the most important added cost of
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Figure 8: The same cubic patch: (A) Rendered with a fixed
step (B) Rendered with an adaptive tessellator (C) The tes-
sellation of the domain with fixed step (D) The tessellation
of the domain with variable step

the rendering process. The other part of rendering has a cost
very closed to the cost of fixed tessellation, if we are using
the same number of points, and depends on the tessellation
precision.

8. Conclusions

We have proposed a procedure to adapt a fixed tessellation
of a parametric geometry to follow better the form of that
geometry. This proposal is based on a re-parametrization,
which make it suitable for forward differencing schemas
and rendering on graphics hardware. The last advantages in
graphics cards, with the introduction of geometry shaders
(see [Dir]), suggest a possible future use of this strategy all
hardware-implemented. Our method can also give a sugges-
tion on how to adapt the number of steps to use for the be-
ginning fixed tessellation: it is easy to build it starting from
the error or curvature analysis we described in 2.3, with con-
siderations similar to the ones in 4
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