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Abstract

Mesh-based terrain representations provide accurate descriptions of a terrain, but fail in capturing its morpho-
logical structure. The morphology of a terrain is defined by its critical points and by the critical lines joining them,
which form a so-called surface network. Besides being compact, a morphological terrain description supports a
knowledge-based approach to the analysis, visualization and understanding of a terrain dataset. Moreover, be-
cause of the large size of current terrain data sets, a multi-resolution representation of the terrain morphology
is crucial. Here, we address the problem of representing the morphology of a terrain at different resolutions. The
basis of the multi-resolution terrain model, that we call a Multi-resolution Surface Network (MSN), is a gener-
alization operator on a surface network, which produces a simplified representation incrementally. An MSN is
combined with a multi-resolution mesh-based terrain model, which encompasses the terrain morphology at differ-
ent resolutions. We show how variable-resolution representations can be extracted from an MSN, and we present
also an implementation of an MSN in a compact encoding data structure.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Algorithms]: Terrain models, morphology,
generalization, hierarchical models

1. Introduction

Terrain models, built from very large data sets provided by
acquisition devices (e.g., satellite or aerial photos), are often
excessively complex for applications such as real-time anal-
ysis and visualization. Thus, techniques for controlling the
level of detail become crucial.

A terrain model consists of a finite set of points in a do-
main in the x-y plane at each of which an elevation value f is
given. If the data points are regularly spaced in the domain,
the terrain model is called a Regular Square Grid (RSG).
Otherwise, the data points in the x-y plane are connected in a
triangle mesh, which provides a piecewise-linear interpolat-
ing function to the terrain data, called a Triangular Irregular
Network (TIN) [DPM99]. Regular grids can be encoded in
very compact data structures, since only the elevation val-
ues need to be stored. TINs, on the other hand, better adapt
to the shape of the terrain, since their vertices are irregularly
and adaptively sampled. A geometry-based description, such
as an RSG or a TIN, provides an accurate representation of
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a terrain, but fails in capturing its morphological structure
defined by critical points, like pits, peaks or passes, and in-
tegral lines, like ridges or valleys.

There has been a lot of research in the last decades focus-
ing on extracting critical features (points, lines or regions)
from images or terrain data described by an RSG, or a TIN.
More recent works in computational geometry concentrate
on representing the morphology of terrains through a de-
composition of the terrain surface into regions bounded by
critical points (minima, maxima, saddle points) and integral
lines [EHZ01]. These techniques are rooted in Morse theory
and try to simulate the decomposition of a terrain induced by
C2-differentiable Morse functions in the discrete case.

A hierarchical representation of the terrain morphology
is critical for interactive analysis and exploration of a ter-
rain in order to maintain and analyze characteristic features
at different levels of resolution. Current multi-resolution ter-
rain models are just based on a geometric simplification pro-
cess applied to a TIN describing a terrain at full resolu-
tion. In [DDM∗03a], we have defined a multi-resolution TIN
which encompasses the morphology of the terrain. This is
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achieved through an algorithm for simplifying a constrained
TIN through vertex removal, where the constraints are rep-
resented by the polygonal edges which describe the integral
lines connecting the critical points at different resolutions.
In such algorithm, however, the critical points have been
maintained at the different levels of detail, so as to keep
the morphology of the contour lines. In [BEHP04], a multi-
resolution representation of a triangulated terrain has been
proposed based on a generalization of the morphological ter-
rain and on a re-meshing of the regions in the underlying
triangle mesh at each generalization operation. In [BPH05],
the hierarchical structure has been modified to reduce depen-
dencies among generalization steps.

In our work, we consider a combined multi-resolution ter-
rain representation based on a multi-resolution constrained
TIN, and on a multi-resolution structural description of the
terrain morphology. The multi-resolution constrained TIN is
generated by simplifying the TIN following the generaliza-
tion process which guides the simplification of the under-
lying morphology and, thus, the hierarchical morphological
representation. Here, we focus on the multi-resolution mor-
phological model. More precisely, we consider the surface
network, which is a graph-based representation of the ter-
rain morphology, and we discuss a generalization operator
for simplifying such network. Based on such operator, we
have developed a hierarchical representation of a surface net-
work that we call a Multiresolution Surface Network (MSN).
An MSN consists of a surface network representing the ter-
rain morphology at a coarse resolution, and of a collection
of refinement modifications, which reverse the generaliza-
tion operators used in simplification, organized as a Directed
Acyclic Graph (DAG). Variable-resolution surface networks
can be extracted from an MSN through a simple DAG traver-
sal.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews some background notions on morphological
representations based on Morse theory. Section 3 reviews
different approaches for computing discrete approximations
of the terrain morphology by applying Morse theory. Sec-
tion 4 formalizes a generalization operator for simplifying
a surface network. Section 5 introduces the multi-resolution
surface network (MSN). In Section 6, some concluding re-
marks are drawn.

2. Background Notions

In this Section, we introduce some basic notions on Morse
theory and on the decomposition of the domain of a scalar
field induced by a Morse function. For simplicity, we report
the definitions only for the case of 2D scalar fields defined
over a bounded region in the plane, but they extend to ar-
bitrary dimensional scalar field defined over a manifold in
R

d .

Morse theory is a powerful tool to capture the topologi-
cal structure of a scalar field. Let f be a C2-differentiable

real-valued function defined over a domain D ⊆ R
2. A point

p ∈ R
2 is a critical point of f if and only if the Gradient of

f vanishes at p. A function f is said to be a Morse function
if all its critical points are non-degenerate. This implies that
the critical points of a Morse function are isolated. An inte-
gral line of a function f is a maximal path which is every-
where tangent to the gradient vector field. An integral line
is emanating from a critical point or from the boundary of
D, and it reaches another critical point or the boundary of D.
An integral line which connects a maximum to a saddle or a
minimum to a saddle is called a separatrix line.

The integral lines that converge to a maximum, a sad-
dle and a minimum form a 2-dimensional, 1-dimensional
and 0-dimensional region, respectively, and they are called
stable manifolds. The integral lines that originate from a
minimum, a saddle and a maximum form a 2-dimensional,
1-dimensional and 0-dimensional region, respectively, and
they are called unstable manifolds. The stable (unstable)
manifolds are pair-wise disjoint and decompose surface S
into open cells which form a complex, since the boundary
of every cell is the union of lower-dimensional cells. Such
complexes are called stable and unstable Morse complexes,
respectively. Figure 1(a) shows an example of a decomposi-
tion of the domain of a scalar field into an unstable Morse
complex.

A Morse function f is a Morse-Smale function when the
stable and the unstable manifolds intersect only transver-
sally. In two dimensions, this means that the stable and un-
stable 1-manifold cross when they intersect, and the crossing
point is a saddle point.
A Morse-Smale complex is the complex defined by the in-
tersection of the stable and unstable Morse complexes. The
1-skeleton of a Morse-Smale complex consists of the critical
points and the separatrix lines joining them, and it is called
a critical net (see Figure 1 (b)). Figure 1(b) shows an exam-
ple of a Morse-Smale complex for the same function as in
Figure 1(a).

A combinatorial representation of the critical net in the
case of 2D scalar fields, widely used in Geographic In-
formation Systems (GISs), is provided by the surface net-
work [Pfa76, SW04]. A surface network is a planar graph,
in which the nodes correspond to the critical points, and the
arcs to the separatrix lines connecting them. There exists an
arc between a pair of nodes in the surface network if the two
corresponding critical points are connected by a separatrix
line in the critical net.

3. Computing approximations of Morse and
Morse-Smale complexes

Several algorithms have been proposed in the literature for
decomposing the domain of a scalar field f into an approxi-
mation of a Morse complex, or of a Morse-Smale complex.
Such an approximation is obtained either by fitting a C1- or
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Figure 1: (a) An example of an unstable Morse complexes
(the 2-cells correspond to the minima). (b) The Morse-Smale
complex. Its 1-skeleton is the critical net.

C2-differentiable surface on a terrain dataset, or by simulat-
ing a Morse-Smale complex, or a Morse complex in the dis-
crete case by inferring properties from the C2-differentiable
case. Several recent algorithms working on TINs use this
latter approach. Their assumption is that no two adjacent
vertices in the TIN have the same elevation. This ensures
that the critical points are isolated, as in the case of C2-
differentiable Morse functions.

All the algorithms proposed in the literature, with the ex-
ception of the one in [EHNP03], have been developed for 2D
scalar fields. Almost all of them use a boundary-based ap-
proach, in the sense that they extract an approximation of the
critical net, by computing the critical points and then tracing
the integral lines starting from saddle points and converging
to minima and maxima.

Most algorithms working on TINs [TIKU95, BS98,
EHZ01, BEHP03, Pas04] detect first the critical points by
comparing the elevation values at each vertex p with the el-
evations at the vertices adjacent to p on the TIN, and then
compute the 1-cells of the complex by starting from the sad-
dle points, and tracing two paths of steepest descent and
two paths of steepest ascent on the underlying triangle mesh
which stop at minima and maxima, respectively. The algo-
rithms in [TIKU95, EHZ01, BS98] compute paths along the
edges of the triangle mesh by selecting either the vertex of
highest (or lowest) elevation at each step [BS98, TIKU95],
or the steepest ascending or descending edge at each step
[EHZ01]. The algorithms in [BEHP03, Pas04] estimate the
gradient along edges and triangles, and compute the ascend-
ing and descending paths by also cutting triangles in order to
follow the actual paths of steepest ascent, or descent. The al-
gorithms in [BPS98, SW04, Sch05] compute the arcs of the
critical net from a 2D regular model, through a technique
conceptually very similar to the one used for TINs. All three
algorithms fit a surface with a certain degree of continuity to
the input data set in order to extract the critical points. All

e

e

t’

t

Figure 2: Triangle t is adjacent to t ′, e is best exit for t′ and
best entrance for t. t is added to the region of t ′

these approaches try to enforce the Smale condition in the
discrete case, by avoiding to connect two saddle points.

In [DDM∗03a, DDM03b], we have proposed an entirely
different approach, that we call region-based. It consists of
computing the stable and unstable Morse complexes from a
TIN. The only assumption is that the piecewise linear func-
tion defining the TIN is a discrete Morse function. Recall
that the unstable (stable) manifold of a point p for a Morse
function f is the set of points q such all that the ascend-
ing (descending) integral lines from q reach p. Our algo-
rithms simulate this definition in the discrete case. First all
minima and maxima are identified, and then the ascend-
ing and descending complexes are computed independently
by applying a region-growing approach. The first algorithm
[DDM03b] computes the stable complex starting from a
minimum m and initializing the 2-cell which corresponds to
m with the triangles incident at it. At a generic step, the 2-
cell associated with m is extended by adding a new triangle
t sharing an edge e with the cell, provided that the vertex of
t not bounding e has an elevation value highest than that of
the extreme vertices of e. In [DDM∗03a], the same region-
growing approach is applied, but the gradient for each tri-
angle t in the TIN is computed, and the angles between the
normal vector at each edge of t and the gradient are evalu-
ated. The edge e of t corresponding to the largest angle is
marked as exit, the one corresponding to the smallest angle
is marked as entrance. Thus, the new triangle t for extending
a 2-cell is selected as a triangle sharing an edge e with the
cell such that e is an entrance for t and an exit for the triangle
t′ in the cell sharing edge e with t (see Figure 2).
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The unstable complex is computed in a completely sym-
metric way. The intersection of the stable and unstable
Morse complexes then approximates the Morse-Smale com-
plex, if the boundary of the regions in the two complexes
intersect at a saddle point. Saddle points are extracted as
the intersection of the two complexes. Although proposed
for TINs, the approach can be extended to 3D scalar fields
whose domain is discretized as a tetrahedral mesh.

Watershed algorithms developed for image segmentation
and applied to terrains can also be viewed as region-based
methods for computing the stable and unstable Morse com-
plexes [Mey94, VS91, MW99] when the underlying field
function satisfies the discrete Morse property, discussed
above.

4. Generalization of Morse-Smale complexes

Two major issues arise when computing a representation
of a scalar field as a Morse, or a Morse-Smale complex.
The first issue is the over-segmentation due to the pres-
ence of noise in the data sets. To this aim, generaliza-
tion algorithms have been developed by several authors
to locally simplify the structure of a Morse-Smale com-
plex [Wol04, EHZ01, BEHP04, TIKU95, Tak04, GNP∗05].
The second issue is related to the large size and complex-
ity of available scientific data sets. Thus, a multi-resolution
representation is crucial for an interactive exploration of
such data sets. There exist just a few proposals in the litera-
ture for multi-resolution representations for 2D scalar fields
[DDM∗03a, BEHP04, BPH05].

The generalization of a Morse-Smale complex for a two-
dimensional scalar field consists of collapsing a maximum-
saddle pair into a maximum, or a minimum-saddle pair into
a minimum, so as to maintain the consistency of the underly-
ing complex. Usually, this operation is viewed as the cancel-
lation of a pair of critical points, namely, a maximum and a
saddle or a minimum and a saddle. A cancellation simulates
the smoothing of the scalar field by modifying the gradient
flows around two critical points.

We have formalized a cancellation in terms of the combi-
natorial representation of the critical net, defined by the sur-
face network, as described below (see [DDPV05] for more
details). Let SN = (C,A) denote the surface network for a
2D scalar field. Let p and s be two critical points (i.e., two
nodes in SN such that arc (p,s) ∈ A, and p is a minimum
(maximum) and s is a saddle. We call the Influence set I+ of
(p,s) the collection of arcs a1, . . . ,ak in A which are incident
either in p or in s.

I+ = {e ≡ (t,v) ∈ A, |{p,s}∩{t,v} 6= ∅}

We call relevant saddles those saddles, different from s,
which are connected to p through an arc belonging to I+.
Let Rs denote the set of relevant saddles with respect to the

p
s q

s1

s2

s3

q

s1

s2

s3

              (a)                                                       (b)

Figure 3: (a) A surface network SN = (C,A). The arcs in I+

are highlighted in dark blue. (b) The surface network S′N =
(C′

,A′) obtained from SN by cancellation of saddle s and
minimum p. The arcs in I− are highlighted in purple.

pair (p,s).

Rs = {si ∈C,si 6= s|∃e ∈ I+ ∧ e ≡ (si, p)}

Moreover, because of the definition of surface network, if p
is a minimum (maximum) there must exist exactly one other
minimum (maximum) q, different from p connected to s
through an arc in I+. Let I− denote the set of arcs connecting
q with all the relevant saddles. Thus, I− = {(q,si)|si ∈ Rs}
and, obviously, I− ∩A = ∅. The generalization transforma-
tion (cancellation) on a surface network SN = (C,A) is thus
defined as follows:

C = C \{p,s},A = (A\ I+)∪ I−

In other words, points p and s are removed from C and the
arcs in I− are replaced with I+ in SN . Figure 3 (a) shows
an example of a surface network SN = (C,A). The arcs in
I+ are highlighted in dark blue. Figure 3 (b) illustrates the
surface network S′N = (C′

,A′) obtained from S by canceling
the points s and p, where s is a saddle and p is a minimum.
The arcs in I− are highlighted in purple.

Generalizations (or contractions) of surface networks
have to be such that the resulting surface network should
always be topologically consistent. The main difference
among the methods proposed in the literature is in the
way pairs of critical points to be canceled are selected. In
[Wol04], a minimum (maximum) p is chosen for cancella-
tion together with its lowest (highest) adjacent saddle s. The
order in which the minima and maxima are chosen for the
cancellation is not specified. In [EHZ01], and in [BEHP03],
a saddle s is selected together with its adjacent maximum at
lower elevation, or its adjacent minimum at higher elevation.
The order in which the pairs of points are canceled is deter-
mined based on the notion of persistence (see [BEHP03] for
more details on persistence). In the generalization algorithm
proposed in [Tak04], a pair of adjacent critical points p and
s is chosen in such a way that the difference in elevation be-
tween p and s is minimal among all (unsigned) differences
in elevation between a saddle and an adjacent minimum, or
a saddle and an adjacent maximum (see Figure 3).
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5. Multi-resolution Surface Networks

Let us consider a sequence of legal generalizations applied
to the surface network SN = (C,A) at the maximum resolu-
tion. This sequence produces a surface network at the coars-
est resolution, the we call the base network. We can invert
the cancellation sequence, by considering the base network
plus a sequence of refinements. A refinement is the inverse
operation with respect to a cancellation. We observe that
some refinements do not have to be necessarily applied in
the same order as in the sequence. We can thus define a de-
pendency relations among refinements. Intuitively, two re-
finements are considered to be independent if they do not
affect the same portion of surface network. If u and w are
two independent refinements, then u can be applied before
w, or w before u. Thus, a multi-resolution representation for
a surface network encodes the surface network at the coars-
est resolution, plus the a collection of refinements, reversing
the cancellation sequence, and a dependency relation among
them. The hierarchical Morse-Smale complexes introduced
in [BEHP04,BPH05] can be seen as an instance of such rep-
resentation.

A cancellation applied to a surface network SN = (C,A)
can be expressed as a pair (I+

, I−), as explained in the pre-
vious section. We denote with S′N = (C′

,A′) the surface net-
work obtained from SN by replacing I+ with I−. Then, the
inverse refinement transformation, applied to S′N consists of
replacing the arcs in I− with those in I+, thus yielding net-
work SN as result. We call the pair u = (I−, I+) a refinement
update. A refinement update u = (I−, I+) can be applied to
a surface network SN = (C,A), if and only if I− ⊂ A and
also u′ = (I+, I−) satisfies the requirements to be a feasible
cancellation transformation (as defined in Section 4). Thus,
we can define a dependency relation between pairs of refine-
ment updates u1 = (I−1 , I+1 ) and u2 = (I−2 , I+2 ) as follows:
u2 directly depends on u1 if and only if u2 removes some of
the arcs inserted by u1, thus if and only if I+

1 ∩ I−2 6= ∅. We
denote the direct dependency relation as ≺.

Figure 4 shows a surface network at the coarsest resolu-
tion (base network) and the refinement transformations with
their dependency relations. The updates 1 ≡ u1 = (I−1 , I+1 )

and 2 ≡ u2 = (I−2 , I+2 ) involving pairs (s1, p1) and (s2, p2),
respectively, are independent. Note that I−1 ∩ I+2 = ∅ and
I−2 ∩ I+1 = ∅. The refinement update 3 ≡ u3 = (I−3 , I+3 ) de-
pends on both the updates 1 and 2, since I−3 ∩ I+1 = p1 and
I−3 ∩ I+2 = p2.

The transitive closure of relation ≺ can be shown to be
a partial order. Thus, we call the pair M = (U,≺) a Multi-
resolution Surface Network (MSN). In Figure 4 an example
of an MSN is depicted. Note that the direct dependency rela-
tion is represented as a Directed Acyclic Graph (DAG). The
refinements belonging to any subset U ′ on the set of refine-
ments U , that is closed with respect to the partial order (i.e.
such that, for every refinement u′ ∈ U ′ also the refinements

1 2

3

p1
s1

p2

s2

p1

p3

p2

s3

Figure 4: The DAG of the refinement updates. On the top
of the picture the base network is depicted. The refinement
updates 1 and 2 are independent, while the update 3 depends
on both 1 and 2.

preceding u′ belong to U ′) can be applied to the base net-
work SB in any total order that extends the partial order, thus
producing a surface network at an intermediate resolution.

It can be easily seen that any extracted surface network
is a planar graph. The base network SB is a planar graph,
since each refinement removes a set of arcs I− which are
all internal to a cycle defined by the relevant saddles and the
new set of arcs I+ are internal to the same cycle.

The basic operation that we need to perform on a multi-
resolution surface network consists of extracting a sur-
face network from an MSN satisfying some application-
dependent requirements based on the level of detail (LOD),
such as the density of the critical points, the difference in el-
evation of pairs of removable points, etc. The LOD criterion
can be uniform, or variable in space. Such operation is called
selective refinement.

A selective refinement algorithm traverses the partially or-
dered set U of updates and constructs a closed subset U ′

of updates that, when applied to the base network SB, gives
the network which is the answer to the selective refinement
query. Figure 5 shows examples of networks extracted from
a triangulated terrain. Figure 5 (a) illustrates the coarsest sur-
face network, Figure 5 (b) and Figure 5 (c) represent inter-
mediate refined surface networks. Finally, Figure 5 (d) illus-
trates the surface network at full resolution.

A direct encoding of an MSN by storing, for each update
u = (I−, I+), the set of arcs in I− and I+ can be inefficient
in term of space. Thus, we have developed a compact rep-
resentation that we describe below. The direct dependency
relation is encoded as a DAG in which the nodes correspond
to refinements and the arcs describe the direct dependency
relation. Updates are described not as collections of arcs, but
procedurally. The encoded information must be sufficient to
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Figure 5: (a) The initial triangulated terrain and the coars-
est surface network. (b)-(c) Two intermediate surface net-
works. (d) The surface network at full resolution.

q

s'

s"

Figure 6: The arcs in I− are marked in purple. q is a mini-
mum and s′,s′′ are saddles.

perform both cancellations and refinement on any currently
extracted surface network. A refinement is required when
extracting a network at some intermediate resolution by top-
down traversal of the DAG, while we need to perform can-
cellations to coarsen locally any extracted network.
The cancellation transformation is entirely specified by the
pair of critical points (s, p) removed, where s is a saddle
point and p a minimum (maximum). To perform the inverse
refinement transformation u = (I−, I+) we need to specify
the two critical points p and s inserted by the refinement (co-
ordinates and field value), and an implicit description of I−.
This is obtained by specifying:

• the critical point q which is the extreme vertex of every
arc in I−.

• ordered pair of relevant saddle points (s′,s′′) satisfying
the following condition:

– there exist two arcs (s′,q) and (s′′,q) which are inci-
dent in q.

– I− is the set of arcs incident in q which are between
arcs (s′,q) and (s′′,q) by considering the arcs incident
in q in counterclockwise order around q (see Figure 6).

Note that I+ is then completely defined since the extreme
nodes of the arcs in I− which are different from q define the
relevant saddles (see Section 4). Thus, an update is encoded
in 24 bytes since we assume to store the coordinate, the field
value, or a pointer in 4 bytes.

uv w v

Figure 7: (a)The diamond in gray will be deleted. (b)The
resultant diamonds after the cancellation.

uv w

Figure 8: Region of influence in [BEHP04]

The model proposed in [BEHP04] is based on the sim-
plification of the critical net instead of the surface network,
and thus is a combined geometrical and topological hierar-
chy, while an MSN is a strictly combinatorial one. When a
pair of critical points p and s are canceled, they are removed
from the mesh through gradient smoothing that introduces
an error which is bounded by half the persistence of (p,s).
The regions in the new Morse-Smale complex are smoothed
and the paths joining the relevant saddles to the minimum
or maximum, on which p and s are collapsed, are recom-
puted using the new geometry. The central element of this
data structure is the diamond. Each diamond is centered in a
saddle and consists of a quadrangle whose vertices alternate
between minima and maxima around the saddle (see Figure
7). A cancellation corresponds to removing a diamond and
re-connecting its neighbors. Two cancellations are consid-
ered independent when their diamonds share no vertex. This
rule is over constraining, since some diamonds that share a
vertex with the removed diamond are not actually affected
by the cancellation (see Figure 8). The work in [BPH05] im-
proves over the previous hierarchical representation by re-
ducing the number of dependencies. It can be easily seen
that the dependency relation in [BPH05] is the same as in an
MSN, while the data structure combines a tree representation
of the cancellation operation with a dependency graph, but
its implementation is not specified. The data structure corre-
sponds to a direct implementation of the dependency relation
in a MSN as a DAG and to an explicit encoding of the up-
dates by specifying sets I+ and I− as collection of edges.
The major advantage of the compact data structure we have
proposed here is its efficiency in term of space requirements.

6. Concluding Remarks

We have considered the problem of representing the mor-
phology of a scalar field at different resolutions. The terrain
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morphology is described through a Morse-Smale decompo-
sition of its domain, which is abstracted in the surface net-
work. We have then formalized the generalization operator
on a surface network and defined a hierarchical representa-
tion in the form of a multi-resolution surface network (MSN)
to be combined with a multi-resolution geometry-based ter-
rain model, which encompasses the morphology simplifica-
tion at different resolutions. We have shown an efficient im-
plementation of an MSN and how variable resolution repre-
sentations can be extracted from it.

Further development of this work involve developing effi-
cient techniques for computing Morse complexes for 3D and
4D scalar fields, and investigate multi-resolution morpho-
logical representations of 3D scalar fields based on Morse
decompositions. To this aim, we are currently extending the
algorithm in [DDM∗03a] to the 3D case.
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