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____________________________________________________________________________________________________ 
Abstract 
A novel 3D Graphic Pipeline for mobile handheld devices is introduced. It’s able to achieve increased 
frame-rate at its output, high picture quality, improved temporal anti-aliasing, thanks to frame-rate up- 
conversion algorithm based on primitive’s motion extraction and efficient compensation. 
Classic rendering process doesn’t exploit spatial and temporal coherence of the motion: each frame is 
rendered by using a lot of the pipeline resources inside geometry, rasteriser and fragment processing 
stages. Moreover each frame is computed independently from the temporal adjacent one with a brute 
force approach. 
Video based algorithms instead (e.g. MPEG type of processing), heavily exploit temporal, spatial and 
statistical coherency of the content being coded, relying on motion estimation to extract motion vectors 
from pixel domain during coding process and apply them during motion compensation decoding process. 
Previous works on 3D graphics were based on the use of impostors, sprite or coherent layers. Those 
approaches are too much complex and requires high computational power. Other ones based on frame 
averaging are too much simple: they achieve poor spatial and temporal quality and artifacts become 
clearly visible as the motion dynamic increases. 
Proposed approach instead exploits motion temporal coherency by extracting motion vectors from 
motions of visible primitives in screen space. Temporal coherence has been exploited between key frames 
using an adaptive motion compensated stage. 
This method is able to reconstruct the frames without introducing noticeable artifacts on final pictures. 
Results achieved are 10-15 dB better quality than simple temporal frame average and show a natural 
motion with no annoying artifacts like real video content shows. 
 
Categories and Subject Descriptors (according to ACM CCS): I.3.2, C.3 [Computer Graphics]: Real-time 
and embedded systems 

____________________________________________________________________________________________________ 
 
 
1. Introduction 
 
The field of real-time computer graphics is constantly 
pushing hardware capabilities to their limits. There is 
demand to increase the complexity of the models being 
rendered and also the resolution of the images. To provide 
enough computational power for interactive graphics, fully 
parallelized systems have been developed which are 
capable to render many polygons at all major stages of the 
graphics pipeline. Researchers of the University of North 
Carolina  have devised a taxonomy of such architectures, 
naming the classes “sort-first”,  “sort-middle” and “sort-
last” [MOL91, MCE*94]. While the latter two have been 
well explored and developed also into commercial 
products, sort-first has not, despite the fact that it offers 
great promise for real-time rendering. 
Sort-first offers an advantage over sort-middle and sort-last 
since it can take advantage of the existing frame-to-frame 
motion coherence that is inherent in applications that try to 
generate natural motion for their characters; this can help to 

reduce the memory bandwidth and workload needed to 
display a series of n consecutive frames. Sort-first also 
offers an advantage over sort-last, since it does not require 
huge amounts of communication bandwidth to deal with 
pixel traffic. 
Considering consumer and mobile interactive/gaming real-
time graphic applications, the viewpoint usually changes 
very little from frame to frame, thus the on-screen
distribution of primitives does not change appreciably 
either. As a consequence there is a high temporal coherence 
of the content between displayed frames. The algorithm 
proposed in this paper exploits this coherence, minimizing 
memory bandwidth, computational complexity and power 
consumption needed to achieve the target frame rate. 
 
2. Traditional Graphics Pipeline 
 
Before describing the proposed method, a short review of a 
traditional “pipelined” rendering process will be exposed. 
Nowadays, there are many different approaches that can be 
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used to render images, but there is typically only one 
choice that is applicable to commercial consumer and 
mobile products for real-time image generation. This is 
usually referred to as the “standard” or traditional graphics 
pipeline, which has the following major steps: 
 

Figure 2.1: Traditional Graphics Pipeline 
 
At the beginning of the pipeline, there is the 3D application 
that defines a geometric model consisting of hundreds of 
thousands of geometric primitives per frame represented in 
a model coordinate system. Primitives traditionally 
considered are points, lines and triangles. The model may 
include a set of texture images to apply to the primitives’ 
surfaces. Usually the process of texturing is done on a per-
pixel basis, with one or more specialized dedicated 
hardware module(s) called “texture units” [HAS93, 
HEC86] inside the fragment processor stage (see figure 
2.1). In addition, there are information about the choice of 
the viewing location and its direction as well as other 
information that affects the generated image (such as 
lighting and fog information). At the end of the pipeline, 
millions of pixels are generated to compose the final 
displayed image. For a detailed discussion on the various 
steps, please refer to [FVF*90]. For the purposes of this 
description, the pipeline has been simplified into only the 
following steps: traversal, geometric transformation, 
rasterization. 
Traversal is typically considered the first stage of the 
pipeline. It begins with the process of examining the entire 
graphics database and deciding which parts must be 
submitted to the remaining part of the pipeline. Thus, some 
high-level culling of primitives can be done here. Traversal 
may also involve converting primitives from a specific 
model-format to a format that is convenient to the pipeline 
processing. 
The traversal process may either be embedded inside the 
3D application stage, or it may be considered a part of the 
graphics subsystem itself. In the former case, the 
application keeps track of the model database and feeds a 
stream of primitives to the graphics system. This is referred 
to as “immediate-mode” operation. In the latter case, the 
graphics system itself stores the model database, allowing 
the application to change or edit it. This is referred as 
“retained-mode” operation, which is the operation mode to 
which proposed work is related to. 
Geometric transformation involves a set of floating-point 
calculations that, among other things, transforms the 
model-space coordinates of the vertices of the primitives 
into a set of viewing-space coordinates. In addition, several 
other calculations may be performed in order to prepare the 
primitives for rasterization. These may include 

computations such as normal-vector transformation, 
texture-coordinate transformation, or lighting-vector 
calculation. 
Rasterization is the process that takes a primitive defined 
by a set of viewing-space coordinates and raw surface 
features and generates a set of fragments in screen space to 
represent that primitive. The source data may also include a 
texture image that will be mapped over the surface of the 
primitive and used to modulate the color or other surface 
properties of the primitive. The amount of work required to 
rasterize a given primitive depends on the on-screen size of 
the primitive. A given primitive may be smaller than a 
single pixel or it may occupy the entire screen. The average 
size tends to vary accordingly to the overall model 
complexity (larger models have “smaller” primitives). 
Sizes from two to seventy pixels (on average) are quite 
common in gaming applications for PC and console 
graphics. 
The amount of rasterization workload is also sensibly 
affected by the amount of anti-aliasing [FVF*90, LK00] 
effect desired. 
Anti-aliasing refers to the correct filtering of a rendered 
image by taking into consideration the color contribution of 
each primitive at the sub-pixel level. Anti-aliasing is often 
done by super-sampling, where one computes multiple 
color samples at different places within each pixel and then
correctly averages these samples together to produce the 
final pixel color. If four samples are computed per pixel, 
then four times as much rasterization workload is required, 
eight samples require eight times workload, etc. 
In order to reach the target level of performance for the 
applications mentioned in the introduction, a graphics 
system must offer very high performance at all these major 
stages of the pipeline. Given the increasing processing 
demands of the applications and the level of performance 
of current processors, this implies that parallel processing 
must be used for both the transformation and rasterization 
pipeline stages. 
 
3. Proposed Graphics Pipeline 
 
Previous paragraph introduces, at a very high level, a 
traditional 3D immediate-mode pipeline. 
The pipeline hereafter proposed, exploits temporal 
motion’s coherence between adjacent frames; hence, 
according to the introduction, it could be defined as a sort-
first retained-mode pipeline. But, at the same time, it has 
several stages that are usually implemented in a traditional 
pipeline. 
As it will be shown, this pipeline still need a geometry 
stage (because the motion’s temporal coherency is 
exploited in the screen space coordinates system, 
generating a motion vectors field). Moreover, a rasteriser 
and a fragment processor are needed, since a variable 
percentage (10% up to 50%) of the frames displayed are 
rendered following the traditional way. These frames, 
called from now on “keyFrames”, are used as inputs of the 
frame rate up-conversion motion-compensation module. 
This module produces, using the motion field extract from 
the enhanced geometry stage of the pipeline the remaining 
frames (90% to 50%) using a low complex filtering 
process. Frames that are produced using the motion-
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compensation stage are named, from now on, 
“ intFrames”. 
Figure 3.1 shows the proposed pipeline; dark yellow 
stages are the input (3D application) and the output 
(Display) of the entire pipeline. Green stages are stages 
that a typical real-time pipeline encloses. Light grey stages 
are introduced to support and exploit the temporal 
coherence of the motion. Four new stages are defined. The 
first one is the “Motion Field Extraction” stage. Paragraph 
3.1 describes this stage, defining its inputs and outputs. Its 
main goal is to extract the per-vertex motion field of the 
3D Application. Second Stage (that is an optional stage), 
analyzes the motion field and calculate, according to the 
global motion of the scene, the frame rate up-conversion 
ratio. Third stage introduced, in paragraph 3.2 is the 
“Motion Field Interpolation” Stage. This stage transforms 
the per-vertex motion field into a per-pixel motion field to 
properly feed the latter stage introduced that is the 
“Motion Compensation Stage” (par. 3.3). Its goal is to 
generate high quality frames using per-pixel motion field 
and one or more keyFrames rendered using the traditional 
stages of the pipeline (Rasteriser+Fragment Processor). 
Motion of the primitives could be extracted assuming that 
the pipeline processes only static vertex data. In fact static 
vertex data persist over several frames, thus allowing the 
motion field extraction stage to effectively associate to 
each vertex its positions over several adjacent frames. For 
example, the “Vertex Buffer Objects” (VBO) as defined 
per openGL|ES 1.1 standard should be used. See [OGL04] 
for further details on VBO.  

Figure 3.1: overview of the proposed pipeline 
 
3.1. Per-vertex Motion Extraction 
 
As briefly introduced, proposed method exploits the 
temporal coherence analyzing the motion of the primitives 
between adjacent frames. Hence, its first step consists on 
extracting the motion field from the scene. The scene is 
defined as the entire set of visible objects at any given 
time. The motion extraction can be done, for example, in 
two ways. 
First one is valid when a fundamental assumption holds: 
when an object moves from a position A to a position B, 
and the distance between A and B is small enough, then 
the segment AB is a good approximation of the real 
motion (i.e. this is an assumption that every MPEG 
encoder uses to exploit the spatial and temporal coherency 
of the motion); when this assumption holds, then every 
point moving from position A to B moves always along 
straight lines. Hence only the vertices positions A and B, 

relative to the keyFrames have to be tracked: other 
positions are linearly interpolated onto the segment AB.  
A second approach consists on tracking all the positions 
of the visible vertices of the entire scene, for every given 
frame. This approach has the advantage of knowing, at 
each given time, the exact position of each vertex. Hence, 
it is able to achieve high quality since the motion 
compensation stage is driven with the exact vertex 
position. 
By using any of the two methods for motion extraction, 
the motion field of the scene is composed by the (x, y, z) 
coordinates of the visible vertices relative to a number n 
of adjacent frames. The x, y coordinates are the quantized 
screen-space coordinates. The z coordinate is normalized 
into the [0, 1] range, where 0 correspond to the nearplane, 
and 1 is the farplane. We used a fixed-point representation 
to store these data in a compact form in order to optimize 
the memory footprint need to store that information. 
 
3.2. Per-pixel Motion Interpolation 
 
The motion extraction module is in charge to compute the 
per-vertex motion field over a set of n consecutive frames. 
This motion field needs to be further processed to properly 
feed the motion-compensation stage that generates the 
motion-compensated pictures, called intFrames, starting 
from 1 or more reference previously rendered pictures, 
called keyFrames. Since the motion-compensation stage 
works on per-pixel basis, it is necessary to compute per-
pixel motion field from the incoming per-vertex motion 
one. This stage is in charge to remove the vertices motion 
vectors associate to occluded primitives as well. 
In fact the motion compensation stage works on only the 
visible pixels, so only per-pixel “visible” motion-vectors 
will feed it. The choice of dealing only with “visible” 
motion vectors is crucial to lower at minimum the work of 
the motion-compensation stage: once a pixel is colored, it 
will be never updated (i.e. blended) again with others: that 
means that the depth complexity of the motion-stage is 
always one: the theoretical minimum. 
The motion interpolation stage produces, as output, a per-
pixel motion field that is stored in a motionBuffer. This 
buffer, together with one or more reference images, will 
be the inputs of the next motion-compensation stage. 
An efficient implementation of this stage could partially 
reuse part of traditional pipeline hardware: i.e. the 
rasteriser generates per-pixel motion field using 
perspective correction, to interpolate the (x, y, z) 
attributes. The occluded primitives are similarly discarded 
using an occlusion culling algorithm coupled with a Z-
buffer algorithm [FVF*90].  
   
3.3. Motion-compensation stage 
 
This stage of the proposed pipeline produces at the output 
the interpolated frames or intFrames. 
Its inputs are: 

- per-pixel motion field of visible objects (stored 
inside the motionBuffer) 

- One or more reference images (keyFrames)  
Using these input data, the stage is able to create a 
motion-compensated frame which should replaces the 
frame a traditional pipeline would render at same time 
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location but with a much lower computational cost since 
rasterization renders only keyFrames. This stage basically 
computes the final color of each pixel of the intFrame 
using the information stored inside the keyFrames (colors 
in RGB format) and into the motionBuffer (x, y, z 
coordinates of the motion vectors). The motionBuffer 
itself could be thought as a grid of voxels associated to the 
reference keyFrames. The (x, y, z) coordinates, in fact, 
points to a 3D location where the pixel was at time the 
reference keyFrame was rendered.    
The motion-compensation stage shows several interesting 
features: 

1) Each pixel of the intFrame is processed only 
once while the fragment processor of a 
traditional pipeline, in general, processes every 
pixel several times before deciding the final 
color to be displayed. 

2) Every pixel of the intFrame is colored once, 
using a non-linear, motion compensated, sub-
pixel precision filtering process that computes 
adaptively a weighted sum of RGBA colors 
extract from the reference keyFrames. 

3) Due to the type of temporal color filtering 
adopted, the interpolated frame is well 
smoothed, producing a noticeable anti-aliased 
effect, similar to the one obtained from an 
expensive full scene AntiAliasing method.     

The general color filtering function [RGW92] (formula 
1.0) is the weighted sum of N pixels of the reference 
keyFrames, selected using the per-pixel motion vectors. 
The (R,G,B) color of a generic pixel (x,y) of the 
interpolated frame at time t, is computed as follows: 
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And the (R,G,B)i are colors extracted from the keyFrames 
using the quantized motion vectors. 

Figure 3.3.1: the filtering process 
 
The core of the algorithm is the correct determination of 
the number N of pixels involved in the coloring phase and 
the correct determination of the associated weights wi (see 
formula 1.0). 
The number N of pixels depends on how many pixels 
intersect the projection (onto the reference keyFrame) of 

the voxel pointed by the motion vector associated to the 
generic (x,y) pixel. 
The weight wi is either zero if the pixel i-esimo haven’t got 
any intersection with the voxel considered; or it has a 
value greater than zero that is inversely proportional to the 
distance of the voxel from the considered pixel, and 
proportional to the intersection area. 
Roughly speaking, the number N characterizes the area of 
the reference keyFrame that is involved in the coloring 
process, whereas the weights wi determine the exact color 
contribution of each pixel inside this area. 
 
4. Experimental Results 
 
This paragraph shows the results, in term of quality, that 
the proposed pipeline is able to achieve. 
Throughout the simulations done, both visual and 
objective assessments (based on PSNR measure) were 
performed.  
The PSNR (see [RIC03] for details), acronym of “peak 
signal-to-noise ratio” , is the ratio between the maximum 
dynamic of the signal, squared, and the power of the noise 
that affects the fidelity of its representation. PSNR is 
usually expressed in terms of the decibel logarithmic scale 
(dB). It is widely used to numerically evaluate the 
“quality” of a picture. 
Besides, PSNR is often used to compare two pictures: a 
reference pictures against one obtained from a filtering 
process.  
In this case, the “reference” image is a frame that is 
produced through the traditional rendering process, during 
a generic time t. This “reference” is compared to the 
frame, obtained at same time t, but using the motion-
compensated stage of the proposed pipeline.  
In particular, in all the simulations considered, the PSNRY 
of the luminance is used as a reliable measure of 
similarity, since the human-eye is more sensible to this 
channel. 
Since the luminance Y is calculated from the RGB 
components of an image, for example, with the formula: 
 
         Y           = 0.299*R + 0.587*G + 0.114 *B        (1.2) 
 
The PSNRY is computed as: 
 
PSNRY  = 0.299*PSNRR + 0.587*PSNRG + 0.114*PSNRB  (1.3) 
 

Moreover, two criteria are used: 1st PSNRY  (formula 1.3) 
is computed over the entire image, 2nd on each 4x4 
macroblock of the image itself. 
The first criterion (named “global PSNR”) gives an idea 
of the quality over the entire images, whereas the second 
one (named “macroblock PSNR”) highlights the local 
artifacts eventually present on the image. The 4x4 size 
was chosen as the best compromise to highlight the local 
artifacts, still preserving global properties. Moreover, to 
resume the macroblock PSNR into a meaningful index, a 
proper statistic was defined: for each macroblock m of the 
image, we computed its PSNRY, and a “Quality index” 
was assigned following this classification: 
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Starting from this indexing, the number of macroblocks 
for each class was counted, and the percentage of each 
class was organized in a 100% stacked column chart. 
Several 3D Animations were tested, simulating from a 
single triangle, up to models composed of 9000 and more 
triangles. 
Also the motion of the objects into the scene could vary, 
ranging from a simple constant, slow rotation, up to a 
complex series of camera movements. 
The “reference” sequence is the one produced by a 
standard pipeline, that doesn’t exploit any temporal 
coherence. The results obtained using the proposed 
motion-compensated pipeline, were compared with a 
simple frame averaging algorithm that doesn’t use the 
motion-compensation. This simple algorithm is obtained 
setting the per-pixel motion-field always to zero, and the 
coloring function parameters are set to N=2 and W1 = W2 = 
0.5. 
All the simulations presented hereafter are obtained using 
a frame rate up conversion ratio of 4:1. That means that 
there are 4 frames of the animation produced using the 
motion-compensation stage every 1 frame obtained using 
the standard rendering process. 
 
Table below shows a summary of the average global 
PSNR obtained for each simulation considered. 
Remarkably, on average, the gain is around 11dB. 
Moreover, every simulation, except the “Falling Ring” 
and the “Cube (Fast Rotation)” ones, has an average 
global PSNR that is greater than 30dB: it means that the 
frames are “visually” equal. Considering that the target 
frame rate is 30 frames per second and that consequently 
every frame is displayed for 1/30 sec., the difference 
between two animations are unnoticeable.  

Next, the results obtained considering the “macroblock 
PSNR” measure will be shown; they will highlight the 
presence of local artifacts on the images considered. The 
charts proposed are relative to the “TieFighter” 
simulation. This simulation is the most complex 
considering both the motion, and the 3D model displayed 
onto the screen. Figure 4.2 shows the results obtained 
using the simple temporal averaging method. The 
presence of several blocks with a “verybad” quality is 
evident, on average they are 12% of the total, with 5 peaks 
ranging from 25% up to 40%. The peaks are relative to a 
period characterized by a fast motion in the scene (as 
shown in Figure 4.5). On average it could be noted that, 
most of the time, over 50% of the blocks have a quality 
that is at best “good”; 40% of the blocks are indexed as 
“greater than good”. Following visual assessments, this is 
not enough to avoid annoying local artifacts.  
Figure 4.3 is about the same simulation, but produced 
using the proposed motion-compensated approach. 
It is self evident how the blocks with a “verybad” quality 
disappear. The blocks with a “bad” quality are still 
present, but they are on average less than 7% and no 
evident peaks appear.   Moreover, there are, on average, 
18% of blocks that have a quality that is at best “good”.  
82% of the blocks have a quality at least “good”. 
Figures 4.4 and 4.5 are visual assessments on two frames 
grabbed from the “TieFighter” animation. Picture on the 
left side is the “reference” frame, rendered using a 
traditional pipeline. Pictures in the center and on right side 
are obtained as a biased (by 128) difference between the 
reference image on the left and the two frames obtained 
using the simple non motion-compensated method 
(center), and the proposed motion-compensated one (on 
the right). Figure 4.4 shows the model near the camera, 
it’s moving out of the screen, with a fast vertical motion. 
On figure 4.5, the TieFighter is entering from left with a 
fast horizontal motion. The presence of several noticeable 
artifacts on the pictures on center is evident.  
Pictures on the right show slightly differences, most of 
which are located near the borders of the primitives. These 
differences are partly caused by the quantization of the 
per-pixel motion field, but also are a consequence of the 
particular adaptive non-linear filtering adopted in the 
motion-stage; this filtering shows also a desired effect: a 
nice anti-aliasing behavior on the final image. 

Figure 4.1: global PSNR results 
 

Method
Simulation Temporal Avg. Motion Compensated Gain
TieFighter 22.96 36.17 + 13.21

F14 Tomcat 23.13 34.54 + 11.41
Cube (Fast Zoom In-Zoom Out) 20.12 33.53 + 13.41

Cube (Fast Rotation) 16.92 29.97 + 13.06
Cube (Slow Rotation) 22.75 31.05 + 8.30

Pyramid (Fast Rotation) 15.77 33.56 + 17.80
Pyramid (Slow Rotation) 22.57 31.54 + 8.97

Rotating Wheel (In-Out Motion) 30.25 39.91 + 9.66
Rotating Wheel (Rotation) 23.35 34.05 + 10.69

Falling Ring 19.33 26.64 + 7.30
Average Global PSNR: 21.72 33.10 11.38
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Figure 4.2: macroBlock PSNR results (“TieFighter” simulation): Temporal Averaging Method
 
 

Figure 4.3: macroBlock PSNR results (“TieFighter” simulation): proposed Motion Compensated Method 
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Figure 4.4: left to right: Reference image, temporal average method error, motion-compensated method error (Frame 640) 
 
 
 

 
Figure 4.5: left to right: Reference image, temporal average method error, motion-compensated method error (Frame 78) 

 
 
 
5. Conclusions 
 
This paper describes a novel pipeline that exploits the 
temporal coherence between adjacent frames. 
A traditional pipeline was described, at a very high level, 
and then the proposed pipeline was introduced, describing 
the functionalities of the innovative stages introduced. 
Thus, some criteria to evaluate the results obtained were 
defined and a series of simulations were introduced as 
well. Visual assessments and objective measures (based 
on PSNR) were used to analyze the capability of the 
proposed system.  
Envisaged application of proposed method is for 
consumer and mobile graphics pipeline where is critical 
the need to lower the power consumption and the overall 
workload and complexity of the underlying architecture. 
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