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Abstract
Palette re-ordering is a well known and very effective approach for improving the compression of color-indexed
images. If the spatial distribution of the indexes in the image is smooth, greater compression ratios may be ob-
tained. As known, obtaining an optimal re-indexing scheme is not a simple problem. In this paper we provide
a novel algorithm for palette re-ordering problem showing the advantages of using a neural network instead of
classical heuristic methods. We propose to apply the Motor Map neural network which is considered an extension
of the well-known SOM Kohonen neural network.
Experiments confirm the effectiveness of the proposed technique.

Categories and Subject Descriptors (according to ACM CCS): I.4.2 [Image processing and Computer Vision]: Com-
pression (Coding)

1. Introduction

Indexed images encode colors using a fixed look up table
or palette where each entry is a triplet of RGB values. For
each pixel in the image only the index of the correspond-
ing color needs to be stored. The efficiency of a compres-
sion algorithm for indexed images depends on the assign-
ment of indexes in the relative look up table. In particular, a
palette which assigns consecutive indexes to colors sharing
many adjacent pixels in the image will provide better com-
pression ratios. Since the number of possible color indexing
is M! for an image with M colors, the methods to find the
optimal ordering is intrinsically difficult (NP-hard). In lit-
erature, different algorithms have been proposed to address
this issue. They search for a specific correlation between the
pixels in the images proposing heuristic solutions. A survey
describing almost all of them is [PN04]. A subsequent sec-
tion will provide some brief details about the main strategy
underlying the most effective algorithms. We have proposed
a reindexing technique in [BGIS04] where the entropy was
reduced by using an approximation of the Travelling Sales-

man Problem. In this paper we propose a method to solve
the reindexing problem by means of Motor Maps neural net-
work [MRS92] which basically represent a specific behavior
of human brain which can be suitable to solve many kinds of
complex problems. We tested our algorithm using a subset
of synthetic images used by Pinho et al [PN04] with dif-
ferent size and number of colors. Some of them have been
used to evaluate the performance of the Motor Map neural
network as Optimum Palette generator. Experimental results
show that the bit per pixel (bpp) is reduced sensibly using
our approach. Moreover, the results are better than other al-
gorithms known in literature as well as the results showed
on [PN04].

The paper is structured as follows. Section 2 introduces
the re-indexing problem, while Section 3 reviews some re-
lated works. Section 4 describes the Motor Maps theory. Our
technique is described in Section 5, while experimental re-
sults are presented in Section 6. Conclusions are drawn in
Section 7.
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2. The Palette re-indexing problem

The re-indexing problem can be stated as follows [BGIS04].
Let I be an image of m× n pixels, and M be the number of
distinct colors. I can be represented as I(x,y) = P(I′(x,y)),
where P = {S1,S2, . . . ,SM} is the set of all the colors in
I, and I′ is a m× n matrix of indexes in {1,2, . . . ,M}. An
image represented in such a fashion is called indexed image
and P is its palette. Typical values for M are 16, 64 or 256.

Most of the compression engines proceed by scanning in
some sequential order the indexes in I′. Once an ordered
scan has been performed the pixels encountered may be
named p1, . . . , pm×n. If a differential approach to coding
and compression is adopted the information needed to re-
construct the original image is:

i) the colour of pixel p1 ;
ii) a table providing the correspondence between colours

S1,S2, . . . ,SM with index i1, i2, . . . , iM ;
iii)the sequence of differences:

dh = |(indexo f colour in pixel h+1)−
(indexo f colour in pixel h)|.

Let D(I′) be the set of all differences d j with j =
1,2, . . . ,(n×m)−1. Information theory states that any loss-
less scheme to encode the set of differences D(I′) requires a
number of bits per pixel (bpp) greater or equal to the zero-
order entropy of the statistical distribution of D(I′). The re-
lated entropy of the sequence of differences is one of the
main parameters that guides the optimization process as de-
scribed in the next Section. We claim that alternative se-
quences processing of the local differences could give im-
provement.

If indexes i1, i2, . . . , iM are ordered so as to produce an
almost uniform distribution of values dh the entropy value
will be large. Conversely, a zero-peaked distribution in D(I′)
gives a lower entropy value. Hence, finding an optimal in-
dexing scheme is a crucial step for differential lossless com-
pression of indexed images.

3. Related works

The existing solutions to the re-indexing problem may be
classified into two main groups, according to the particu-
lar model/strategy adopted. The first group of solutions per-
forms the re-indexing of color indexes according to percep-
tive similarity between different colors. In [ZL93, SM01,
PT94, HS94] consecutive symbols are assigned to visually
similar colors. Several perceptual similarity measures can
be adopted: "closest pairs ordering" [PT94] with the aim
of assigning close indexes to colors that are close in three-
dimensional (3-D) color space; combinatorial optimization
[HS94] which aims at finding minimum (or maximum) val-
ues of a cost (or objective) function, usually nonlinear and
of many independent variables; distances between colors in
3-D color space [SM01]. Although several different mea-
sures are proposed in this group, the most widely used is

the reordering luminance based [ZL93]. The second group
of re-indexing algorithms is guided by both information the-
ory and local adaptive considerations. Memon investigated
the problem of ordering the palette with respect to the com-
pression ratio obtained with a suite of different compres-
sion algorithms [MV96]. The bottleneck of this group of
solutions is the relative inefficiency of running a simulated
annealing algorithm to optimize the palette re-indexing. To
overcome this problem a Pairwise Merge (PM) heuristic has
been proposed in [MV96]. Some techniques specifically de-
voted to work on a bit plane basis are presented in [FV98]
and [Gor95], while [WR94] introduces a color correlation
sorting algorithm. The most widely known representative in
this class is the solution proposed by Zeng et alii [ZLL00].
This technique is based on a greedy algorithm to maximize
a suitable potential function. The potential function has been
heuristically selected in such a way that large values corre-
spond to more peaked distributions of the set D(I′). A mod-
ified version of this algorithm is proposed in [PN04], where
the potential function in optimized to improve the speed of
the method. In [BGIS04] the re-indexing problem is trans-
lated into an optimization problem over a weighted graph
and solved in an approximate fashion.

4. The Motor Maps theory

The brain cannot limit itself, however, to the representa-
tion of sensory input signals alone, but must also solve the
complementary task of sending appropriate signals to the
muscle system to react to the sensory input. The brain re-
gions that are responsible for these tasks, such as the motor
cortex and the superior colliculus, appear in many cases to
be organized in a way similar to the sensory areas, i.e., as
maps that react to localized excitation by triggering a move-
ment. This movement varies in a regular way with the fo-
cus of the excitation in the layer. Therefore, the layer can
be considered as a motor map in which movement com-
mands are mapped to two-dimensional locations of exci-
tation [MRS92]. In this work as abstraction that can also
serve as a model for such motor maps, we consider the Ar-
tificial Motor Map SOM as extension of Kohonen’s origi-
nal Self Organizing Maps (SOM) in which an output nerual
layer will be added. The importance of topology-preserving
maps in the brain relies on both the representation of sen-
sory input signals and the ability to perform an action in
response to a given stimulus. Neurons in the brain are or-
ganized in local assemblies which are able to perform a
given task such as sending appropriate signals to muscles.
These neural assemblies constitute two-dimensional layers
in which the locations of the excitation are mapped into
movements. Topology-preserving structures are able to clas-
sify input signals inspired by the paradigm of Kohonen’s
Networks [MRS92]. These artificial neural networks formal-
ize the self-organizing process in which a topographic map is
created. Neighboring neurons are thus excited by similar in-
puts. Successful applications of these maps have been found
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Figure 1: The extended Kohonen’SOM model with the in-
clusion of output values is showed. Each formal neuron s of
the neuron layer (lattice A) has, in addition to its pre-existing
weight vector win

s , a vector wout
s of output values assigned to

it. A learning step requires, for each presentation of an input
vector v, the specification of a corresponding output value u.
The adaptation of the output values wout

s is completely anal-
ogous to the scheme used for the "input side": all neurons in
the neighborhood of the selected neuron by the input value
shift their output vectors towards the specified output value
u.

in the field of pattern generation, chaos control, clustering
and so on [PLM02,PLMG04,Koh72]. An extension of these
neural structures is represented by motor maps. These are
networks able to react to localized excitation by triggering a
movement (like the motor cortex or the superior colliculus
in the brain). To do this, motor maps, unlike Kohonen’s net-
works, should include storage of an output specific to each
neuron site. This is achieved by considering two layers: one
devoted to the storage of input weights and one devoted to
output weights. The plastic characteristics of the input layer
should also be preserved in the assignment of output val-
ues, so the learning phase deals with updating both the input
and the output weights. These considerations led to the idea
of using Motor Maps as adaptive self-organizing controllers.
Formally, a Motor Map can be defined as an array of neurons
mapping the space V of the input patterns onto the space U
of the output actions:

Φ : V →U (1)

A schematic representation of a motor map is given in
Fig. 1. The learning algorithm is the key to obtain a spa-
tial arrangement of both the input and output weight val-
ues of the map. This is achieved by considering an exten-
sion of the winner-take-all algorithm. At each learning step,
when a pattern is given as input, the winner neuron is iden-
tified: this is the neuron that best matches the input pattern.
Then, a neighborhood of the winner neuron is considered
and an update involving both the input and output weights

for neurons belonging to this neighborhood is performed.
Even though both supervised and unsupervised learning can
be applied, only unsupervised learning should be consid-
ered if an autonomous self-organizing system for optimum
palette scheme generator has to be defined. In this case,
there is no a priori information on the appropriate optimum
palette scheme and no "teacher" is available. The algorithm
has to find the correct palette re-indexing by itself. The only
source of information is provided by the so-called reward
function, introduced below, which indicates how well the
palette scheme generated is being performed. Weight updat-
ing takes place only if the corresponding palette re-indexing
leads to an improvement in terms of zero-order entropy of
local differences in the image processed; otherwise, the neu-
ron weights are not updated. In this framework a fundamen-
tal role is taken by the reward function. The definition of
this function is perhaps the most crucial point in the whole
network design.

4.1. Unsupervised learning for Motor Maps

The unsupervised learning algorithm for the motor map can
be described in the following five steps.
Step 1. The topology of the network is established. The num-
ber of neurons needed for a given task is chosen by a trial-
and-error strategy, thus once numerical results indicate that
the number of neurons is too low, one must return to this step
modifing the map dimensions. At this step the map’s weights
are randomly fixed.
Step 2. An input pattern is presented and the neuron whose
input weight best matches it is established as the winner.
Therefore, to establish the winner neuron, the distance be-
tween the neuron input weight and the input pattern is com-
puted for each neuron, considering the absolute value of the
difference between these two vectors.
Step 3. Once the winner neuron has been chosen, its output
weight is used to perform the local re-indexing of the palette
image . Typically, this is not used directly, but a random vari-
able is added to the value to guarantee a random search for
possible solutions, as follows:

f (t) = wwinner,out +asλ (2)

where wwinner,out is the output weight of the winner neu-
ron, as is a parameter determining the mean value of the
search step for the neuron s, and λ is a Gaussian random
variable with zero mean. Then the increase ∆R in the reward
function is computed and, if this value exceeds the average
increase bs gained at the neuron s, the next step (updating
of the neuron weights) is performed; otherwise this step is
skipped. The average increase in the reward function is up-
dated as follows:

bnew
s = bold

s +ρ(∆R−bold
s ) (3)

where ρ is a positive value. Moreover, as is decreased as
more experience is gained (this holds for the winner neuron
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Figure 2: New palette scheme provided by Motor Map.

and for the neighboring neurons), according to the following
rule:

anew
i = aold

i +ηaξa(a−aold
i ) (4)

where i indicates the generic neuron to be updated (the
winner and its neighbors), a is a threshold the search step
should converge to, ηa is the learning rate, while ξa takes
into account the fact that the parameters of the neurons to be
updated are varied by different amounts, defining the extent
and the shape of the neighborhood.
Step 4. If ∆R≥ bs the weights of the winner neuron and those
of its neighbors are updated following the rule:

wi,in(t +1) = wi,in(t)+η(t)ξ(t)(v(t)−wi,in(t)) (5)

wi,out(t +1) = wi,out(t)+η(t)ξ(t)( f (t)−wi,out(t)) (6)

where η(t) is the learning rate, ξ(t), v(t), wi,in, and wi,out
are the neighborhood function, the input pattern, the input
weights and the output weights, respectively, and the index i
takes into account the neighborhood of the winner neuron. In
supervised learning, f (t) is the target, while in unsupervised
learning it is varied, as discussed above.
Step 5. Steps 2)-4) are repeated. If one wishes to preserve a
residual plasticity for a later re-adaptation, by choosing a 6= 0
in step 3), the learning is always active and so steps 2)-4) are
always repeated. Otherwise, by setting a = 0, the learning
phase stops when the weights converge.

5. The Re-indexing algorithm provided by Motor Maps

The idea proposed in this paper is based on the ability of
the Motor Map Neural Network to learn the "features" of
the input pattern (a still image in this case) and providing
an appropriate output stimulus. At this point, given a color-
indexed image, the question is: Is there a specific mathemat-
ical correlation between the optimum color indexing scheme
of the palette and the relative color shape? The only way to
give an answer to this question is to use a Motor Map which

provides, during the learning process, a palette shape clus-
tering for searching (in the output stage of the network) the
optimum indexing scheme. The learning process can be de-
scribed as follow.
Step.1 Let Y the luminance vector computed starting from
the palette P of the image I. In the case of RGB color space,
the luminance can be approximated by the lightness fac-
tor computed for each color Si(ri,gi,bi) by using the well
known expression:

yi = 0.299ri +0.587gi +0.114bi i = 1,2, . . . ,M (7)

where M is the number of palette colors.

The first step in the Motor Map initialization is to define
the number of neurons to be used in the network which can
be easily fixed equal to the number of elements of the vector
Y. Let N be a number of neurons of the Motor Map. Each
neuron will be composed by an input weight wi,input and
output weight wi,out put and a field which store the average
increasing of the reward function bi. The variable range of
the wi,out put values is [1, . . . ,M]. A crucial parameter to be
carefully chosen is the reward function. In our case, the fol-
lowing reward function has been chosen:

Reward =−(Entropy)2 (8)

In a few words, the selection of the above reward func-
tion leads the Motor Map to find an optimum palette index
scheme which minimize the entropy of the image and then
the related compression ratio. Regarding the output stimulus
f (t) produced by the Motor Map during the learning phase,
for sake of simplicity, has been forced equal to wi,out put . The
wi,out put will be equal a random index generated during the
learning process when the corresponding neuron wins. Be-
fore to start the learning phase, the Motor Map (both input
layer and output layer) will be initialized randomly.
Step.2 The vector Y will be presented to the input layer of
the Motor Map searching the winner neuron i.e., the neuron
which has the minimum value of the following distance:

di = |yi−wi,input | i = 1,2, . . . ,M (9)

At this point, the winner neuron provides an updating of
the output stimulus f(t) which is, in this case, a new index
yrand (for the "winner" luminance) on the luminance vector
i.e. a new index for the related color on the corresponding
palette and finally the related swaps on the image matrix.
The new index is generated randomly according to the upper
bound fixed by the number of colors (or indexes).

The zero-order entropy of the new palette image will be
computed (to be precise, the zero-order entropy of the set of
differences D(I′new)) and then the ∆Reward:

∆Reward = Rewardnew−Rewardold (10)

= −(Entropynew)2 +(Entropyold)2
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Step.3 The average increasing of the reward function is
weighted by the bwinner:

bnew
winner = bold

winner +ρ(∆Reward−bold
winner) (11)

Step.4 If the ∆Reward ≥ bwinner the new index scheme
will be accepted and then the next learning step (steps from
1 to 4) will be repeated on the new image. Conversely, the
new index scheme will be rejected and the previous ones will
be restored (Fig. 2).

In the first architecture of the Motor Map proposed in
this work, the neuron has not an adaptive neighboring and
the learning rate remains constant during all the learning
phase. Moreover, a particular modification on the learning
process has been added. By taking into account the neuro-
biology similarity between the Motor Map and motor cortex
on the human brain, the concept of "neural perturbation" has
been implemented artificially. When the human brain tries
to solve a problem (the mathematical law is often unknown)
in such a case provide an action which show a significantly
perturbation on the current heuristic set of actions being ap-
plied in order to solve the problem. To think of problem to
balance a vertical pen placed on centre of the palm of the
human hand. The human brain does not know the mathe-
matical motion equations but it tries to solve the problem
with heuristic hand movements based on the input signal
provided by eyes. When the slope of the pen is large or when
the equilibrium is very unstable, the brain can try to search
the solution after a perturbation of the neurons involved in
the problem (which shows some perturbation movements).
In the same manner, when the Motor Map realizes that the
current entropy minimizing process is motionless (likely a
local minima), provides a perturbation of the neurons and it
continues on the learning process according to the following
expression:

wi,input = wi,input +λYi (12)

where λYi is a gaussian random variable normalized with
upper bound equal to maximum value of the luminance asso-
ciated to the image to be re-indexed. The stop of the learning
process of the Motor Map can be reached when the entropy
computed is less or equal to a specific lower bound value.

6. Experimental Results

In order to check the performance of the Motor Map as
palette re-indexing algorithm, we propose the comparison
between our method and the most important reordering
methods described in Section 3. In particular, we compare
our method (called MMap) with classical Luminance re-
ordering; with Memon [MV96] technique; with modified
Zeng algorithm proposed by [PN04]; and with Battiato et

Figure 3: Reward function values with respect to the learn-
ing cycles.

alii. algorithm [BGIS04]. For these comparisons, we use
some images that have been used by Pinho at al. in [PN04].
The software implementation has been realized in MATLAB
7.0.1 using "Image Processing" toolbox. The average com-
putational time in the learning process of the Motor Map
is about 900 (time unit is the second). Such timing results is
only a preliminar estimation of the overall computation time.

Table 1 shows the bits per pixel obtained with JPEG-LS.
The values relative to our approach are the lower than the
others. This is independent from the number of colors in the
images. We claim that this trend will remain unchanged even
if the number of colors are increased. This proof is part of
our future works.

Fig. 3 shows a plot of the reward function value used in
our network with respect to the learning cycles. Fig. 4 reports
the indices matrix before and after the palette reordering. In
particular, the indices in Fig. 4(b) are clearly smoother than
the indices in Fig. 4(a). This is a visual confirmation that the
MMap approach works in the right direction.

7. Conclusion and future work

Palette reordering is a very effective approach for improv-
ing the compression of color-indexed images. In this paper,
we described a technique that shows a good performance on
the optimum palette scheme generation without any initial
hypothesis on the palette index scheme or on the pixel distri-
bution. In fact, it is interesting to note that a lot of palette
re-indexing algorithm proposed in literature are based on
the assumption that the differences of neighboring pixels of
well-reordered images should follow a Laplacian distribu-
tion. This is in accordance with the JPEG-LS image cod-
ing standard, which also assumes a Laplacian model for the
prediction residuals and, therefore, may provide a justifica-
tion for the good performance of both methods. The Motor
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Images Colors Luminance Memon mZeng Battiato MMap
Gate 84 2.930 2.548 2.566 3.116 2.339

Benjerry 48 1.423 1.133 1.137 1.186 1.114
Netscape 32 1.918 1.745 1.752 1.907 1.05

Table 1: Lossless compression results in bit per pixel, obtained with JPEG-LS applied to the indexed images after using the
palette reordering methods presented in the paper.

(a) (b)

Figure 4: (a) The positive of the indices of the input image; (b) the positive of the indices after the MMap palette reordering.

Map algorithm does not need any hypothesis on the initial
image’s pixel distribution as well as on the re-ordered final
image. The algorithm proposed is only a first preliminary re-
alization of the Motor Map used as optimum palette indexes
scheme generator. Future research aims at finding a better
realization of the algorithm defining in a suitable way, the
neighboring interaction between the neurons as well as an
adaptive updating of the learning rate. Also the possibility
to work on the profile color space CIE XYZ, where Y is the
real luminance factor, will be considered.
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