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Abstract
We describe an architecture for massive simulation of a distributed behavioral model using graphics hardware.
By leveraging on the recent programmable capabilities of GPUs we implemented the model capable of managing
a large aggregate motion of birds in a virtual environment that can avoid both static and dynamic obstacles. We
demonstrate the effectiveness of our GPU implementation by comparing the results to a CPU implementation and,
emphasize the modularity of the proposed architecture that favors reusability in several contexts.

Categories and Subject Descriptors(according to ACM CCS): I.6.8 [Simulation and modelling]: Animation

1. Introduction

One of the most beautiful and fascinating show that nature
is capable to offer are the amazing evolutions of a flock of
birds, a bank of fishes or a herd of animals. Although these
groups consists of tens to hundreds of elements that stay
close together at incredible speed, they never collide with
each other or with an obstacle (e.g. trees or a wall) rather
they create a perfectly synchronized aggregate motion.

A flock is composed by single entities which take de-
cisions based only on their local perception of the group
through their immediate neighbors. No centralized control is
available but each member follows its own behavioral model
composed of few, simple rules: keep distance from other
birds, stay aligned, fly toward a goal, avoid obstacles and
so on. Surprisingly, a global group behavior emerges from
this limited set of simple rules.

Simulating the group behavior of a large number of
moving members has received the attention of different
researches in several fields such as computer animation
[Rey87], virtual reality [UT02], artificial life [TTG94] or hu-
man related behavior [LMM03]. Today, the availability of
computational power has begun to move attention from sim-
ulation of few elements to large groups in real time.
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In this paper, we present a modular architecture for simu-
lating behavioral models on a GPU. The architecture is de-
signed so that each level can be easily replaced and adapted
to different scenarios, as well as being used both for simula-
tion and for real-time visualization. In Section2 we, first,
describe the behavioral models and some implementation
techniques that are used on GPUs. Then, in Section3, we de-
scribe the model of flock motion by Reynolds [Rey87] and,
successively, in Section4, use it as an example to show how
our pseudo-algorithm is able to map behavioral models on
the GPUs. Finally, in Section5, we compare the simulation
to a CPU-based solution as well as compare our architecture
to other parallel solutions available in literature.

2. Behavioral models and GPUs

In 1983 William Reeves [Ree83] proposed for the first time a
simple behavioral model for modeling water, fire, grass and
atmospheric effects using particles system. In this model a
particle can be defined as a point in 3d space with a set of
associated attributes as for instance position, velocity, size,
shape, lifetime, and so on. A simulation using this model
does not take into account the interaction between particles
but the motion is defined only by their internal state.

Since the publication of Reeves’ paper, several extensions
have been made to the initial particle system model. One
of the most important was provided by Craig Reynolds in
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1987 [Rey87]: he proposed a model for simulating decen-
tralized behavioral as flocks of birds, bank of fishes, or a herd
of land animals called autonomous characters. The main dif-
ference between the two models was that in Reynolds’ each
element is “intelligent” because the simulation takes into ac-
count not only the internal state but also external conditions
as, for instance, the distance of a character from its neigh-
bors. In fact, realistic animations of the entire group emerges
from these simple local rules within the flock structure. In a
certain sense it can be seen as a dynamic system like a cel-
lular automata where the space is fixed.
Two relevant works has been done on passive particle sys-
tem [KSW04,KLRS04] using programmable graphics hard-
ware. In particular [KSW04] takes advantage of OpenGL
memory objects for an efficient GPU realizations of a real-
time animation and rendering of particle dynamics.

The model of Reynolds is the starting point for other
decentralized behavioral where individuality is defined
using simple local interactions between individuals. In
recent works, see [BMdOB03], a physically based model of
crowd is simulated using different individualities for agent
and group behaviors in the particle systems. In [BCN97] the
authors have used particle systems and dynamics respec-
tively for modeling the motion of groups with significant
physics. In [NT96] the authors have developed local rules
for controlling collective behaviors.
In these works, a group is composed essentially of several
autonomous characters. These characters can interact
between them and between the environments through a set
of steering behaviors which are defined independently of
the character’s means of locomotion [Rey99]. These simple
behaviors are the building blocks that can be combined to
create more complex patterns of behavior. Two are the im-
portant aspects of the computation that must be considered
carefully: proximity queries and obstacles data structures.
Proximity queries are necessary to know information about
neighbors: potentially each characters can interact with each
other. This problem, know asn-body forces problemhas
an asymptotic complexity ofO(n2). Instead, obstacles data
structure is a requirement necessary to implement obstacle
avoidance behaviors.

Much of the work in literature about behaviors models
addresses the problem of simulating correctly the motion of
groups composed of few elements rather then visualizing or
simulating interactive large groups (or crowds) in real time.
Recently, graphics processor units have shown high perfor-
mance computing at low cost. The reason behind this per-
formance is the parallel architecture of the graphics proces-
sors which permits several data organized intostream to
be processed in parallel using a same program calledker-
nel. In particular, data parallelism is made possible ensur-
ing that computation of one element of the stream is not af-
fected by another element of the same stream. That is, data
parallelism implies local computation during processing.

Thereby, stream programming model naturally fits within
the requirements of the decentralized behavioral models. We
now show which resources of the programmable graphics
hardware are suitable to tackle the problems and the tech-
niques used in order to design a modular architecture for be-
haviors models.

2.1. GPU Resources

Textures. Implementing efficient parallel data structure on
the GPU requires use of textures. In fact, textures are bi-
dimensional arrays of 4-dimensional component of float val-
ues. For each character, state-preserving attributes like po-
sition, velocity, mass, size are stored compactly in place
of pixels into 2D textures as shown in [DEST04, KLRS04,
CRM04]. Textures are used not only for storing state-
preserving information but also to store environment-related
information as we will see below. During simulation, tex-
tures are used as rendering target to maintain output related
to every single behavior. Since graphics hardware does not
support read/write at the same time, we use a double buffer-
ing schema where state-preserving information appear as in-
put and intermediate results computed by a single behavior
appear as output.
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Figure 1:

The streaming model on GPU.

Shaders. The “brain” of autonomous characters are imple-
mented using fragment shaders. Today, graphics hardware
supports multiple pipeline which permits parallel execution
of a fragment program. Then, multiple characters can be
processed at the same time. Steering behaviors are imple-
mented using fragment shaders, so that each shader takes a
state-preserving information as input and has position and
orientation related to current behavior as output. Combina-
tions of steering behaviors can be done using a feature of
stream programming: theData-Dependency Graph. In this
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way, more behaviors can be chained together allowing com-
plex behaviors to be generated.

2.1.1. Space and obstacles perception

Proximity queries. To support the local perception but also
to manage a large set of characters we use a data structure
that (1) allows to quickly obtain information about neigh-
bors of every character and (2) has to be updated efficiently
at every frame as the group moves.
The idea is to use a simple space partitioning data structure
where characters are sorted in a regular cell grid and every
cell keeps a list of characters that are available in it. For any
given character in constant time we can calculate the cell it
is located and, by exploring the adjacent cells, it is possible
to gather information about characters around it.
Although sorting can be efficiently implemented on GPUs
as shown in [KLRS04], by using the well-known parallel
sorting algorithm “odd-even merge sort”, our choice was to
maintain this part on CPU. In fact, the number of passes to
sort the entire group can be too expensive for each frame as
demonstrated in [KLRS04]; techniques such as distributing
the load over several frames yields an approximate solution
that is not suitable for our simulation. Then, during the simu-
lation, updated information about new positions is sent back
to the CPU. This strategy allows, also, to collect intermediate
results (on the CPU) if one is interested. Furthermore, the in-
creasing availability of PCI Express bus allows information
to flow back from the video card as fast as it flows in. Since
the AGP bus was designed for graphics, there was never a
perceived need for rendered graphics to go anywhere other
than out the back of video card. Today, PCI Express can be
considered a further step toward tightly coupled CPU-GPU
applications.
Then, the CPU sorts data into spatial data structure and, for
each character, it finds the nearest neighbors. Up to four
neighbors can be stored compactly into one texture for each
character, but more than a texture can be used to store neigh-
bors based on particular behavior model. Since this phase
is known as a critical time-consuming phase (see [Rey00])
we present later a heuristic in order to avoid sorting under
user-defined conditions.

Obstacles avoidance.In the simulation an important aspect
is the interaction with objects in the environment. An ex-
pected behavior is that an autonomous characters avoids the
obstacles it meets on its own path. A possible collision adds
new information in the knowledge of every character that
sees it and the model has to take it into account. A classical
approach used in [EW96] is the force fields. In this method
a discrete force field surrounds every object present in the
environment, approaching to an obstacle the forward vector
is summed with the vectors of force field and the character
feels a growing opposing force on its path toward it. Our
approach for the force field on the GPU takes into account
the dot product between the force field vector~n and forward

vector~v the steering vector~scan be guessed from these three
cases:

~s=







0 if (~v ·~n) = 0 (1)
~n if (~v ·~n) > 0 (2)
~n+~v if (~v ·~n) < 0 (3)

In (1) the character is going parallel to an obstacle. In (2) the
character is going away from an obstacle. In (3) the charac-
ter is going toward an obstacle.
A problem that appears by using the force field solution is
what we called “lack of time”: it is the situation in which a
character may be safe at timei and at timei +1 it may be in-
side a wall because of the approximations due to the discrete
time simulation. To resolve this problem we try to foresee
future positions in order to verify if a character is on a col-
lision route. In a sense, this is similar to the approach used
by Reynolds in [Rey99] where each character is prolonged
along the forward vector in order to anticipate possible col-
lision routes. The force field is built for every object in the
scene using its normal vectors (Figure6). This field is built
using a coarse geometry model because, in order to avoid
the obstacles, it is important to have quick approximate in-
formation about the shape and no detail is needed. The force
field is discretized along a regular grid and stored into a 3D
texture. Intermediate values can be computed using high effi-
cient hardware linear interpolation. Moreover, an additional
null layer outside the 3D texture permits a linear interpola-
tion from a position where the field has maximum influence
to another position where has no influence. However, this
solution appears as a technique to manage both static and
dynamic obstacles.

3. A behavioral model for flock motion

In this section we will aim at simulating a flock of birds
starting from Reynold’s work, but we emphasize here (and,
later, describe with modere detail in Section4) how our
considerations can be applied to others scenarios too. This
model simulates the complex aggregate motion of a flock of
birds, a herd of land animals, or a bank of fishes. In [Rey87]
Reynolds focused his study about a model that is apparently
plausible without considerations about how to manage effi-
ciently large aggregate motion of elements.

Every element in this group is calledboid (the contraction
of birdoid). Every boid has some limitations: it has a strictly
local knowledge of the space it occupies. In fact, none of the
creatures being part of a group has a full knowledge of the
entire group. Hence, the decisions must be taken by every
single element from local perceptions of the world as well
as from information that is perceived from its neighbors.
This distributed decisions mechanism is borrowed from na-
ture and the flock takes its decisions in a totally distributed
manner aiming in order to obtaining a synchronized move-
ment. The keystone of the simulation of this model is the
imitation of a base set of elementary behaviors which com-
bined are usually deep enough to enable the flock to present
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Figure 2: Steering behaviors: (left-to-right) separation, alignment, cohesion.

the complex aggregate motion that we can see in nature. This
distributed behavioral mechanism jointly with a reasonable
simulation of the physics of flight produces a very natural
behavior.

3.1. Boid definition.

Every boid in the system is defined as follows: a set of
state-preserving data used for the simulation of the flight as
mass, maximum speed, maximum acceleration, global posi-
tion, the current speed and a view reference system used to
represent the point of view of the boid. Part of this informa-
tion is constant and defined at the “birth” of the boid while
another part is updated at every frame of the simulation.

The synchronized aggregated motion of the flock is
achieved by fixing one or more spatial goals which the boids
have to reach; these goals are the result of the sum of every
boid’s steering behaviors. The sum performed is weighted
in order to give a characterization to every boid, a sort of
personality. Every decision is taken considering a certain
number of neighbors. This number is fixed to four in or-
der to use only one texture but our simulation showed that
this value was quite good. We have implemented three basic
types of steering behavior presented by Reynolds in [Rey99]
and calledflocking behavior(an intuitive representation of
them is shown in Figure2):

• theseparationbehavior tends to keep distance from other
neighbors. This behavior is necessary to prevent boids
collision. A repulsive force is calculated as the difference
vector between current boid position and every neighbors
while the steering force is calculated as the average vec-
tors between all the repulsive forces.

• thealignmentbehavior tends to align the boid with other
neighbors computing the steering force as difference be-
tween the average of the forward vectors of the neighbors
and the forward vector of the boid itself.

• thecohesionbehavior tends to move the boid toward the
center of his local neighborhood. This behavior is use-
ful in order to give to the flock an aggregated aspect. The
steering force is obtained computing the average position
of neighbors.

Another behavior that has been implemented in the sim-
ulation is theleader followingbehavior. This behavior con-
strains every boid to follow a fixed leader inside the flock,
this leader can follow a predefined path or a random path.
The leader can change during time, it can be a random boid,
the farthest boid, the mass center of a group of boids or can
be a fixed goal to reach. Finally, since the flock can not move
inside a scene infinitely large, we also implemented acon-
tainmentbehavior, it constrains every boid to remain inside
a bounding box that surrounds the entire scene and hence
constrains the flock to remain in the scene.

4. Mapping behavioral models on the GPU

We will show how to implement a general model of simula-
tion for autonomous characters on GPU and how we special-
ized this general structure to simulate the Reynolds model.
The simulation process takes as input four textures: 1) a con-
stant textureTc to store scalar information as mass, maxi-
mum velocity and maximum acceleration, 2) a textureTo for
orientation (three scalar values), 3) a textureTp for position
(three scalar values) and current velocity (one scalar value),
4) a textureTn to store the nearest autonomous characters
which will be the “sight” of every single character.
A single simulation step is showed in Algorithm1, every ex-
ecution updates theentire flock, being it fully defined by a
set of textures.

The for-loop on line1 is used to apply the various be-
haviors that every autonomous character is intended to run.
The for-loop on line1 updates an accumulation textureTsa,
this texture will keep track of the influences of every obsta-
cle force field summed up. The behaviors and the obstacles
create a set of steering textures that are summed up on line
1: the personality blend use a weighted average to compute
the textureTs which contains the total force applied on every
autonomous character. From the total force an acceleration
texture,Ta, is computed to decide how the position, the ve-
locity and the orientation of every autonomous character is
altered. Once again all these modifications are computed on
the entire flock in a single step, on lines1-1.
In the special case where the autonomous characters are
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Algorithm 1 The simulation algorithm
Require: Given an environment withm obstacles andb different

behaviors to apply ton autonomous characters
Ensure: Performs one simulation step for all then autonomous

characters
1: Prepare the input textureTc,To,Tp,Tn

2: for each behaviori do
3: [Tsi ]← BEHAVIORi [Tp,To]

4: end for
5: [Tsa ]← 0
6: for each obstaclei with texture fieldTf i do
7: [Tsa ]← OBSTACLEAVOIDANCE[Tp,To,Tsa ,Tf i ]

8: end for
9: [Ts]← PERSONALITYBLEND[Tsa ,〈Ts1 , . . . ,Tsb〉]

10: [Ta]← ACCELERATION[Tc,Ts]

11: [TP]← POSITIONVELOCITY[Tc,Ta]

12: [TO]← ORIENTATION[Tc,Ta]

boids obeying to Reynolds’ model the algorithm will man-
age 5 different behaviors, leader following, containment, co-
hesion, alignment and separation, as showed in previous sec-
tion.
Our architecture is intended to be general with respect to the
complexity of the model to simulate, that means it can be
used to simulate complex behavioral model like in [CRM04]
or even simpler models like [KLRS04] even if, for certain
cases, more efficient, ad-hoc, implementations can be ob-
tained. We intend to emphasize that all these models share
a common internal structure, and the main differences be-
tween them are the complexity of behaviors that can be eas-
ily assembled in our architecture.

4.1. Neighbor searching heuristics

The neighbor searching is performed for every character and
provides it a partial knowledge of relative positions of the
other characters: for every character it calculates a prefixed
length list of the nearest characters in the flock. In our archi-
tecture this phase is implemented on CPU and we are aware
that it can be a heavy computational phase.
In order to avoid the calculation of this list at every frame, we
developed an heuristic that limits the calculation of neigh-
bors list just when these lists are not more reliable. The in-
tuition is: when the flock moves uniformly, its lists of neigh-
bors remain the same from frame to frame, on the contrary
when the movements are rapid and unexpected the neigh-
bors, for every character, rapidly change needing recalculat-
ing the lists. At this point it is useful to consider that the
calculation of the neighbors list is performed in a grid-based
flavor: every character considers as neighbors just the char-
acters belonging to the cells around it. Our heuristic is the
following: at the beginning of every step of the simulation
every character knows which cell of the grid it belongs to,
at the end of the step, after performing all the calculation
regarding its behavior, the character knows in which cell of
the grid it will belong on the next step (both this informa-

tion can be obtained at the cost of a floating point division).
Every character can express the relative variation of cell po-
sition with a triple of values, one for every spatial dimension,
taken from the set[−1,0,+1]. At the beginning of every step
a 3-dimensional matrix of 27 (3×3×3) values, calledscat-
tering matrix, is cleared and it is used to keep track ofthe
amount of characters that, at the end of each frame, have
performed a certain change of cell, the intent of the matrix
is to measure thescatteringof the flock. What we expect
is that, as long as the flock moves freely in a wide empty
space, it will keep a quite stable shape also keeping constant
the neighbors lists, and this information is reflected in the
scattering matrix through a large value in one cell and al-
most 0 in other cells. On the other hand, whenever the flock
reaches the bounds of the space, or intercepts an obstacle
to be avoided, the matrix will present a certain number of
cells containing small values, meaning that boids are chang-
ing direction with an high variability. A large value in a cell
of matrix means that a lot of boids are changing cell (in the
spatial subdivision matrix) in the same direction. A sparse
scattering matrix means that boids are changing cell (once
again in spatial subdivision matrix) in various directions and
this means that the neighbors lists have to be recalculated.
Tests showed us that, even in presence of a small variations
of direction, the use of the scattering matrix heuristic al-
lowed us to avoid the neighbor searching in almost 20% of
the frames.

5. Results and conclusions

We have experimented on a PC with 3.2 GHz Intel Pentium
IV CPU and a graphics board NVIDIA GeForce 6800GT
with NV40 GPU, core speed of 450Mhz and memory speed
of 700Mhz. The performance of CPU-based algorithm was
measured using Microsoft Visual C++ .NET 2003 compiler.
The test scene used to render the flock consists of a statically
tessellated terrain, and six avoidable objects, each one with
its vector field: four columns, a crossbeam and a moving
sphere (Figure5). The scene is composed of about 10000
polygons and each boid has 72 polygon.

Figure 3 shows the computational times on the GPU
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Figure 3: Computational times on the GPU broken down
into different passes.
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for each pass. It is clearly shown how behaviors like
containment and following are almost independent from
the number of birds present in the flock excepts avoidance.
This is a time-consuming phase due to numerous read/write
access into textures.
On the up side of Figure4 we show the average computation
time for a single frame without rendering the scene, i.e.,
the simulation time of the scene. On the down side of the
same figure, we show the performances if one is interested
also in the real-time rendering of the scene that is measured
in terms of (average) frame-per-second. In both cases, we
considered the average values on 1000 frames.
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Figure 4: Performances of the two different implementa-
tion(CPU ∆ vs GPU⋄) with the number of boids on the x-
axis. (up) Simulation time on the y-axis is expressed in sec-
onds. (down) Visualization performances on y-axis is shown
in frame-per-seconds.

A first interesting comparison of our results can be con-
ducted with results reported by Reynolds in [Rey00] where
a (constant) performance of 60 fps was obtained with 600
boids. Our system animates more than 6000 boids with ob-
stacle avoidance at 60 fps, but interactive frame rates, usu-
ally about 20 fps, can yet be obtained with more than 13000
boids.
In [ZZ04], the authors implemented Reynold’s model (with
# of boids up to 512) on a cluster of up to 16 PCs with high-
bandwidth network (Myrinet). With the highest number of
boids they analyze, our results are comparable with theirs

(with 16 processors) since we require around 10 s to process
1000 frames for 512 boids (with visualization) and 4 s with-
out visualization. It must be said that their scene contains 24
static obstacles but ours contains one moving obstacle be-
side the 5 static ones. Of course, we are obtaining the same
results on an ordinary PC and our approach seems to scale
much better, since no increase in communication overhead
must be payed when the number of boids increases.
In this paper, we propose an architecture that can be used in
several different contexts. The performances obtained wit-
ness the efficiency of the approach and we believe that our
architecture represents an ideal framework to implement
more elaborated behavioral models.

Figure 6: The vector field.
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