
Eurographics Italian Chapter Conference (2006)
G. Gallo and S. Battiato and F. Stanco (Editors)

Shape Reconstruction with Uncertainty

L. Papaleo†, E. Puppo

Department of Informatics and Computer Science, University of Genova, Italy

Abstract
This paper presents a general Surface Reconstruction framework which encapsulates the uncertainty of the sam-
pled data, making no assumption on the shape of the surface to be reconstructed. Starting from the input points
(either points clouds or multiple range images), an Estimated Existence Function (EEF) is built which models
the space in which the desired surface could exist and, by the extraction of EEF critical points, the surface is
reconstructed. The final goal is the development of a generic framework able to adapt the result to different kinds
of additional information coming from multiple sensors.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Shape Modeling, Uncer-
tain data, Multi-sensor Data Fusion

1. Introduction

3D scanning devices are becoming more and more available
and affordable. Thanks to modern acquisition technologies,
heterogeneous data can be acquired from multiple acquisi-
tion sensors, which often incorporate information about un-
certainty of the data sampling process. Surface reconstruc-
tion techniques designed over a specific sensor often take
into account uncertainty during the reconstruction process,
but they are limited to work with a single device. On the
contrary, general techniques that can process data coming
from different sensors usually disregard much part of sensor-
specific information, and seldom take into account uncer-
tainty.

The basic concept of our approach is uncertainty: lack of
knowledge, which cannot be predicted and may be caused,
e.g. from inadequate model etc. In case of multiple acquisi-
tion technologies, there are different types of uncertainty:

• Incompleteness: sensors possibly leave something out.
• Imprecision: sensors can provide only approximate infor-

mation.
• Inconsistency: sensors data may not always agree with

each other.
• Ambiguity: data from various sensors may be indistin-

guishable from one another.
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The goal of our research is to define a flexible technique
that can deal with data coming from different sensors, while
it fully exploits specific information about uncertainty asso-
ciated to each specific sensor. To this aim, we adopt a prob-
abilistic approach. We use information attached to data sam-
ples to define and generate an Estimated Existence Function
(EEF), which represents the probability that the desired sur-
face exists in a volume of space. The reconstructed surface
is then extracted by considering the ridges of our EEF and
building a triangle mesh out of them.

Each sample point in the input dataset brings information
about the surface in its neighborhood. Information available
for a single point may go from the bare coordinates, to esti-
mation of differential properties like surface normal or cur-
vature, to more or less elaborate estimation of uncertainty.
On the basis of such information, different probability dis-
tribution functions may be obtained, which shape the contri-
bution of each sampled point to define the EEF in its neigh-
borhood. Under the assumption that all samples are indepen-
dent, the EEF is built by combining contributions coming
from the different samples.

In this preliminary work, we analyze a simple scenario:
each sample consists just of the coordinates of a point in
space, plus an estimation of uncertainty in the form of a
scalar value. Under this assumption, we adopt a Gaussian
distribution to model our EEF. We present some results on
both synthetic and real datasets.
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2. Related Work

A burst of research has been made during the last decade on
3D Reconstruction and several interesting and well-behaved
algorithms have been developed. General solutions should
not assume any knowledge of the object shape or topology
but possible approaches may strongly depend on the given
type of input (e.g. point clouds, multiple range images). It is
not simple to propose a significant taxonomy of the existing
surface reconstruction methods: most of them, especially in
the last few years, try to adopt hybrid solutions using differ-
ent approaches in the same method. Regardless the under-
lying structure of data, approaches can be divided into two
groups [MM98], depending on whether they produce an in-
terpolation or an approximation of the input data.
The interpolating approaches, in some sense, rely on the ac-
curacy of the input and use them as constraints for the con-
struction of the final mesh [ACTL02,Att97,AS00,BBCS96,
TGLW01, HDD∗92, TC98]. The basic strategy is to use the
input points as the optimal geometric description of the
scanned object. In general, a cloud of points with no other
information is considered [BBCS96, TGLW01]. In some
cases, also point clouds with additional information on the
object structure or proximity of points maybe processed
[ACTL02, Att97, AS00]. In addition, the modern scanning
technologies often return also an estimation of the normal in
each point that can be used [TC98]. In case of approximation
methods, the vertices in the resulting mesh can be different
from the original sampled points. The basic strategy is to use
input points as a guide for surface reconstruction. Especially
for range data, an approximating rather than an interpolating
mesh is desirable in order to get a result of moderate com-
plexity [CM95, CMSR00, CL96, HSIW96, JM02].

Few recent existing approaches try to consider the con-
fidence of the sampled data. Schneider analyzed shape un-
certainty from a more abstract point of view in [Sch01]. He
identifies various sources for shape uncertainty and stresses
the importance of additional context information to reduce
the uncertainty. Guibas et al. [PMG04] try to describe shape
information by combining local estimates using influence
functions. Part of our work is most closely related to the one
presented by Johnson and Manduchi [JM02]. Both of them
use a probabilistic rule for constructing a probability func-
tion. The scope of their work is quite different though, since
they mainly concentrate on terrains by the use of radar input
datasets.

3. Problem Definition and proposed approach

From a mathematical point of view, the surface of a 3D ob-
ject can be defined as a two-dimensional manifold that is
compact, orientable and connected. Our Surface Reconstruc-
tion problem can be formalized as follow:

Given a set of measurements V = {µ1, . . . ,µn} of
an object (environment), coming from different

sensors s1, . . . ,sk and a set of additional informa-
tion M = {M1, . . . ,Mn} related to the given mea-
surements in V , find a surface S ⊂<3 that approx-
imates the observed object.

Each Mi may contain properties related to the measure-
ment i (e.g., RGB color of the measurement, geometric prop-
erties such as normal vector and local curvature) or measure-
ment models (i.e, an error model, a reliability model, and so
on).

Our idea is to define a Probability Density Function (PDF
for short) for each measurement µi integrating all the infor-
mation present in the Mi. The PDF will indicate the degree
of importance of µi in the reconstruction process of the de-
sired surface F . The PDFs related to measurements, support
the construction of the Estimated Existence Function (EEF
for short) and for building it, we define:

• Ux a suitable neighborhood of a point x with x ∈ <3

• P(µ is x) as the probability that µ measures a point in Ux
• P(x ∈ S) as P(S∩Ux 6= ∅)

The probability P that, given a measurement µ, a point x is
on the desired surface S of the observed object is

P(x ∈ S|µ) = P(x ∈ S|µ is x) ·P(µ is x)

+ P(x ∈ S|µ is x) ·P(µ is x)

If all the measurements come exactly from the surface, then
the probability that a given x measures the surface S at x is
obviously 1 (maximum of information). If we have a generic
point x and no measurements on it, we cannot infer anything
on x. In this case, we adopt a conventional probability of 1

2
(minimum of information on x). Additionally, we have that
P(µ is x) = 1−P(µ is x) and from the equation above:

P(x ∈ S|µ) = 1 ·P(µ is x)+
1
2
· (1−P(µ is x)) (1)

P(x ∈ S|µ) =
1
2
· (1+Mµ(x)) (2)

where Mµ is the measurement model related to the measure-
ment µ. Equation 2 shows that if the point x falls within
the measurement model, then the surface probability will be
greater than 1

2 but less than 1; otherwise the probability is
1
2 . Also, given µ, the probability P that a point x lies on the
surface S is directly proportional to the value of the mea-
surement model Mµ computed on x. Given the input dataset
in the form of n independent measurements {µ1, . . . ,µn}, the
Estimated Existence Function of a point x in space is the
probability that x lies on the desired surface S:

EEF(x) = Pn(x) = P(x ∈ S|µ1, . . . ,µn) (3)

Using similar reasoning as above, Pn(x) can be derived from
multiple independent measurement models:

EEF(x) = P(x ∈ S|µi is x, all i) ·P(µi is x, all i)

+ P(x ∈ S|µi is x, all i) ·P(µi is x, all i)
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using the above formulas we obtain:

EEF(x) = 1−
1
2

P(µi is x, all i) (4)

= 1−
1
2

Πn
i=1(1−P(µi is x)) (5)

So we have:

P(µi is x) =
Z

Ux

Mµ(y),dy (6)

In cases of small Ux for each x, we can approximate the in-
tegral as follows:

P(µi is x) =
Z

Ux

Mµ(y),dy ∼= Mµ(x)|Ux| ≡ E i(x) (7)

Where |Ux| is the volume of Ux. From equation 5, substitut-
ing symbols using equation 7 we can define:

EEF(x) = Pn(x) = 1−
1
2

Πn
i=1(1−P(µi is x)) (8)

= 1−
1
2

Πn
i=1(1−E i(x)) (9)

Equation 9 indicates our Estimated Existence Function for
each point in space and how it depends on all the models
Mi ∈ M related to all the measurements µ ∈V .
Once we have defined the EEF , we search for the charac-
teristic points of the EEF , following the definition of Eberly
et al. of surface ridges on a volume [EGM∗94]. Basically, a
point x is a ridge point of type 3−1 (surface-on-a-volume)
if νT

1 (x) ·∇ f (x) = 0 and ki(x) > 0, where νi are the eigen-
vector of the negative Hessian matrix of f , ki are the eigen-
values, for i = 1,2,3 and ∇ f (x) is the gradient. The point
x is a strong ridge point if also the property k1(x) > |k3(x)|
holds. This definition says that a point x ∈<3 is a ridge point
if the component of the gradient in the maximal changing di-
rection is zero and the function is more concave than convex.
The set of points R that are ridge points of type 3−1 identi-
fies the surface S we are searching for.
If necessary, we can filter the set R choosing a new set
R1 ⊆ R such that the points in R1 are ridge points of type
3− 1 where the EEF function value is more than a suitable
threshold θ.

R1{x ∈ <3|x is ridge point and EEF(x) > θ} (10)

3.1. Building the Estimated Existence Function

The definition of the Estimated Existence function is given
in equation 9, under the hypothesis of n independent mea-
surements µ, . . . ,µn. The independence of the measurements
helps us in the definition of an incremental rule for the com-
putation of the EEF which will speed-up the overall exe-
cution of the algorithm. The EEF function can be defined
as

EEF(x) = 1−
1
2

Πn
i=1(1−E i(x)) = 1−

1
2

f (x)n (11)

where f (x)n = Πn
i=1(1−E i(x)). So the Estimated Existence

Function EEF(x) depends on a function f n(x) that can be

computed incrementally. In fact:

f n(x) = (1−E i(x)) ·Π(n−1)
i=1 (1−E i(x)) (12)

= (1−E i(x)) · f n−1(x) (13)

The function f n(x) depends on f n−1(x), on the E i(x) and,
as consequence, on the models Mi(x) given as input for each
measurement in V . In this paper, we present as model only
an error measurement model related to each sampled value
in the form of a Multivariate Normal Distribution (Gaussian
Distribution).

G(x) = 2π
n
2 · |Σ|−

1
2 · e−

1
2 (x−µ)T Σ−1

x (x−µ) (14)

where Σ is the covariance matrix and µ is the mean vector.
At this step of development, we consider only input datasets
which come with a reliability value related to each measure-
ment (in this case we use an isotropic Gaussian) or datasets
with the covariance matrix which will be used in the Gaus-
sian Function.
The EEF(x) is defined in <3 but for computability prob-
lem, we cannot work in the continuum. For this reason,
we discretize the space using of a regular grid G with a
grid step s interactively defined by the user. Moreover, for
efficiency purposes, we can bound the influence space of
each measurement to a certain domain without computing
its contribution to the EEF over all points in <3. From
probabilistic and statistical theory [Spa99, SS95], we know
that, for a Gaussian Distribution in the form of equation 14,
at least 99,7% of the non-zero values fall in the interval
[µ−3σ,µ+3σ]. So we decided to compute the contribution
of a measurement x to the EEF only in such a bounded por-
tion of space. For each measurement x the inference space
sx will depend on the 3σx,3σy and 3σz values and can be
approximated as an ellipsoid with principal axes depending
on x,y,z.
Out of this inference space, the EEF value of a grid point
will not depend on the measurement x. At this point of the
process, we have a regular grid in which all points have the
related EEF value: 1

2 value if the grid point is not fallen in
any inference space and EEF(x) if it is fallen on one or more
inference spaces.

4. Compute the Ridge Points

The extraction of the characteristics points of the EEF is a
fundamental step for the reconstruction of the desired sur-
face S. We have implemented two different methods: one
more rigorous (and more elaborated) that follows the formal
definition of characteristic surface on an approximated vol-
ume (condition by equation 10) and the other (the simplest
one) that defines if a point is ridge considering the neigh-
bours and therefore dicretizing the procedure.

4.1. Ridge surface on a volume

In order to compute the ridge points using the condition in
equation 10 we need the first and second order partial deriva-
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Figure 1: (a) Point p is a ridge point. It is maximum in the
z direction and not minimum in the other two. (b) Point p is
not a ridge. It is maximum in the z direction but minimum in
the x direction.

tives of the EEF . While we compute the EEF value for
each grid point, the derivatives can be computed following
an incremental rule analogous to the one in equation 13. The
partial derivatives of the EEF function will depend on the
partial derivatives of f n(x). For each measurement x the sys-
tem is reading, we are able to incrementally compute the
EEF value and the relative first and second order partial
derivatives on each influenced grid point. This effectively
speeds up the entire process. Once all the partial derivatives
have been computed, we use the condition in equation 10 for
marking those grid points that are ridge points of type 3-1.
The property of being a ridge of a grid point is an approxima-
tion: discretizing the space, we marked a grid point as ridge
indicating that it is near a real ridge of the EEF function. For
this reason, we added two tolerance values modifiable by the
user: on the one hand, we select a subset of ridge points, fil-
tering on the intensity value (EEF value), while on the other
hand, we filter the ridge points by varying the approxima-
tion error ε (basically we test if ν1(x)

T∇ f (x) < ε instead of
ν1(x)

T∇ f (x) = 0).

4.2. Heuristic Method

As we said before, the heuristic method uses a less rigor-
ous but not less effective definition of characteristic points.
Considering that the EEF function is defined on a discrete
domain, it is possible to study the problem from a practical
point of view, as it was done in [JR75, Mar83, MB95, TF78]
for the case of terrains. We have extended these techniques
to 3D grids by considering the 6-adjacent neighbors of a grid
point gi,k, j , i.e. the vertices in the link of gi, j,k connected to
gi, j,k through an edge [Pap04]. A grid point gi, j,k is a ridge if
it is a local maximum in one direction (x, y, z direction) and
not a minimum in the other two.
The formalization of what we have just explained follows:
given a grid G and a point gi, j,k ∈ G, it is a characteristic
point if:

IsMa jor(x,1,0,0) AND (!IsMinor(x,0,1,0))

AND (!IsMinor(x,0,0,1))OR

IsMa jor(x,0,1,0) AND (!IsMinor(x,1,0,0))

AND (!IsMinor(x,0,0,1))OR

IsMa jor(x,0,0,1) AND (!IsMinor(x,1,0,0))

AND (!IsMinor(x,0,1,0))

Where [1,0,0] is the x direction (Y Z plane), [0,1,0] is the
y direction (XZ plane), [0,0,1] is the z direction (XY plane)
and IsMa jor(· · ·), IsMinor(· · ·) are predicates which return
T RUE if the point is maximum (minimum) in that direc-
tion and FALSE otherwise. Figure 1 (a) shows an example
of ridge condition for a point p, while Figure 1 (b) shows a
point p in the grid which is not a ridge point.

5. Building the mesh

Once all the ridge points have been computed, so that we
have identified in the grid G the points in which the proba-
bility to be part of the desired surface is more high, we need
to build a final triangular mesh, which approximates the de-
sired surface S. Our first idea was to march the cells of the
grid, triangulating each triplet of ridge points. Unfortunately,
this simple approach leads to not satisfactory results: most
of the marked ridges are on the desired surface but some of
them are outliers. In order to filter the set of ridges and to
improve the result, we decided to implement a method that
transfers the information of being a ridge from a vertex to
an edge (or more edges) thus achieving sub-voxel precision.
This is done with the application of a P-Method (Parabola-
Method) which does the following. For each grid point gi, j,k
in the grid G and for each principal direction, x,y and z:

1. Take the parabola passing for the EEF values of the grid
points gi−1, j,k,gi, j,k,gi+1, j,k (for simplicity, the x direc-
tion)

2. Take the maximum max with coordinates
(xmax,ymax,zmax) of the parabola (if it exists)

3. Consider the projection of this point.

• if it falls in the interval [gi−1, j,k,gi, j,k] mark an inter-
section in this edge;

• if it falls in the interval [gi, j,k,gi+1, j,k] mark an inter-
section in this edge.

The P-method is a general smoothing approach which works
quite well for large datasets even if some outliers still re-
main. In any case, at the end of the procedure, we have the
intersections in the edges of our grid and we can launch a
modified Marching Cubes procedure that starts directly from
the intersections instead of the conditions on the vertices of
a cell. This procedure definitely improves the quality of the
results as it is shown in Figure 2.

6. Implementation and Results

We have tested our method on different datasets [Pap04].
The results of our method on a cube with four supersam-
pled faces and two subsampled faces is shown in Figure 3.
From an input dataset of 4240 points (Figure 3(a)), we built
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Figure 2: A teapot: the input dataset (a) shows noisy data especially near the handles. (b) The reconstructed model by extracting
the ridge points via the heuristic method (HM) and with no application of the P-method. The model shows noise. (c) The
reconstructed model by extracting the ridge points via the heuristic method (HM) and with the application of the P-method.
Outliers are eliminated and the model correctly represents the input teapot.

a grid G of 80x80x80 grid points. Using an isotropic Gaus-
sian distribution with σ = 0.2 we obtained 85245 influenced
grid points with relative EEF values (Figure 3(b)). Suc-
cessively, we run the Surface on a Volume method (SVM)
obtaining 10245 ridge points (Figure 3(c)) and the Heuris-
tic Method (HM) obtaining 13252 ridge points in less time
(Figure 3(d)). The meshes obtained by applying a modi-
fied Marching Cubes which starts directly from intersections
on edges are showed in Figure 3(e)-(f). Finally Figure 3(g)
shows the result of the reconstruction method by the use of
the heuristic method (HM) with a filter over the EEF values
of the 67%.

The HM method is sensible to symmetries in the object,
but it is much faster than the SVM method and, by the use of
the filter over the EEF values can reach optimal results on
such a simple sampled dataset. On the other hand, the SVM
method, using an isotropic Gaussian distribution, is able to
reconstruct those faces that are sufficiently sampled, but it is
not able to recovery the upper face of the cube that is sub-
sampled (Figure 3(f)).
When dealing with complex input datasets, as in the case
of the Stanford bunny and the dragon, the SVM method be-
haves generally better than the HM method, even if the HM
method does not produce as many outliers as in the case of
symmetric objects (like the cube above).

Our experiments have shown results which differ by vary-
ing some of the modelling parameters we made available in
the implemented interface. In particular, the results depend
upon:

• the sampling density of the dataset
• the grid resolution
• the sigma vector we are using
• the filter applied on the EEF values
• the approximation error for the ridge condition (only

SVM method)

In Figure 4 we show one of our experiment on the Cybeware
ball-joint dataset, outlying problems and quality of results
with different parameters values,

7. Concluding remarks

We have presented a Surface Reconstruction method that
adopts a probabilistic approach and makes explicit use of
uncertainty of input samples. This is a first step in the di-
rection of developing a flexible method that can integrate
data from different sensors, while exploiting heterogeneous
information that can be sensor-specific.

The general framework we have presented is based on an
Estimated Existence Function (EEF), which is computed in-
crementally and indicates the probability that the desired sur-
face exists in a particular volume of space. The general idea
is that the surface passes through the ridges of such EEF . We
have implemented a discrete computation of both the EEF
and its ridges on a volume grid, and we have used a variant
of the Marching Cubes to extract a surface mesh out of such
grid.

While in this paper we have considered just a simple def-
inition of uncertainty, our goal is to integrate more elabo-
rate information that often are made available by sensors,
such as uncertainty defined by covariance matrices, and es-
timation of differential properties of the surface at the sam-
pled points. The idea is that the computational framework
remains unchanged, while just the probability distribution
function (PDF) is redefined depending on information avail-
able. Our current research is aimed at incorporating richer
information in the definition of a (more elaborate) pdf and,
thus, of the EEF . In the design of new PDFs we will also
take into account the need of handling data with variable
sampling density. in fact, we found that the EEF used in
this paper (which is defined upon a Gaussian PDF), is too
sensitive to sampling density.

Experiments presented in this paper are just qualitative
and are aimed at exploring the effectiveness of our ap-
proach. On the basis of such experiments, the approach
seems promising. We have not made, for now, quantitative
evaluations (such as computing the maximal, average and
minimal errors in reconstruction). This latter issue will be
also the subject of our future research.

c© The Eurographics Association 2006.

57



L. Papaleo & E. Puppo / Shape Reconstruction with Uncertainty

Figure 3: Application of the both the Surface-on-a-Volume method (SVM) and the Heuristic method (HM) on a cube. An
isotropic Gaussian distribution with σ = 0.2 has been used. (a) The initial input points, (b) the EEF function, (c) Ridge points
extracted by applying the SVM method, (d) Ridge points extracted by applying the HM method. (e) The reconstructed model
from (c). (f) The reconstructed model from (d). (g)The reconstructed model with a filter of 67% on the EEF.
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[MB95] MONGA O., BENAYOUN S.: Using partial
derivatives of 3d images to extract typical surface fea-
tures. In Computer Vision and Image Understanding
(1995), vol. 61, pp. 171–189. 4

[MM98] MENCL R., MÜLLER: Interpolation and approx-
imation of surfaces from three dimensional scattered data
points. In EUROGRAPHICS 98 State of the Art Reports
(1998). 2

[Pap04] PAPALEO L.: Surface reconstruction: Online mo-
saicing and modeling with uncertainty. In PhD Thesis -
Department of Computer Science, University of Genova
(2004), vol. DISI-TH-2004-04. 4

[PMG04] PAULY M., MITRA N. J., GUIBAS L.: Uncer-
tainty and variability in point cloud surface data. In Sym-
posium on Point-Based Graphics (2004), pp. 77–84. 2

[Sch01] SCHNEIDER B.: On the uncertainty of local form
of lines and surfaces. In In Cartography and Geographic
Information Science (2001), vol. 28, p. 237Ű247. 2
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