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Abstract

A triangular mesh is the piecewise linear approzimation of a sampled or analytical surface, when each
patch is a triangle. The connectivity of the mesh can be easily represented using its dual graph. Each
node of such a graph has at most three incident edges; if the surface is homeomorphic to a sphere,
each node has ezxactly three incident edges.

Several triangular meshes, representing the same surface, with an increasing number of triangles are
a representation of the surface at different levels of detail (LOD). When the number of triangles from
one LOD to another varies continuously we call such a structure a continuous level of detail (CLOD)
approximation of the surface.

Given a CLOD data structure we can extract, at each level, the mesh representing the surface and derive
its dual graph. If we group the triangles forming each mesh in strips, to accelerate their rendering, we
should use two colors for the dual graph’s edges to distinguish between the edges linking nodes belonging
to the same strip or not.

The main goal of this paper is to present a set of rules to recolor the dual graph of the mesh when
passing from one LOD to the next and back. The operations used to change the mesh are a Vertex
Split (VS) when the resolution increases, and an Edge Collapse (EC) when the resolution decreases.
We can, then, use a local topological analysis to derive the rules allowing to recolor the graph, and
to show that, under certain conditions, the recoloring is optimal. This allows to keep effectively an

optimal triangle strip structure over the mesh, while changing its resolution.

1. Introduction

In computer graphics applications there are two differ-
ent requirements to comply with: to generate images
of the synthetical models as close as possible to the
model itself, and to keep a given pace (frames per sec-

ond) when visualizing them.
In recent years, two trends evolved in parallel: on

one side the graphics boards are more and more per-
formant, making it possible to visualize larger models,
on the other side the evolution in three-dimensional
data acquisition still keeps the largest models avail-
able impossible to visualize at reasonable frame rates
(usually no less than twenty per second).

This keeps the field of investigation on reducing the
data needed to represent a given object very hot.

In this work we show the results we obtained in

controlling the topology of the meshes representing a

(© The Eurographics Association 2007.

given object while changing their resolution, using the
dual graphs of the meshes. We will show how can be
simple to rewrite the graph on the basis of a collection
of cases, that we studied and classified, and that are
written in a look-up table. The rest of the paper is or-
ganized as follows: in section 2 we will briefly recall the
characteristics of the triangle meshes used in computer
graphics, in section 3 we will review how it is possible
to use meshes to efficiently visualize synthetic objects,
in section 4 we will show our proposal for rewriting the
dual graphs of the meshes when changing their resolu-
tion, in section 5 we will analyze some results obtained
on different meshes, and in section 6 we will draw our
conclusions.
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2. Meshes in Computer Graphics

The meshes typically used in computer graphics can
heavily vary in size (the number of triangles they are
composed of), from few thousands to several hundred
of thousands. Recent advances in data acquisition,
especially the broadening diffusion of tridimensional
scanners, make even huge (over 1 Mtri’s) if not gigan-
tic (order of tens Mtri’s) triangle meshes commonly
available.

We show several examples of meshes of different di-
mension in Figure 1. For all these meshes, we can see
that the ratio between the number of faces and the
number of vertices is more or less in accordance with
the Euler formula ¢ = 2v that holds exactly only when
the represented object is homeomorphic to a sphere
and the mesh is perfectly defined. When we use the
meshes for visualization purposes we can allow to have
small defects as isolated points, triangles appearing
twice and such that do not compromise the overall
appearance.

Figure 1: From left to right three meshes represent-
ing, respectively: a teapot (4,255 vertices, 8,480 trian-
gles); a bunny (35,947 vertices, 69,451 triangles); the
“Dea madre” statue (290,449 vertices 571,806 trian-

gles).

From a topological point of view, manifold trian-
gles meshes have the property that no more than two
faces can insist on the same edge. In this picture, in-
ternal triangles will have three neighbours and border
triangles two or one neighbours.

2.1. Dual Graph of a Mesh

Each triangle mesh can be represented by its dual
graph. It is a graph in which each node is associated to
a triangle of the original mesh and an edge represents
an adjacency relation.

Topological properties of the dual graph reflect fea-
tures of the original mesh. Especially, an important
property of such a graph is that each node has, at
most, three incident arcs. In case the original mesh
is homeomorphic to a sphere, each node has exactly
three incident arcs. An example is given in Figure 2.

Figure 2: A triangle mesh and its dual graph.

3. Rendering of Tridimensional Meshes

As we anticipated in section 1, using triangular meshes
to represent synthetic objects, we tipically face two
contrasting requirements: on one side we want to vi-
sualize realistic scenes and need precise models, with
a high number of faces; on the other side, we want
to achieve a fast visualization, and meshes with big
dimension are an obstacle.

Several techniques are used to make these two
opposite goals converge. Two of the most widely
spread are the use of level of detail representations
[CMS98] and the construction of strips of triangles
[AHMS96, SS97, Hop99, ESEK*00, Ste01, PS03].

3.1. Level of Details of a Mesh (LOD)
In order to simplify the mesh, we follow the approach
first introduced by Hoppe[Hop96], introducing two
transformations to modify the simplicial complex K
in K’ without changing its topology; they are called
Edge Collapse (EC) and Vertex Split (VS).

An edge collapse transformation ecol({vs,v:}), re-
moves an edge from the mesh, unifying two adjacent
vertices vs and v; into a single vertex vp. It reduces
the size of the mesh removing from it the two trian-
gles sharing the collapsed edge. An example is shown
in Figure 3.

Using an iterative mechanism, an initial mesh M =
M™ can be simplified into a coarser mesh M° by ap-
plying a sequence of n successive edge collapse trans-
formations:

(M _ Mn) _}ecoln_l L _)ecoll Ml Hecolg MO

Vertex split is the inverse of the edge collapse
transformation: it splits a previously identified vertex
restoring the two triangles sharing that vertex. (see
Figure 3)

Mesh simplification process can be reversed using
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Figure 3: Edge collapse and wverter split over a
mesh. The vertices vy, vs and the two adjacent faces
{vs,ve, v} and {vi,vs, v, } are affected by the process.

vertex split transformation; in this way an arbitrary
mesh M may be represented as a simple mesh M°
together with a sequence of n VS records:

MO *)'usplito Ml ‘)vsplitl

Hvsplitn_l (Mn _ M)

where each record is parameterized as
vsplit(hi,l;,r;, A). With A we indicate the po-
sition vs and v; of the affected vertices.

We call (M°; {vsplito, ..., vsplit,_1}) a progressive
mesh (PM) [Hop96, Hop97, PH97, Hop98, PROO].

To improve the rendering performance, we can de-
fine several versions of a model at various levels of
detail. With the PM representation we can capture a
continuous sequence of meshes M° M, ... M™ of in-
creasing accuracy. From the PM structure it is possible
to efficiently retrieve the LOD approximations at any
desired complexity. A detailed mesh can be used when
the object is close to the viewer, and coarser approxi-
mations are substituted as the object recedes. Such a
kind of structure is called a continuous level of detail
mesh (CLOD).

3.1.1. CLOD on the dual graph

On the dual graph the EC and VS operations have
always the same consequences: an EC will cancel a
loop from the graph decreasing the total number of
edges (by three) and nodes (by two), while a VS will
perform the inverse modifications: two more nodes,
three more edges and one more loop.

An example is shown in Figure 4. If the edge (vs, v¢)
is collapsed, we eliminate the node A and D, and we
join with a direct connection nodes C'— B and E — F};
the connection A — D disappears as well. Again, the
VS will perform the inverse modifications.

3.2. Strips of Triangles
A strip is a consecutive set of neighbours triangles in
which each triangles share an edge with the next.

By partitioning a mesh in strips, it is possible to ob-
tain an acceleration of the visualization process. This
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Figure 4: Edge collapse and vertex split over the dual
graph.

is due to the fact that the algorithms used by the cur-
rent graphics boards are especially optimized to rep-
resent triangles packed in strips. In this context, is a
very important task the study of efficient algorithms,
able to partition a mesh in an optimal number of strips
and thus ensure maximum efficiency.

Several papers illustrate geometrical and topologi-
cal properties of a stripification [AHMS96] and many
variations of algorithms to partition a triangle mesh
in strips [ESV96, Cho97, SS97, Ise01, IA02, EMXO02].
Unfortunately it has been proven [GJT76, AHMS96]
that a problem equivalent to searching the optimal
single strip (finding a Hamiltonian path on the dual
graph) is an NP-complete problem, thus the stripifi-
cation process is always based on local heuristics.

Two approaches for finding a stripification on the
mesh’s dual graph have been proposed: one is to com-
pute a spanning tree on the dual graph, partition it
into triangle strips, and then concatenate these strips
into larger ones [XHMO99]; the second one is the so-
called tunnelling algorithm and it uses a topological
operator on dual graph of a mesh seen as a bipartite
graph [Ste01, PS06].

To represent in a proper way the triangle strips in
the dual graph of a mesh, we need to color the graph
edges in two different ways:
solid edges linking nodes associated to triangles in

the same strip;
dashed edges linking nodes associated to adjacent

triangles not belonging to the same strip.

In every node there are, at most, two incident solid
edges. Figure 5 shows a stripified mesh and its dual
graph colored accordingly.

3.3. Strips and CLOD

Both stripification and CLOD improve the rendering
efficiency of triangle meshes, but usually do not work
well together when applied to the same triangle mesh.
Updating the level of detail after a stripification has
been performed, in fact, it makes the EC and VS oper-
ations break the strips, destroying the optimality ob-
tained. Moreover, a local reparation is not usually pos-
sible using standard stripification algorithms, and the
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Figure 5: A stripified mesh and its dual graph colored
accordingly.

idea to perform a new stripification from scratch for
each level of detail is not practically feasible because
too much time expensive.

4. Rewriting rules

Our goal is to keep a stripification composed by the
lowest possible number of strips, when inserting new
triangles in a mesh, performing a VS operation.

We define a k-vertex as a vertex belonging to k tri-
angles. In the dual graph, the k triangles form a k
loop, that is a path of length k£ with no nodes inside.
We can classify the VS operation according to the car-
dinality of the vertex, so we can say that we have a
k-VS.

We can see in Figure 6 all the possible changes in
the graph when performing a 3-VS, 4-VS, a 5-VS, a 6-
VS, a 7-VS or a 8-VS. All in all the cases are limited,
as you can see we enumerated only nineteen differ-
ent cases, and as you will see in section 5 these cases
will cover almost any possible configurations in real
meshes. More formally eight is the upper bound im-
posed by the local curvature when we deal with well
conformed meshes. In any case we can reduce the or-
der of a vertex performing a local operation, different
from VS and EC, called edge flip.

The real enumeration problem arises when we want
to consider a bi-colored graph, as the one we use to
represent a stripified mesh. For a general k-vertex we
have k edges forming the loop and k edges incident
on the nodes on the loop apart the ones in the loop.
We have, thus, to take in account, when performing
a k-VS, 2k edges each of them assuming two possible
states. For a k-VS we have 2% different possible con-
figurations to examine for each of the subcases listed
in Figure 6.

Currently we have exhaustively examined the 256 4
256 configurations occurring in a 4-VS (the 3-VS is
trivial). We can reduce them to eighteen (9 + 9) ap-
plying rotational and specular simmetry rules. All the
configuration are listed in Figure 7.

We are seeking a systematic approach, other from
analyzing directly all the cases, to reduce and classify
all the other k-VS up to 8-VS. We are already sure
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Figure 6: All the possible graph rewriting cases when
splitting, from the topmost row, a 3-vertez (1 subcase),
a 4-vertex (2 subcases), a 5-verter (2 subcases), a 6-
vertex (3 subcases), a T-vertex (3 subcases), and a 8-
vertezx (4 subcases).

that not all the configurations are rewritable without
introducing isolated triangles. In Figure 8 we can see
an example of a 6-VS introducing an isolated trian-
gle. Theoretically this is acceptable, since it can be
thought as a strip composed by a single element. Prac-
tically, introducing too many isolated triangles would
disrupt the advantages of using triangle strips.

Figure 8: A configuration where the graph recoloring
after a VS leaves an isolated triangle (marked grey).

To solve this problem we elaborated a strategy in-
volving the invocation of the tunneling algorithm on
the finer mesh when the number of isolated triangles
exceed a given threshold.

5. Results and discussion

We first examined the cardinality of the vertices of
a set of sample meshes. Some of them are typical
benchmarks meshes, while other are meshes we recon-
structed from three-dimensional scans of local cultural
heritage manufacts.
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Figure 7: The rewriting rules to apply when performing a 4-VS on a bi-colored graph. In each cell, on the left
there is the configuration before the VS (the vertex to be split is marked in red), on the right the configuration

after the VS (the new inserted vertex is marked in blue).

In table 1 we list the values obtained for the three
meshes representing cultural heritage manufacts (see
in Figure 9 the plot of the percentage values). The
number of vertices for the three meshes is comparable
(in the order of hundreds of thousands) and so are the
results of the analysis.

In table 2 we list instead the values obtained for
three meshes typically used for benchmarking pur-
poses (in Figure 10 the plot). In this case we can see
how the size and shape of the mesh, increases its reg-
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ularity, that is it concentrates the number of vertices
around the canonical value of six. In fact, a completely
regular mesh of curvature 0 consists only of equilateral
triangles and there would be only 6-vertices in it.

If we compare, instead, the percentage of VS result-
ing in introducing an isolated triangle they are 52.7%
in the Teapot mesh, passing from the lowest to the
highest LOD, it is 51.5% in the Bunny mesh and 59.5%
in the “Capotribt” mesh. This is the consequence of
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“Arciere” “Capotribi’” “Dea madre”
111,613 vertices | 152,591 vertices | 500,002 vertices

Card. || Num| % Num| % Num| %
1 544 0.49 435 0.29 3| ~0.00
2 855 0.77| 1,480 | 0.97 0| 0.00
3 1,079 0.97| 2,752 1.80 2,000 0.40
4 3,999 3.58 | 12,451 8.16 | 34,509 6.90
5 26,343 | 23.60 | 38,166 | 25.01 | 129,164 | 25.83
6 52,602 | 47.13| 50,778 | 33.28 | 181,303 | 36.26
7 20,479 | 18.35|32,355| 21.20 | 109,814 | 21.96
8 5,315| 4.76| 11,398 7.47| 36,059 7.21
9 377 0.34| 2,440 1.60 6,418 1.28
10 19| 0.02 298| 0.20 680 0.14
11 1| ~0.00 32 0.02 48 0.01
12 4| ~0.00 4| ~0.00

13 2| ~0.00

Table 1: Vertices classification for three meshes repre-
senting small statues conserved in National Archaeo-
logical Museum of Cagliari. The percentage values are
rounded to the second digit.

not having a complete set of robust rewriting rules
even for the 5- and 6-vertices.

50,00

40,00 1

30,00

20,00

10,00 -

0,00 T T

1 12 13

— Arciere Dea Madre

— Capotribu

Figure 9: Plot of the percentage values reported in
table 1.

6. Conclusions and future work
We showed in this work how a systematic approach
to the analysis of the dual graph of a triangle mesh
can help in accelerating the time needed to update the
stripification of the mesh when changing its resolution
using a CLOD structure. The analysis we performed
is limited to a subset of the total number of cases that
occur when dealing with real meshes. This is not any-
way a limit to the fast visualization and adaptation of
the meshes since we use a complementary strategy to
repair the stripification. From the results we presented
we can see that the analysis on the k-VS should arrive
to the coverage of, at least, the 8-VS.

To reach this goal we need to better describe the

Dragon Bunny Teapot
437,645 vertices | 34,834 vertices | 4,255 vertices
Card.| Num| % [Num| % |[Num| %

1 7751 0.18 2 0.01
2 1073 | 0.25 31| 0.09 2| 0.05
3 2244 0.51 111 0.32 28| 0.66
4 39545 | 9.04 438 | 1.26 16| 0.38
5 119944 | 27.41| 3875| 11.12 61| 1.43
6 141423 | 32.31|26165| 75.11| 4077 |95.82
7 83482 | 19.08| 3888| 11.16 51| 1.20
8 34087 | 7.79 298| 0.86 17| 0.40
9 10931 | 2.50 22| 0.06 21 0.05
10 3145 0.72 3| 0.01 1| 0.02
11 770 0.18 1| ~0.00
12 170| 0.04
13 441 0.01
14 10 [ ~0.00
15 2| ~0.00

Table 2: Vertices classification for three meshes typ-
ically used for benchmarking.

100,00

80,00 1

60,00 -

40,00 -

20,00

0,00 T
1 2

9 10 11 12 13 14 15

y/ANE

— Dragon — Bunny Teapot

Figure 10: Plot of the percentage values reported in
table 2.

local portions of the graph involved in the VS opera-
tion. This will bring to automatically identify the sim-
ilar patterns among the cases to analyze (referring to
specular and rotational simmetry). The further, and
much more challenging, step would be to derive a set of
rules that would: rewrite the graph to keep the stripifi-
cation at its best looking only to the 2k edges directly
affected by a k-VS, enlarge the analysis to the edges
at distance 2 from the nodes on the loop to try to
rewrite the graph without isolated triangles when the
local analysis is insufficient.
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