

Adaptive Frame Rate Up-conversion with Motion
Extraction from 3D Space for 3D Graphic Pipelines

M. Falchetto, M. Barone, D. Pau
AST- STMicroelectronics, Via C. Olivetti, 2, Agrate Brianza, Italy

__
Abstract
A novel 3D Graphic Pipeline for mobile handheld devices is introduced. It’s able to achieve increased
frame-rate at its output, high picture quality, improved temporal anti-aliasing, thanks to frame-rate up-
conversion algorithm based on primitive’s motion extraction and efficient compensation.
Classic rendering process doesn’t exploit spatial and temporal coherence of the motion: each frame is
rendered by using a lot of the pipeline resources inside geometry, rasteriser and fragment processing
stages. Moreover each frame is computed independently from the temporal adjacent one with a brute
force approach.
Video based algorithms instead (e.g. MPEG type of processing), heavily exploit temporal, spatial and
statistical coherency of the content being coded, relying on motion estimation to extract motion vectors
from pixel domain during coding process and apply them during motion compensation decoding process.
Previous works on 3D graphics were based on the use of impostors, sprite or coherent layers. Those
approaches are too much complex and requires high computational power. Other ones based on frame
averaging are too much simple: they achieve poor spatial and temporal quality and artifacts become
clearly visible as the motion dynamic increases.
Proposed approach instead exploits motion temporal coherency by extracting motion vectors from
motions of visible primitives in screen space. Temporal coherence has been exploited between key frames
using an adaptive motion compensated stage.
This method is able to reconstruct the frames without introducing noticeable artifacts on final pictures.
Results achieved are 10-15 dB better quality than simple temporal frame average and show a natural
motion with no annoying artifacts like real video content shows.

Categories and Subject Descriptors (according to ACM CCS): I.3.2, C.3 [Computer Graphics]: Real-time
and embedded systems

__

1. Introduction

The field of real-time computer graphics is constantly
pushing hardware capabilities to their limits. There is
demand to increase the complexity of the models being
rendered and also the resolution of the images. To provide
enough computational power for interactive graphics, fully
parallelized systems have been developed which are
capable to render many polygons at all major stages of the
graphics pipeline. Researchers of the University of North
Carolina have devised a taxonomy of such architectures,
naming the classes “sort-first”, “sort-middle” and “sort-
last” [MOL91, MCE*94]. While the latter two have been
well explored and developed also into commercial
products, sort-first has not, despite the fact that it offers
great promise for real-time rendering.
Sort-first offers an advantage over sort-middle and sort-last
since it can take advantage of the existing frame-to-frame
motion coherence that is inherent in applications that try to
generate natural motion for their characters; this can help to

reduce the memory bandwidth and workload needed to
display a series of n consecutive frames. Sort-first also
offers an advantage over sort-last, since it does not require
huge amounts of communication bandwidth to deal with
pixel traffic.
Considering consumer and mobile interactive/gaming real-
time graphic applications, the viewpoint usually changes
very little from frame to frame, thus the on-screen
distribution of primitives does not change appreciably
either. As a consequence there is a high temporal coherence
of the content between displayed frames. The algorithm
proposed in this paper exploits this coherence, minimizing
memory bandwidth, computational complexity and power
consumption needed to achieve the target frame rate.

2. Traditional Graphics Pipeline

Before describing the proposed method, a short review of a
traditional “pipelined” rendering process will be exposed.
Nowadays, there are many different approaches that can be

Eurographics Italian Chapter Conference (2006)
G. Gallo and S. Battiato and F. Stanco (Editors)

c© The Eurographics Association 2006.

http://www.eg.org
http://diglib.eg.org

used to render images, but there is typically only one
choice that is applicable to commercial consumer and
mobile products for real-time image generation. This is
usually referred to as the “standard” or traditional graphics
pipeline, which has the following major steps:

Figure 2.1: Traditional Graphics Pipeline

At the beginning of the pipeline, there is the 3D application
that defines a geometric model consisting of hundreds of
thousands of geometric primitives per frame represented in
a model coordinate system. Primitives traditionally
considered are points, lines and triangles. The model may
include a set of texture images to apply to the primitives’
surfaces. Usually the process of texturing is done on a per-
pixel basis, with one or more specialized dedicated
hardware module(s) called “texture units” [HAS93,
HEC86] inside the fragment processor stage (see figure
2.1). In addition, there are information about the choice of
the viewing location and its direction as well as other
information that affects the generated image (such as
lighting and fog information). At the end of the pipeline,
millions of pixels are generated to compose the final
displayed image. For a detailed discussion on the various
steps, please refer to [FVF*90]. For the purposes of this
description, the pipeline has been simplified into only the
following steps: traversal, geometric transformation,
rasterization.
Traversal is typically considered the first stage of the
pipeline. It begins with the process of examining the entire
graphics database and deciding which parts must be
submitted to the remaining part of the pipeline. Thus, some
high-level culling of primitives can be done here. Traversal
may also involve converting primitives from a specific
model-format to a format that is convenient to the pipeline
processing.
The traversal process may either be embedded inside the
3D application stage, or it may be considered a part of the
graphics subsystem itself. In the former case, the
application keeps track of the model database and feeds a
stream of primitives to the graphics system. This is referred
to as “immediate-mode” operation. In the latter case, the
graphics system itself stores the model database, allowing
the application to change or edit it. This is referred as
“retained-mode” operation, which is the operation mode to
which proposed work is related to.
Geometric transformation involves a set of floating-point
calculations that, among other things, transforms the
model-space coordinates of the vertices of the primitives
into a set of viewing-space coordinates. In addition, several
other calculations may be performed in order to prepare the
primitives for rasterization. These may include

computations such as normal-vector transformation,
texture-coordinate transformation, or lighting-vector
calculation.
Rasterization is the process that takes a primitive defined
by a set of viewing-space coordinates and raw surface
features and generates a set of fragments in screen space to
represent that primitive. The source data may also include a
texture image that will be mapped over the surface of the
primitive and used to modulate the color or other surface
properties of the primitive. The amount of work required to
rasterize a given primitive depends on the on-screen size of
the primitive. A given primitive may be smaller than a
single pixel or it may occupy the entire screen. The average
size tends to vary accordingly to the overall model
complexity (larger models have “smaller” primitives).
Sizes from two to seventy pixels (on average) are quite
common in gaming applications for PC and console
graphics.
The amount of rasterization workload is also sensibly
affected by the amount of anti-aliasing [FVF*90, LK00]
effect desired.
Anti-aliasing refers to the correct filtering of a rendered
image by taking into consideration the color contribution of
each primitive at the sub-pixel level. Anti-aliasing is often
done by super-sampling, where one computes multiple
color samples at different places within each pixel and then
correctly averages these samples together to produce the
final pixel color. If four samples are computed per pixel,
then four times as much rasterization workload is required,
eight samples require eight times workload, etc.
In order to reach the target level of performance for the
applications mentioned in the introduction, a graphics
system must offer very high performance at all these major
stages of the pipeline. Given the increasing processing
demands of the applications and the level of performance
of current processors, this implies that parallel processing
must be used for both the transformation and rasterization
pipeline stages.

3. Proposed Graphics Pipeline

Previous paragraph introduces, at a very high level, a
traditional 3D immediate-mode pipeline.
The pipeline hereafter proposed, exploits temporal
motion’s coherence between adjacent frames; hence,
according to the introduction, it could be defined as a sort-
first retained-mode pipeline. But, at the same time, it has
several stages that are usually implemented in a traditional
pipeline.
As it will be shown, this pipeline still need a geometry
stage (because the motion’s temporal coherency is
exploited in the screen space coordinates system,
generating a motion vectors field). Moreover, a rasteriser
and a fragment processor are needed, since a variable
percentage (10% up to 50%) of the frames displayed are
rendered following the traditional way. These frames,
called from now on “keyFrames”, are used as inputs of the
frame rate up-conversion motion-compensation module.
This module produces, using the motion field extract from
the enhanced geometry stage of the pipeline the remaining
frames (90% to 50%) using a low complex filtering
process. Frames that are produced using the motion-

3D
Application

3D
Application

Geometry
Stage

Geometry
Stage

Rasteriser
Rasteriser

DisplayDisplay

Colour
Buffer

Colour
Buffer

Fragment
Processor

Fragment
Processor

Triangle
Setup

Triangle
Setup

Per-Vertex Stages

Per-Pixel Stages

Input/Output
Textures

Textures

3D
Application

3D
Application

Geometry
Stage

Geometry
Stage

RasteriserRasteriser

DisplayDisplay

Colour
Buffer

Colour
Buffer

Fragment
Processor

Fragment
Processor

Triangle
Setup

Triangle
Setup

Per-Vertex Stages

Per-Pixel Stages

Input/Output

Per-Vertex Stages

Per-Pixel Stages

Input/Output
Textures

Textures

c© The Eurographics Association 2006.

M. Falchetto et al. / Adaptive Frame Rate Up-conversion Graphic Pipeline with Motion Extraction248

compensation stage are named, from now on,
“ intFrames”.
Figure 3.1 shows the proposed pipeline; dark yellow
stages are the input (3D application) and the output
(Display) of the entire pipeline. Green stages are stages
that a typical real-time pipeline encloses. Light grey stages
are introduced to support and exploit the temporal
coherence of the motion. Four new stages are defined. The
first one is the “Motion Field Extraction” stage. Paragraph
3.1 describes this stage, defining its inputs and outputs. Its
main goal is to extract the per-vertex motion field of the
3D Application. Second Stage (that is an optional stage),
analyzes the motion field and calculate, according to the
global motion of the scene, the frame rate up-conversion
ratio. Third stage introduced, in paragraph 3.2 is the
“Motion Field Interpolation” Stage. This stage transforms
the per-vertex motion field into a per-pixel motion field to
properly feed the latter stage introduced that is the
“Motion Compensation Stage” (par. 3.3). Its goal is to
generate high quality frames using per-pixel motion field
and one or more keyFrames rendered using the traditional
stages of the pipeline (Rasteriser+Fragment Processor).
Motion of the primitives could be extracted assuming that
the pipeline processes only static vertex data. In fact static
vertex data persist over several frames, thus allowing the
motion field extraction stage to effectively associate to
each vertex its positions over several adjacent frames. For
example, the “Vertex Buffer Objects” (VBO) as defined
per openGL|ES 1.1 standard should be used. See [OGL04]
for further details on VBO.

Figure 3.1: overview of the proposed pipeline

3.1. Per-vertex Motion Extraction

As briefly introduced, proposed method exploits the
temporal coherence analyzing the motion of the primitives
between adjacent frames. Hence, its first step consists on
extracting the motion field from the scene. The scene is
defined as the entire set of visible objects at any given
time. The motion extraction can be done, for example, in
two ways.
First one is valid when a fundamental assumption holds:
when an object moves from a position A to a position B,
and the distance between A and B is small enough, then
the segment AB is a good approximation of the real
motion (i.e. this is an assumption that every MPEG
encoder uses to exploit the spatial and temporal coherency
of the motion); when this assumption holds, then every
point moving from position A to B moves always along
straight lines. Hence only the vertices positions A and B,

relative to the keyFrames have to be tracked: other
positions are linearly interpolated onto the segment AB.
A second approach consists on tracking all the positions
of the visible vertices of the entire scene, for every given
frame. This approach has the advantage of knowing, at
each given time, the exact position of each vertex. Hence,
it is able to achieve high quality since the motion
compensation stage is driven with the exact vertex
position.
By using any of the two methods for motion extraction,
the motion field of the scene is composed by the (x, y, z)
coordinates of the visible vertices relative to a number n
of adjacent frames. The x, y coordinates are the quantized
screen-space coordinates. The z coordinate is normalized
into the [0, 1] range, where 0 correspond to the nearplane,
and 1 is the farplane. We used a fixed-point representation
to store these data in a compact form in order to optimize
the memory footprint need to store that information.

3.2. Per-pixel Motion Interpolation

The motion extraction module is in charge to compute the
per-vertex motion field over a set of n consecutive frames.
This motion field needs to be further processed to properly
feed the motion-compensation stage that generates the
motion-compensated pictures, called intFrames, starting
from 1 or more reference previously rendered pictures,
called keyFrames. Since the motion-compensation stage
works on per-pixel basis, it is necessary to compute per-
pixel motion field from the incoming per-vertex motion
one. This stage is in charge to remove the vertices motion
vectors associate to occluded primitives as well.
In fact the motion compensation stage works on only the
visible pixels, so only per-pixel “visible” motion-vectors
will feed it. The choice of dealing only with “visible”
motion vectors is crucial to lower at minimum the work of
the motion-compensation stage: once a pixel is colored, it
will be never updated (i.e. blended) again with others: that
means that the depth complexity of the motion-stage is
always one: the theoretical minimum.
The motion interpolation stage produces, as output, a per-
pixel motion field that is stored in a motionBuffer. This
buffer, together with one or more reference images, will
be the inputs of the next motion-compensation stage.
An efficient implementation of this stage could partially
reuse part of traditional pipeline hardware: i.e. the
rasteriser generates per-pixel motion field using
perspective correction, to interpolate the (x, y, z)
attributes. The occluded primitives are similarly discarded
using an occlusion culling algorithm coupled with a Z-
buffer algorithm [FVF*90].

3.3. Motion-compensation stage

This stage of the proposed pipeline produces at the output
the interpolated frames or intFrames.
Its inputs are:

- per-pixel motion field of visible objects (stored
inside the motionBuffer)

- One or more reference images (keyFrames)
Using these input data, the stage is able to create a
motion-compensated frame which should replaces the
frame a traditional pipeline would render at same time

3D
Application

3D
Application

Geometry
Stage

Geometry
Stage

Rasteriser +
Frag. Proc.

Rasteriser +
Frag. Proc.

Display
Display

Time to render?Time to render?

Motion Field
Extraction

Motion Field
Extraction

Standard Stages
Motion Field

Analisys (**)

Motion Field

Analisys (**)

Motion Field
interpolation

Motion Field
interpolation

Motion
Compensation

Stage

Motion
Compensation

Stage

keyFrames
keyFrames

intFrames
intFrames

YES

NO

New Stages
(**) = optional stage

3D
Application

3D
Application

Geometry
Stage

Geometry
Stage

Rasteriser +
Frag. Proc.

Rasteriser +
Frag. Proc.

DisplayDisplay
Time to render?Time to render?

Motion Field
Extraction

Motion Field
Extraction

Standard Stages
Motion Field

Analisys (**)

Motion Field

Analisys (**)

Motion Field
interpolation

Motion Field
interpolation

Motion
Compensation

Stage

Motion
Compensation

Stage

keyFrames
keyFrames

intFramesintFrames

YES

NO

New Stages
(**) = optional stage

c© The Eurographics Association 2006.

M. Falchetto et al. / Adaptive Frame Rate Up-conversion Graphic Pipeline with Motion Extraction 249

location but with a much lower computational cost since
rasterization renders only keyFrames. This stage basically
computes the final color of each pixel of the intFrame
using the information stored inside the keyFrames (colors
in RGB format) and into the motionBuffer (x, y, z
coordinates of the motion vectors). The motionBuffer
itself could be thought as a grid of voxels associated to the
reference keyFrames. The (x, y, z) coordinates, in fact,
points to a 3D location where the pixel was at time the
reference keyFrame was rendered.
The motion-compensation stage shows several interesting
features:

1) Each pixel of the intFrame is processed only
once while the fragment processor of a
traditional pipeline, in general, processes every
pixel several times before deciding the final
color to be displayed.

2) Every pixel of the intFrame is colored once,
using a non-linear, motion compensated, sub-
pixel precision filtering process that computes
adaptively a weighted sum of RGBA colors
extract from the reference keyFrames.

3) Due to the type of temporal color filtering
adopted, the interpolated frame is well
smoothed, producing a noticeable anti-aliased
effect, similar to the one obtained from an
expensive full scene AntiAliasing method.

The general color filtering function [RGW92] (formula
1.0) is the weighted sum of N pixels of the reference
keyFrames, selected using the per-pixel motion vectors.
The (R,G,B) color of a generic pixel (x,y) of the
interpolated frame at time t, is computed as follows:

[]∑
=

⋅=
N

i
iiyx BGRwBGR

1
),(),,(),,((1.0)

Where:









=

≤≤

∑
=

N

i
i

i

w

w

1

1

10 Ni ..1=∀
 (1.1)

And the (R,G,B)i are colors extracted from the keyFrames
using the quantized motion vectors.

Figure 3.3.1: the filtering process

The core of the algorithm is the correct determination of
the number N of pixels involved in the coloring phase and
the correct determination of the associated weights wi (see
formula 1.0).
The number N of pixels depends on how many pixels
intersect the projection (onto the reference keyFrame) of

the voxel pointed by the motion vector associated to the
generic (x,y) pixel.
The weight wi is either zero if the pixel i-esimo haven’t got
any intersection with the voxel considered; or it has a
value greater than zero that is inversely proportional to the
distance of the voxel from the considered pixel, and
proportional to the intersection area.
Roughly speaking, the number N characterizes the area of
the reference keyFrame that is involved in the coloring
process, whereas the weights wi determine the exact color
contribution of each pixel inside this area.

4. Experimental Results

This paragraph shows the results, in term of quality, that
the proposed pipeline is able to achieve.
Throughout the simulations done, both visual and
objective assessments (based on PSNR measure) were
performed.
The PSNR (see [RIC03] for details), acronym of “peak
signal-to-noise ratio” , is the ratio between the maximum
dynamic of the signal, squared, and the power of the noise
that affects the fidelity of its representation. PSNR is
usually expressed in terms of the decibel logarithmic scale
(dB). It is widely used to numerically evaluate the
“quality” of a picture.
Besides, PSNR is often used to compare two pictures: a
reference pictures against one obtained from a filtering
process.
In this case, the “reference” image is a frame that is
produced through the traditional rendering process, during
a generic time t. This “reference” is compared to the
frame, obtained at same time t, but using the motion-
compensated stage of the proposed pipeline.
In particular, in all the simulations considered, the PSNRY
of the luminance is used as a reliable measure of
similarity, since the human-eye is more sensible to this
channel.
Since the luminance Y is calculated from the RGB
components of an image, for example, with the formula:

 Y = 0.299*R + 0.587*G + 0.114 *B (1.2)

The PSNRY is computed as:

PSNRY = 0.299*PSNRR + 0.587*PSNRG + 0.114*PSNRB (1.3)

Moreover, two criteria are used: 1st PSNRY (formula 1.3)
is computed over the entire image, 2nd on each 4x4
macroblock of the image itself.
The first criterion (named “global PSNR”) gives an idea
of the quality over the entire images, whereas the second
one (named “macroblock PSNR”) highlights the local
artifacts eventually present on the image. The 4x4 size
was chosen as the best compromise to highlight the local
artifacts, still preserving global properties. Moreover, to
resume the macroblock PSNR into a meaningful index, a
proper statistic was defined: for each macroblock m of the
image, we computed its PSNRY, and a “Quality index”
was assigned following this classification:

keyFrame(t-n)

keyFramePost(t+n)

intFrame(t)

Current Pixel to process

Voxel adressed by the motion vector

Pixel with a not-zero motion field

Area that intersect voxel projection

motionVector
motionVector

keyFrame(t-n)keyFrame(t-n)

keyFramePost(t+n)keyFramePost(t+n)

intFrame(t)intFrame(t)

Current Pixel to process

Voxel adressed by the motion vector

Pixel with a not-zero motion field

Area that intersect voxel projection

Current Pixel to process

Voxel adressed by the motion vector

Pixel with a not-zero motion field

Area that intersect voxel projection

Current Pixel to process

Voxel adressed by the motion vector

Pixel with a not-zero motion field

Area that intersect voxel projection

motionVectormotionVector
motionVector

motionVector

c© The Eurographics Association 2006.

M. Falchetto et al. / Adaptive Frame Rate Up-conversion Graphic Pipeline with Motion Extraction250
















EXCELLENT

VERYGOOD

GOOD

QUITEGOOD

BAD

BADVERY

if

if

if

if

if

if

dbPSNRdb

dbPSNRdb

dbPSNRdb

dbPSNRdb

dbPSNRdb

dBPSNRdB

Y

Y

Y

Y

Y

Y

5040

4035

3530

3025

2520

200

≤<
≤<
≤<
≤<
≤<

≤≤

Starting from this indexing, the number of macroblocks
for each class was counted, and the percentage of each
class was organized in a 100% stacked column chart.
Several 3D Animations were tested, simulating from a
single triangle, up to models composed of 9000 and more
triangles.
Also the motion of the objects into the scene could vary,
ranging from a simple constant, slow rotation, up to a
complex series of camera movements.
The “reference” sequence is the one produced by a
standard pipeline, that doesn’t exploit any temporal
coherence. The results obtained using the proposed
motion-compensated pipeline, were compared with a
simple frame averaging algorithm that doesn’t use the
motion-compensation. This simple algorithm is obtained
setting the per-pixel motion-field always to zero, and the
coloring function parameters are set to N=2 and W1 = W2 =
0.5.
All the simulations presented hereafter are obtained using
a frame rate up conversion ratio of 4:1. That means that
there are 4 frames of the animation produced using the
motion-compensation stage every 1 frame obtained using
the standard rendering process.

Table below shows a summary of the average global
PSNR obtained for each simulation considered.
Remarkably, on average, the gain is around 11dB.
Moreover, every simulation, except the “Falling Ring”
and the “Cube (Fast Rotation)” ones, has an average
global PSNR that is greater than 30dB: it means that the
frames are “visually” equal. Considering that the target
frame rate is 30 frames per second and that consequently
every frame is displayed for 1/30 sec., the difference
between two animations are unnoticeable.

Next, the results obtained considering the “macroblock
PSNR” measure will be shown; they will highlight the
presence of local artifacts on the images considered. The
charts proposed are relative to the “TieFighter”
simulation. This simulation is the most complex
considering both the motion, and the 3D model displayed
onto the screen. Figure 4.2 shows the results obtained
using the simple temporal averaging method. The
presence of several blocks with a “verybad” quality is
evident, on average they are 12% of the total, with 5 peaks
ranging from 25% up to 40%. The peaks are relative to a
period characterized by a fast motion in the scene (as
shown in Figure 4.5). On average it could be noted that,
most of the time, over 50% of the blocks have a quality
that is at best “good”; 40% of the blocks are indexed as
“greater than good”. Following visual assessments, this is
not enough to avoid annoying local artifacts.
Figure 4.3 is about the same simulation, but produced
using the proposed motion-compensated approach.
It is self evident how the blocks with a “verybad” quality
disappear. The blocks with a “bad” quality are still
present, but they are on average less than 7% and no
evident peaks appear. Moreover, there are, on average,
18% of blocks that have a quality that is at best “good”.
82% of the blocks have a quality at least “good”.
Figures 4.4 and 4.5 are visual assessments on two frames
grabbed from the “TieFighter” animation. Picture on the
left side is the “reference” frame, rendered using a
traditional pipeline. Pictures in the center and on right side
are obtained as a biased (by 128) difference between the
reference image on the left and the two frames obtained
using the simple non motion-compensated method
(center), and the proposed motion-compensated one (on
the right). Figure 4.4 shows the model near the camera,
it’s moving out of the screen, with a fast vertical motion.
On figure 4.5, the TieFighter is entering from left with a
fast horizontal motion. The presence of several noticeable
artifacts on the pictures on center is evident.
Pictures on the right show slightly differences, most of
which are located near the borders of the primitives. These
differences are partly caused by the quantization of the
per-pixel motion field, but also are a consequence of the
particular adaptive non-linear filtering adopted in the
motion-stage; this filtering shows also a desired effect: a
nice anti-aliasing behavior on the final image.

Figure 4.1: global PSNR results

Method
Simulation Temporal Avg. Motion Compensated Gain
TieFighter 22.96 36.17 + 13.21

F14 Tomcat 23.13 34.54 + 11.41
Cube (Fast Zoom In-Zoom Out) 20.12 33.53 + 13.41

Cube (Fast Rotation) 16.92 29.97 + 13.06
Cube (Slow Rotation) 22.75 31.05 + 8.30

Pyramid (Fast Rotation) 15.77 33.56 + 17.80
Pyramid (Slow Rotation) 22.57 31.54 + 8.97

Rotating Wheel (In-Out Motion) 30.25 39.91 + 9.66
Rotating Wheel (Rotation) 23.35 34.05 + 10.69

Falling Ring 19.33 26.64 + 7.30
Average Global PSNR: 21.72 33.10 11.38

c© The Eurographics Association 2006.

M. Falchetto et al. / Adaptive Frame Rate Up-conversion Graphic Pipeline with Motion Extraction 251

Figure 4.2: macroBlock PSNR results (“TieFighter” simulation): Temporal Averaging Method

Figure 4.3: macroBlock PSNR results (“TieFighter” simulation): proposed Motion Compensated Method

4x4 Macroblocks PSNR
(Luminance Y)

Temporal Averaging Method

0%

20%

40%

60%

80%

100%

1 25 49 73 97 121 145 169 193 217 241 265 289 313 337 361 385 409 433 457 481 505 529 553 577 601 625 649 673

Frames

4x
4

M
ac

ro
b

lo
ck

s
Q

u
al

it
y

(%
)

EXCELLENT

VERYGOOD

GOOD

QUITEGOOD

BAD

VERYBAD

4x4 Macroblocks PSNR
(Luminance Y)

Motion-Compensated Method

0%

20%

40%

60%

80%

100%

1 25 49 73 97 121 145 169 193 217 241 265 289 313 337 361 385 409 433 457 481 505 529 553 577 601 625 649 673

Frames

4x
4

M
ac

ro
b

lo
ck

s
Q

u
al

it
y

(%
)

EXCELLENT

VERYGOOD

GOOD

QUITEGOOD

BAD

VERYBAD

c© The Eurographics Association 2006.

M. Falchetto et al. / Adaptive Frame Rate Up-conversion Graphic Pipeline with Motion Extraction252

Figure 4.4: left to right: Reference image, temporal average method error, motion-compensated method error (Frame 640)

Figure 4.5: left to right: Reference image, temporal average method error, motion-compensated method error (Frame 78)

5. Conclusions

This paper describes a novel pipeline that exploits the
temporal coherence between adjacent frames.
A traditional pipeline was described, at a very high level,
and then the proposed pipeline was introduced, describing
the functionalities of the innovative stages introduced.
Thus, some criteria to evaluate the results obtained were
defined and a series of simulations were introduced as
well. Visual assessments and objective measures (based
on PSNR) were used to analyze the capability of the
proposed system.
Envisaged application of proposed method is for
consumer and mobile graphics pipeline where is critical
the need to lower the power consumption and the overall
workload and complexity of the underlying architecture.

References

[FVF*90] FOLEY J. D., VAN DAM A., FEINER S. K,
HUGHES J. F.: Computer Graphics: Principles and
Practice, 2nd Ed., Addison-Wesley Publishing Co., Inc.,
Reading, Mass., 1990.
[HAS93] HAEBERLI P., SEGAL M., Texture Mapping as
a Fundamental Drawing Primitive, Silicon Graphics
Computer Systems, ed. Paris, France, (Jun. 1993), pp.
259-266

[HEC86] HECKBERT P. S., Survey of Texture Mapping,
IEEE Computer Graphics and Applications, (Nov. 1986)
pp. 56-67
[KAH96] KAO K.R., HWANG J.J, Techniques &
Standards for Image Video & Audio Coding, ed. Prentice
Hall PTR, 1996
[LK00] LEE Jin-Aeon, KIM Lee-Sup, Single-Pass Full-
Screen Hardware Accelerated Antialiasing, Eurographics
Workshop on Graphics Hardware, (Aug. 2000), pages 67-
75
[MOL91] MOLNAR S.: Image-Composition Architectures
for Real-Time Image Generation, University of North
Carolina at Chapel Hill, (Oct. 1991), doctoral dissertation,
TR 91-046
[MCE*94] MOLNAR S., COX M., ELLSWORTH D.,
FUCHS H. : A Sorting Classification of Parallel Rendering,
IEEE Computer Graphics & Applications, (Jul 1994), Vol.
14, No. 4, pp. 23-32.
[MUE01] MUELLER A.S.: The Sort-First Architecture for
Real-Time Image Generation, University of North Carolina
at Chapel Hill, (Jun. 2001), doctoral dissertation
[OGL04] OpenGL|ES Common/Common-Lite Profile
Specification Version 1.1.04 (Annotated),
www.khronos.org, Par. 2.9 Buffer Objects, pp. 11-12
[RGW92] GONZALES R. C., WOOD R. E., Digital Image
Processing, Addison-Wesley Publishing Company, 1992
[RIC03] RICHARDSON I.E.G., H.264 and MPEG-4 Video
Compression, John Wiley & Sons Ltd., 2003, pp. 23-24

c© The Eurographics Association 2006.

M. Falchetto et al. / Adaptive Frame Rate Up-conversion Graphic Pipeline with Motion Extraction 253

