
An Efficient Algorithm for Adaptive Segmentation and
Tessellation with Pixel Precision

Alessandro Martinelli1

1DIS, Pavia University, via Ferrata 1, Pavia, Italy

Abstract
We propose a new algorithm to get a representation of a curved surface with the precision of the image pixel. This
technique uses some results from Scan-line algorithms, but it considers also the new functionalities from graphics
hardware and takes advantages from it. We explain the general method, with principles common to every kind of
surface: then we illustrate how these principles can be applied to quadratic and cubic beziér triangles, showing
formulas and some algorithm details.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Line and Curve Genera-
tion,Display algorithms, Line and Curve generation I.3.5 [Computer Graphics]: Surface Representation, Geomet-
ric Algorithms, Splines

1. Introduction

Graphics usually involves non-linear patches to describe any
kind of surfaces. The most used objects for rendering can
be quadratic patches, cubic patches or spline ([Mar99]).
The problem is to chose a way to render this surfaces: us-
ing graphics hardware we can manage only linear elements;
the most common technique is fixed tessellation, which in-
volves fixed step to construct linear elements. Usually we
can get a better reconstruction using adaptive tessellation
algorithms, but these algorithms are recursive and they are
very difficult to introduce in hardware(see [ML98], [Mor01],
[LP87], [DeL99], [AA00]). One adaptive solution is the one
proposed with scan line rendering, whose principle is to ren-
der a surface as it is, without tessellation, generally using
most depth linear approximations. The problem of render-
ing non-linear surfaces for real time rendering on Graphics
Hardware was also issued by [HT], but only for rendering
of non planar Quads. In this article we consider some results
from scan-line rendering algorithms, and we propose a new
family of algorithms, which may be implemented also on
graphics hardware, and which can render curve surfaces with
pixel precision (or with less precision, but faster). We also
show the implementation of this algorithm for two classes of
curved surfaces: quadratic bezier triangles and cubic bezier
triangles.

2. Scan-Line Rendering

The main idea of scan line rendering is to find the intersec-
tion pixels of a parametric surface with the scan-line plane,
that is Y = Yj, where we use screen coordinates, so Yj is a
screen line. This generally means that we have to know the
Ymax and the Ymin values on the screen of the surface to be
rendered, and an ystep to determine all the possible Yj be-
tween Ymax and Ymin. The intersection is of course a curve
in the (x,z) space, and it is also a curve in the (u,v) para-
metrical domain of the surface. The problem is then to find
out possible rendering of this curve. The advantages of us-
ing this technique are the pixel-level precision of rastering
and the perfectly adaptive representation of objects (which
requires a computational cost proportional to the number of
pixels occupied by the projection of the parametric surface).
The most important issue of old scan line algorithms was to
find possible ways to make the solution of high order sys-
tems of equations faster along the scan-line. Generally we
want to consider the single ray (X = Xk,Y = Yj); for the
curve which is the intersection of the plane Y = Yj with
the surface, there are maximum and minimum values for X .
Changing the value of Yj changes slowly the extreme val-
ues for X . Moreover intersection points change slowly on
the scan-line for the same Yj, while the Xk changes. All this
suggests the use of numerical methods to find new values,
starting from previous ones. This methods, may have dif-

c© The Eurographics Association 2007.

Eurographics Italian Chapter Conference (2007)
Raffaele De Amicis and Giuseppe Conti (Editors)

http://www.eg.org
http://diglib.eg.org

A. Martinelli / Adaptive Segmentation and Tessellation

ferent properties of stability, sometimes unpleasant, and this
is the most important reason to consider better and simpler
ways to tessellate the surface with fine triangles.

For example Blinn in [Bli78] proposes the concept of ac-
tive segment list that we call active intersections list in 2.1:
this is a very important concept, because it is one of the ad-
vantages in using Scan-Line renderering; he then introduces
some concept as Silhouette Trackers, Boundary Trackers and
X-Scan which we will refer to in this article. Blinn proposed
to follow the curve Y = Yj with a general Newton Step.

Also Whitted [Whi] and later Schweitzer and Cobb [DS]
proposed an algorithm based on Newton’s method, but they
approximate every surfaces using cubic pathes: these patches
are constructed such that the y function is monotonic on the
edges and there are no singularities inside the patch; this in-
volves subdivision where singularities are found.

Another solution is the one proposed by Lane-Carpenter
[JML], which uses results from subdivision methods ([Cat])
to represent the curve Y = Yj, where the curve is usually ap-
proximated with a parametric cubic curve. Unfortunately the
proposed subdivision uses successive refinement, and this
may not be a good thing for hardware implementation.

In the next subsections we are going to introduce some
useful scan-line concepts

Figure 1: Active-Intersections list. The figure shows what
happens while changing the Yj value along the surface. In Y1
there are no fragments; passing to Y2 a fragment is placed
between AB to AC, because the vertex special point A is
crossed. There isn’t any change in the fragment list till Y5(so
there is always the pink fragment). Crossing the maximum of
BC, the fragment splits in a red fragment from AB to BC and
a blue one from BC to AC. Then crossing C the blue fragment
vanishes (Y6), and crossing B the red fragment vanishes too
(Y7) and the fragments list is empty again.

2.1. Active-intersections list (Fig. 1)

The problem of classification of what we will call fragments,
that is the pieces of the curve Y =Yj which are inside the do-
main, may be a bit laborious and costly. To reduce the cost
of this operation, we may make an assumption. The frag-
ment order and type doesn’t change when we change the y
value if they are not crossed some special points, such as ver-
texes or local maxima or minima. So, it is possible to change
the configuration of the Silhouette Trackers and Boundary
Trackers list (see next subsection) only when we cross some
of these special values. This list may be associated with a list
of active-intersections which classifies all the possible inter-
sections of the Y = Yj with the edges of the domain, and
whose values are evaluated at every line.

2.2. Silhouette Trackers and Boundary Trackers(2)

When we consider the Y = Yj, we should define the pieces
of this curve which are inside the surface domain and follow
them to produce the rendered figure (with Newton’s method
as Blinn [Bli78] do or with refinement as for Lane-Carpenter
[JML]). For every solution we would like to know that a
piece of curve begins with a point and ends with another
point. Usually we track the surface from the first point to the
last point. We construct a curve with a beginning point and
an end point in two ways:

• The curve intersects the domain edges. These intersec-
tions may be used to limit curve pieces and we will call
them Boundary Trackers

• The curve is closed and all inside the domain, so there
aren’t intersection with the domain. We define at least 2
points on the curve and two curve pieces between those
points. We will call such points Silhouette Trackers.

Figure 2: Trackers:A) Boundary Trackers B) Silhouette
Trackers

c© The Eurographics Association 2007.

16

A. Martinelli / Adaptive Segmentation and Tessellation

2.3. X-Scan

When we have defined a piece of curve, we proceed with X-
scan, that’s we track x values along the curve. As in Blinn
[Bli78] we may use a Newton step, or as in Lane-Carptenter
[JML] we can find x values using approximations and sub-
divions.

2.4. Scan-Line Rendering with Hardware Acceleration:
Adaptive Segmentation and Tesselation (Fig.1)

Before introducing our algorithm, we propose an extension
of scan-line algorithm for their implementation on graphics
hardware. The simplest idea is that it is possible to interpo-
late the curve which is the intersection of the surface with
the Y = Yj plane using segments. Every segment may be
directly communicated to graphics hardware (for example
using LINE_STRIP in OpenGL); this makes the rendering
scan-line truly fast. Another possibility is to consider scan-
line algorithms as a source for adaptive tessellation algo-
rithms: in fact we may consider an interval Yj ≤ Y ≤ Yj+1
and construct screen-oriented triangle strips instead of lines.
In the first case we speak about adaptive segmentation and
in the second case we speak about adaptive tessellation.
Considering the capabilities of the hardware, we may now
suggest some ideas to make very fast Scan-Line Algorithms.
The first problem to be addressed is to transfer the amount of
calculation from the CPU to the GPU. Generally, old scan-
line algorithms require a lot of complicated mechanisms to
simplify the various rendering steps and to reduce computa-
tion. It may be for example important to know the maximum
and minimum of the X value along the intersection curve,
because they represent the borders of the projected figure
and because they may create some problems with numerical
methods(They may represent singular points).
With the idea to ask the specific hardware to solve part of
the computation, we may neglect most of these complicated
problems and address a more easy and immediate way to
render. In fact now the most important issue is not only to
construct a fast algorithm, but an algorithm which may pro-
duce in an efficient, rapid way the data to be communicated
to graphics hardware, so to lighten the CPU.

3. Our Algorithm

The class of algorithms we are going to propose is based
on some principles from Scan-Line rendering, but it tries to
resolve the most common problems of scan-line algorithms
to produce fast solutions. The aim is the rendering of cubic
surfaces with pixel precision. The ideas on which these al-
gorithms structure is based are:

1. Scan-Line Algorithms can achieve the problem of render-
ing surfaces with pixel precision: every tessellation algo-
rithm can difficulty reach this task, usually using a very
big amount of memory, or recursive methods, as it is for
adaptive tessellation.

Figure 3: Scan-Line Segmentation and Tessellation. A) The
segmentation produces horizontal lines of pixels with a num-
ber of vertexes proportional to the space occupied on the
screen by the intersection of the surface with the Yj plane B)
The tessellation produces a Triangles Strip with a number of
triangles proportional to the space occupied on the screen
by the intersection of the surface with the Yj plane

2. Scan-Line Algorithms have the advantage of using local
incremental information from scan line to scan line and
from x Scan to x Scan; this allows them to be faster than
analogous ray-tracing algorithms.

3. Scan-Line Algorithms usually requires approximation
and numerical methods. This is not usually a good thing,
in particular when implementing algorithm which may
work directly on hardware.

4. It could be fine having a pseudo scan-line solution which
may be implemented on graphics cards, in particular on
the new Geometry Shading Units (see [DIR]).

The algorithm follows these steps:

1. Firstly we find the maximum and minimum values for y.
2. For every y between the maximum and the minimum with

step δy, we query the active intersections list, to manage
transitions through local maxima, minima or vertexes.

3. From active intersection list, we evaluate values for the
Silhouette Trackers and Boundary Trackers

4. The X-Scan tracking along the curve is solved with our
new proposal, that’s the extreme algorithm, which we are
going to see in 3.2. The extreme algorithm is a schema
for rendering, and it may be applied with the cooperation
of graphics card, using solutions similar to [BS]. We are
going to see how we can do it with quadratic and cubic
patches.

In the following sub-sections we are considering some im-
portant issues and methods which may interest every scan-
line algorithm, independently from the specific kind of para-
metric surface for which they are designed. The rest of the
paper proposes some specific cases.

c© The Eurographics Association 2007.

17

A. Martinelli / Adaptive Segmentation and Tessellation

3.1. Fragments and Segments

The most important thing to consider is to distinguish be-
tween fragments and segments. The intersection between the
scan plane Y = Yj and the surface is a curve in the para-
metric domain. If we consider this curve, we may see that
there are points in which it exits the domain and points in
which it enters the domain: usually we manage this identi-
fying Boundary Trackers; generally every time it enters the
domain, it needs to exit somewhere. The important thing is
to determine these tracts of the curve. We will call them
’Fragments’. When we have a fragment, we may proceed
with segmentation (as for a surface we should proceed with
tessellation). Lane-Carpenter ([JML]) propose an algorithm
based on recursive subdivision. We propose an algorithm
based on immediate segmentation.

3.2. Extreme algorithms

An extreme algorithm has three main phases: fragmenta-
tion, segmentation and sub-segmentation(Fig. 3). The frag-
mentation may be performed using an active-intersections
list and requires some ways to distinguish between differ-
ent values of intersection on the domain. The segmentation
follows the main principle of extreme approximation (see
[Mar]): a piece of a fragment is approximated with a seg-
ment so that the first and last points of the segment are on
the curve and so that the maximum of the error function
Yerr = ‖Y (u,v)−Yj‖ along the segment is an exact ε value,
maybe a pixel oriented one such as 1

2 pixel. This means
that there is only one point along the segment where we
get the maximum error, and in every other point the error
is lesser. When we have a segment, we can proceed with
sub-segmentation, whose aim is exactly to construct linear
segments in the parametric domain so that along the sub-
segments also X may be considered linear, with a maximum
error of approximation equal to the ε value.

3.2.1. Non-Controlled and Controlled Segmentation

The segmentation may be constructed in a Controlled way
or in a non controlled way. When we are constructing a seg-
ment, we may use solutions from the previous steps to find
the next step more efficiently. Unfortunately this means to
use an algorithm where the next point is decided regardless
possible errors of approximation, which may deviate the seg-
ment from the original trajectory (See Fig.4). One solution
is to control the value of Y at every step of the tessellation,
then to adjust possibly wrong step values so to correct the
deviation. This may get an overhead in computation, but it
makes the algorithm more stable.

4. Scan-Line Rendering of Quadratic Bezier Triangles

We have worked on quadratic bezier triangles.

Figure 4: The four steps of an Extreme Scan-line Algorithm:
A) The intersection with the Yj plane, B) The identification
of fragments, C) The segmentation of every fragment, D) The
sub-segmentation of every segment.

Figure 5: Non Controlled Segmentation and Controlled
Segmentation. In non controlled segmentation the last point
of every segment may not touch the fragment because of ap-
proximation errors; after more steps, the errors may become
greater. In controlled segmentation we verify that the last
point is always on the fragment.

P(u,v) = PA(1−u− v)2 +PBu2 +

PCv2 +2PAB(1−u− v)u+

2PCA(1−u− v)v+2PBCuv

Points are considered as 4 coordinates vectors. So, they
have four components: this is to manage possible projec-
tion operations. Bruijns [Bru] proposes this instrument for
modeling and he suggests some good techniques for adap-
tive rendering of quadratic bezier triangles.

c© The Eurographics Association 2007.

18

A. Martinelli / Adaptive Segmentation and Tessellation

We have built a segmentation algorithm and an adaptive
tessellation algorithm both based on the same scan-line al-
gorithm. The quadratic triangles may be produced by com-
mon triangular meshes, with methods similar to the ones
proposed in [TB] and [VA03].
To make a comparison, we have also constructed a fixed step
tessellation algorithm; this algorithm uses a fixed number of
division n for every edge of the quadratic triangle, then con-
structs exactly n2 triangles on the surface. When a triangle
is constructed, the algorithm evaluates an error which is the
maximum distance from the point of the triangle and the cor-
responding point on the surface curve.
Tables 1,2 and 3 show performance results: we have consid-
ered an animation of a moving and morphing bezier trian-
gle, so every frame has a different bezier triangle, and the
images were 10000. We have evaluated the maximum error
of approximation derived by the fixed-step tesselation algo-
rithm, with different values for n. The simulation has been
considered for different image resolutions. The maximum
error is represented in pixel, so it may be compared with the
error of the scan-line algorithms which is set to 0.5 pixels.
In the tables we have marked the case in which the error of
approximation is less or more 0.5 pixels. The cost of compu-
tation is evaluated in terms of frames per second (fps) esti-
mated for the animation. The system has been implemented
in OpenGL, so the rendering of lines and triangles is exe-
cuted on the graphical hardware, but the comparison is based
on the rendering system without vertex shader acceleration.
It is possible to see that the computational cost is compara-
ble, but we have an efficient and flexible system whose cost
depends on the dimension of the surface to be represented.
The advantage is also the guarantees to have a pixel preci-
sion rendering.

4.1. Find Maxima and Minima

The first task in rendering is to find local and general max-
ima and minima for the quadratic surface. As we said be-
fore, the patch points have four coordinates, so the patch
is a (x(u,v),y(u,v),z(u,v),w(u,v)); we should consider the
transformed patch which is:

X(u,v) =
x(u,v)
w(u,v)

(1)

Y (u,v) =
y(u,v)
w(u,v)

(2)

Z(u,v) =
z(u,v)
w(u,v)

(3)

Maxima and minima may be found as:

• Vertexes values
• Local Maxima and Minima of Y(u,v) constrained to the

domain edges

• General Maxima and Minima of the Y(u,v) equation,
that’s the values of Y int points (u,v) such that:{

∂Y
∂u = 0
∂Y
∂v = 0

(4)

The third problem may be simplified with some assump-
tions. The System becomes:


∂y
∂u w− ∂w

∂u y
w2 = 0

∂y
∂v w− ∂w

∂v y
w2 = 0

(5)

Which has the same solutions of

{
∂y
∂u w− ∂w

∂u y = 0
∂y
∂v w− ∂w

∂v y = 0
(6)

Consider the first equation. ∂y
∂u is

∂y
∂u

=
∂w
∂u y
w

(7)

From this we can deduce a condition for ∂y
∂u

‖ ∂y
∂u
‖ ≤ ‖

max(∂w
∂u y)

min(w)
‖ (8)

This says that, to get a solution, ∂y
∂u must be constrained.

In particular, if we are working with projection and the patch
has not too much different values for z, ∂w

∂u has a little value.
In general we found the only solution of the system:

{
∂y
∂u = 0
∂y
∂v = 0

(9)

and then the solutions of the system 6 will be very closed
to that point.

For Local Maxima and Minima of Y(u,v) constrained to
the domain edges, it is possible to construct a similar (but
simpler) method.

4.2. Working with Curve Pieces

At the step j, we want to know how the curve Y (u,v) = Yj
behaves. Using an active intersections list, we can reduce the
computation of the curve pieces structure only when passing
some special points. But how can we manage this structure?

The equation Y (u,v) = Yj can be simplified to:

c© The Eurographics Association 2007.

19

A. Martinelli / Adaptive Segmentation and Tessellation

y(u,v)
w(u,v)

= Yj (10)

y(u,v) = Yjw(u,v) (11)

Y ′(u,v) = y(u,v)−Yjw(u,v) = 0 (12)

The last equation is a conic in the domain space. We can
find a linear transformation (from (u,v) to (s,t)) such that it
can be expressed in one of these forms:

1. At2 +Bs2 +F = 0
2. At2 +Bs+F = 0
3. (At +F1)(Bt +F2) = 0

Given this form, we can evaluate Silhouette Trackers and
Boundary Trackers. Boundary Trackers are very easy to be
found. Silhouette Trackers are necessary only in the first case
if A and B has the same sign, because it means that the curve
is an ellipse. In this case two Silhouette Trackers may be the
solution of equation At2 + F = 0 or Bs2 + F = 0, that’s the
intersection with the ellipse axis.

4.3. Extreme Algorithm on quadratic Patches

Given a point (u,v) on a curve piece, we want to find a
step (∆u,∆v) such that the point (u + ∆u,v + ∆v) is on the
curve. This means that ∆Y ′(u,v,∆u,∆v) = Y ′(u + ∆u,v +
∆v)−Y ′(u,v) must to be zero:

∆Y ′(u,v,∆u,∆v) =
1
2

∂
2y

∂u2 ∆u2 +
1
2

∂
2y

∂v2 ∆v2 + (13)

∂
2y

∂u∂v
∆u∆v+

∂y
∂u

∆u+
∂y
∂v

∆v = 0 (14)

The second condition is based on an extreme logic. The
error along the segment (Y ′(u,v),Y ′(u + ∆u,v+,v)) is a
parabolic function, with value zero in Y ′(u,v) and Y ′(u +
∆u,v+,v). So the maximum value of the error must be in the
middle point. We set this value to be a particular value k, in
particular we will chose the maximum error k to be 1

2 .

∆Y ′(u,v,∆u,∆v) =
1
8

∂
2y

∂u2 ∆u2 +
1
8

∂
2y

∂v2 ∆v2 + (15)

1
4

∂
2y

∂u∂v
∆u∆v+

1
2

∂y
∂u

∆u+
1
2

∂y
∂v

∆v =±k (16)

The sign of k must be determined considering the curva-
ture of the curve piece.

In this paper we take in consideration the most difficult
case (of the three in the previous section), which is

Y ′(s, t) = At2 +Bs2 +F (17)

The conditions, which are rearranged to consider the
space (s,t), become (simply)

A∆s2 +B∆t2 +(2As)∆s+(2Bt)∆t = 0 (18)

1
4

A∆s2 +
1
4

B∆t2 +(As)∆s+(Bt)∆t =±k (19)

These conditions may be simplified to get

A∆s2 +B∆t2 =∓4k (20)

(As)∆s+(Bt)∆t =±2k (21)

from the second condition you can express ∆s as

∆s =
±2k−Bt∆t

As
(22)

We find a second degree equation for ∆t

∆t2(AB(As2 +Bt2))∓∆t(4ABkt)+4Ak2±4kA2S2 = 0
(23)

If we have already done a step evaluation, one of the two
solutions is of course the step which brings us back to the
previous point of segmentation. This means that we can eval-
uate the new step from the previous one:

∆ti+1 =
±ABkt

AB(As2 +Bt2)
−∆ti (24)

that’s, simply

∆ti+1 =
±kt

(−F)
−∆ti (25)

We should evaluate ∆s in a similar way.

∆si+1 =
±ks
(−F)

−∆ti (26)

The only problem is that this is a non controlled step gen-
eration, and it should give some stability problems. It is pos-
sible to adjust this algorithm with some controls.

After Segmentation, we should manage X-Scan through
the linear segment. On this segment, y is supposed to be
constant, because of the first step of the extreme algorithm.

c© The Eurographics Association 2007.

20

A. Martinelli / Adaptive Segmentation and Tessellation

X behaves on the segment as a parabolic function. X can be
expressed as

u(t) = u0 + r(u1−u0) (27)

v(t) = v0 + r(v1− v0) (28)

x(t) = xc + rxb + r2xa (29)

Where (u0,v0) and (u1,V1) are the extreme points of
the segment. We want to approximate the curve with sub-
segments, so that the maximum error along sub-segments is
defined as 1

2 . We find that this is possible with the fixed step:

δr =

√
2

‖xa‖
(30)

4.4. Rendering on a GPU

When you have a curve piece it is very easy to automate
the extreme algorithm described on graphics hardware. Us-
ing vertex program and display lists, it is possible to render
easily the curve pieces, in a way similar [BS] do for PN-
Triangles; instead, using recent geometry shaders it is eas-
ier, because you can implement all the algorithm directly on
graphics hardware.

We have implemented the first case. The implementation
is based on these ideas:

• We can send to the graphics hardware a fixed tessellation
of a curve or a fixed triangle strip for Adaptive tessella-
tion. This is done only once.

• The software manages the active intersections list and the
preparation of curve pieces.

• During rendering, we can send the information about the
patch (only once for patch) and the specific information
of a curve piece (in particular the first and last point and
k-error with sign), using local parameters.

• A vertex shader re-uses the reference tessellation or seg-
mentation to evaluate the true surface points.

Using Geometry Shaders, it would be also possible to im-
plement all the algorithm in hardware. We haven’t had the
possibility to do this, but it is one of the possible future
works.

5. Scan-Line Rendering of Cubic Bezier Triangles

A Bezier Cubic Patch is formalized in this way.

P(u,v) = PA(1−u− v)3 +PBu3 +

PCv3 +3PAB(1−u− v)2u+3PBA(1−u− v)u2 +

3PCA(1−u− v)v2 +3PAC(1−u− v)2v+

3PBCu2v+3PCBuv2

+6PABC(1−u− v)uv

1024x798 eMax fps A fps B fps C

4x4 68.20 986 382 620

8x8 17.00 871 382 620

12x12 7.60 848 382 620

16x16 4.20 829 382 620

24x24 1.90 779 382 620

40x40 � 0.68 � 612 � 382 � 620

Table 1: The animation rendered on a 1024x798 image. The
case where the middle pixel error is obtained is with 40x40
triangles.(eMax: maximum distance from the original. fpsA:
frame per second with the fixed tesselation. fpsB: frame per
second with scan-line segmentation. fpsC: frame per second
with scan-line tesselation.)

307x239 eMax fps A fps B fps C

4x4 20.40 6075 1520 2500

8x8 5.10 5602 1520 2500

12x12 2.30 4710 1520 2500

16x16 1.30 3773 1520 2500

24x24 � 0.57 � 2384 � 1520 � 2500

40x40 0.20 1093 1520 2500

Table 2: The animation rendered on a 307x239 image. The
case where the middle pixel error is obtained is with 24x24
triangles. (see table 1 for header information)

Of course the extreme algorithm can’t have the same re-
sults as its application for quadratic patches. In general it is
possible to construct quasi-extreme algorithm based on lo-
cal approximation of the surface with a quadratic patch. So,
for example, when we are considering the X-Scan, the cubic
curve

X(t) = At3 +Bt2 +Ct +D

X(ti +δt) = X(ti)+(3t2
i A+2tiB+C)δt

+(3tiA+B)δt2 +Aδt3
i

it can be approximated as

X(ti +δt) = X(ti)+(3t2
i A+2tiB+C)δt

+(3tiA+B)δt2

c© The Eurographics Association 2007.

21

A. Martinelli / Adaptive Segmentation and Tessellation

102 x 80 eMax fps A fps B fps C

4x4 6.82 10353 5120 7900

8x8 1.70 7567 5120 7900

12x12 � 0.76 � 5342 � 5120 � 7900

16x16 0.42 4085 5120 7900

24x24 0.19 2388 5120 7900

40x40 0.07 1096 5120 7900

Table 3: The animation rendered on a 102x80 image. The
case where the middle pixel error is obtained is with 12x12
triangles. (see table 1 for header information)

But we evaluate the maximum value of the truncated part
Aδt3

i . Then, instead of using a fixed precision equal to 1
2 ,

we use a variable precision which is 1
2 −|max(Aδt3

i)|. This
allows us to work directly on the parabolic function, because
we have already taken care of the third degree derivative.
Other rendering sub-processes may be derived in the same
manner. This principle may be applied generally to every
kind of patch, to re-conduce the complex case to the simplest
case of quadratic patches.

6. Conclusions and Future Works

We have shown possible ways to re-use some concepts from
scan-line rendering, and their application to graphics hard-
ware. We have also proposed a new algorithm; applied to
quadratic patches, this algorithm becomes a very fast algo-
rithm, based on simple steps evaluation. This method may
be used to make the rendering of curved surfaces fast with
a pixel precision rendering and so with adaptive solutions.
The performances are good. We hope to get new interesting
results working on the implementation of our algorithm di-
rectly on geometry shader units: this can be considered one
of our future works. We also hope to reach a fast implemen-
tation of our algorithm on spline and NURBS surfaces.

References

[AA00] A.J. C., A.J.FIELD: A simple recursive tessella-
tor for adaptive surface triangulation. In journal of graph-
ics tools, vol 1, no. 3 (2000), pp. 1–9. 1

[Bli78] BLINN J. F.: A scan-line algorithm for displaying
parametrically defined surfaces. July 1978. 2, 3

[Bru] BRUIJNS J.: Quadratic bezier triangles as drawing
primitives. Workshop on Graphics hardware Lisbon, Por-
tougal, 1998. 4

[BS] BOUBEKEUR T., SCHLICK C.: Generic mesh refine-
ment on gpu. Graphics Hardware, July 2006, pp. 99–103.
3, 7

[Cat] CATMULL: E.e.computer display of curved surfaces.
Proc. IEEE Conference on Computer Graphics, Pattern
Recognition and Data Structures, Los Angeles, May 1875
2

[DeL99] DELOURA M. A.: An in-depth look at
bicubic bèzier surfaces. In Gamasutra, http://
www.gamasutra.com /features /19991027 / de-
loura_01.htm (October 1999). 1

[DIR] DirectX (for DirectX 10) site:. www.ati.it. 3

[DS] D. SCHWEITZER C.: Scanline rendering of paramet-
ric surfaces. IEEE Computer. 2

[HT] HORMANN K., TARINI M.: A quadrilateral ren-
dering primitive. Graphics Hardware, Florence, 2004,
pp. 99–103. 1

[JML] J. M. LANE L. C. CARPENTER T. W. J. F. B.:
Scan line methods for displaying parametrically defined
surfaces. Communication of the ACM, Los Angeles, V.
23, N. 1, January 1980 pp. 23–25. 2, 3, 4

[LP87] LIEN SHEUE-LING M. S., PRATT V.: Adap-
tive forward differencing for rendering curves and sur-
faces. In Computer Graphics (SIGGRAPH ’87 Proceed-
ings) (1987), ACM press, pp. 111–118. 1

[Mar] MARTINELLI: A new model for 3d graphical ren-
dering. WSCG 2006 short Communications, February
2006, pp. 133–140. 4

[Mar99] MARSH D.: Applied Geometry for Computer
Graphics and CAD. Springer, 1999. 1

[ML98] MOORE R., LOPES J.: Paper templates. In
TEMPLATE’06, 1st International Conference on Tem-
plate Production (1998), INSTICC Press. 1

[Mor01] MORETON H.: Watertight tessellation using for-
ward differencing. In ACM SIGGRAPH/Eurographics
Workshop on Graphics Hardware (2001), ACM press,
pp. 25–132. 1

[TB] T. BARRERA A. HAST E. B.: Surface construction
with near least square acceleration based on vertex nor-
mals on triangular meshes. 5

[VA03] VLACHOS A. PETERS J. BOYD C., MITCHELL

J. L.: Curved pn triangles. ACM Press, 2003 5

[Whi] WHITTED T.: A scanline algorithm for computer
display of curved surfaces. 2

c© The Eurographics Association 2007.

22

