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Abstract
The paper describes a method for recognizing similar sub-parts of objects described by 3D polygonal meshes.
The innovation of our method is the coupling of structure and geometry in the matching process. First of all,
the structure of the shape is coded in a graph where each node is associated to a sub-part of the shape. Then,
the matching between two shapes is approached using a graph-matching technique relying upon a geometric
description of each sub-part.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: Object Modelling

1. Introduction

Assessing the similarity among 3D shapes is a very com-
plex and challenging research topic. Whilst there are already
techniques for rapidly extracting knowledge from massive
volumes of texts, there is an increasing demand for tools
supporting the automatic search for 3D objects and their sub-
parts in digital archives.

There is a growing consensus that shapes are recognized
and coded mentally in terms of relevant parts, or features,
and their spatial configuration, or structure. Methods ap-
proaching the problem from a geometric point of view do
not take into account the structure of the shape and gener-
ally the similarity distance between two objects depends on
their spatial embedding.

The work herein presented is based on results of differ-
ential topology, which deals with the description of shape
by means of shape properties of one, or more, real-valued
functions defined over the shape. Studying these proper-
ties, topological descriptions of the shape can be defined,
namely the Reeb graphs, which induce a decomposition of
the shape into significant regions. Such a decomposition de-
fines a structural description of the shape, which is coupled
with an error-correcting subgraph isomorphism to provide a
system for shape similarity analysis. Moreover, the proposed
framework makes it possible to plug in heuristics for tuning
the matching algorithm to the specific application, in partic-

ular the 3D shape sub-parts correspondence and the partial
matching.

Aim of this paper is to describe a method for recogniz-
ing the sub-parts of two objects the most similar both in
geometry and structure and to discuss the feasibility of the
proposed approach. Main innovation of the method is the
coupling of a structural descriptor, like the Reeb graph pro-
posed in [Bia04], with a geometric descriptor and the inexact
graph-matching techniques.

The reminder of the paper is organized as follows. First, a
brief overview on existing techniques for shape retrieval and
partial matching is given. Then, the description of our ap-
proach is proposed; since solving the complete graph match-
ing is computationally expensive, a new heuristic method
which speeds up the process is proposed. Finally, results
are presented and discussed. Conclusive remarks and sug-
gestions on future work end the paper.

2. Previous work

Concerning 3D shapes, there is a great number of tech-
niques for shape matching. Many methods for 3D object
comparison return as output a positive real number which
measures how much an object resembles to another one
[OFCD01, NK01, CRC∗02, VT03, KFR03]. Since no infor-
mation on the sub-part correspondence of the compared ob-
jects is stored, these approaches are not available for partial
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matching and mapping of objects. On the contrary, such an
information is essential in applications like object modeling,
registration and recognition.

The use of spin-images [JH97] for classifying sub-parts
of 3D objects has been recently proposed in [HKDH04]
and [RCSM03]. Both methods represent the 3D objects
as a set of parts, which are compared to obtain an object
sub-part mapping. Other approaches like those described in
[FGN89,FKS∗04] try to match global shapes with a special
emphasis on selected sub-parts. For example, in [FGN89]
the surface of an object is described by segmenting it into
patches; the complete surface description separately repre-
sents each patch and their interrelationships. Complex sur-
faces are segmented into simpler meaningful components
(the patches) through shape discontinuities, such as jump
boundaries, limbs and creases. Therefore, such a descrip-
tion can be viewed as an attributed graph whose nodes cor-
respond to the surface patches and the edges codify the rela-
tions between them.

Finally, the methods proposed in [BSRS04] represent the
shape object as binary tree obtained by recursively subdivid-
ing the object into two parts. The similarity measure between
two objects is obtained by matching the two trees, where
the sub-part correspondence is induced by the node mapping
provided by the matching algorithm.

All these methods provide only one and arbitrary descrip-
tion of the object shape, while the framework proposed in
this paper is based on the consolidated Reeb graph the-
ory that allows the use of different functions to analyze
the shape, each one able to identify different relevant sub-
parts of the object. In particular, methods based on the spin-
images provide a point-to-point correspondence between the
object surfaces and do not store any kind of structural and
topological information. On the contrary, the structural in-
formation represented in [FGN89,BSRS04,FKS∗04] either
does not guarantee the identification of the most meaningful
sub-parts or is not able to modularly incorporate different
heuristics capable of adapting the matching to specific ap-
plication contexts (e.g. global matching, sub-part correspon-
dence, partial matching) or is not fully automatic [FKS∗04].

The use of structural descriptions for shape similarity
has been firstly addressed in [HSKK01], where the Reeb
graph is proposed in a multi-resolution fashion to build
a graph and perform shape similarity by means of graph
matching techniques. Similar criteria have been successively
used in [BRS03] and further enriched by [TS05], where for
each slice the geometric attributes considered are the vol-
ume, a statistic measure of the extent and the orientation
of the triangles, an estimation of the Koenderink shape in-
dex and a statistic of the texture. Other geometric descrip-
tors have been proposed for associating to the nodes of a
skeletal graph the description of the related model sub-parts.
In particular, methods based on the medial axis [Blu67] like
[SSGD03,ZSM∗05, IJL∗05] code in a vector therelevance

of the skeletal edges incident in a node (e.g. edge length,
diameters and average circumference of the skeleton loops)
or use geometric descriptors, like the mean curvature his-
togram [ZSM∗05].

3. Sub-Part Correspondence

In our idea, the partial matching problem may be grouped in
three main issues:

1. recognizing similar sub-parts in objects that are both
structurally and geometrically similar (that is, having
similar overall shape);

2. recognizing analogous sub-parts in objects having differ-
ent overall shape;

3. distinguishing if an object shape is itself a sub-part of
another.

In particular, we observe that the third problem is a particu-
lar case of the second one. In the first case similar sub-parts
of the two objects should be automatically recognized and
mapped. The method proposed in this paper is able to ap-
proach all facets of the sub-part shape correspondence prob-
lem with major emphasis on the first one (due to the proper-
ties of the structural descriptor we have adopted).

The second kind of correspondence deals with objects
having different overall shape but similar sub-parts. The par-
tial correspondence should recognize similar sub-parts of the
two objects and produce the correspondent mapping.

3.1. Shape descriptors

Our implementation of the matching process involves both
structure and geometry of the two objects. At the moment,
the structural information of the object is captured by the
Reeb graph computed with respect to a position invariant
function [BMM∗03], see figure1.a). The functions used to
validate the matching framework proposed in this paper are
the distance from the center of mass of the object and the in-
tegral geodesic distance in [HSKK01]. As shown in [Bia04],
the shape characterization and the Reeb graph construction
naturally induce a decomposition of the shape in topolog-
ically significant regions, see figure1.(a). The region de-
composition obtained from our contouring approach does
not admit slices with internal holes and each border com-
ponent of the surface patches is shared by only two dis-
tinct patches. Since each border component is completely
shared by two patches, cutting and pasting operations along
such a contour may be performed independently from other
contours. Moreover, this segmentation produces a directed
graph [BMM∗03], in which each node corresponds to an
object patch and each edge connects two nodes, see figure
1.(b).

characterization, see figure1.c). The value off and a ge-
ometric descriptor are associated to each node in the simpli-
fied ERG. In our approach we move from a local description
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of the surface slice to a more general representation of the
model sub-parts, based on the assumption that the larger the
model portion associated to a node is, the more relevant the
node should be.

Since our graph is directed, each node identifies a sub-
graph and the geometric attribute associated to the node is
obtained from the surface related to its subgraph, see figure
1.d). For leaf nodes, whose sub-graph is empty, we consider
only the slice of the shape that correspond to them. Once
sub-parts have been associated to each node, we use the
spherical harmonic analysis of the sub-part to describe its
geometry. Spherical harmonic analysis has been defined in
[KFR03] and this descriptor is rotation invariant. In [KFR03]
the scale invariance is obtained by uniformly scaling a model
in a cube whose edge lenght is two; therefore, in our case
each sub-part is separately scaled.

(a) (b) (c)

(d)

Figure 1: A Reeb graph of a calf a), the surface segmenta-
tion associated b) and the oriented graph c). In d) the surface
portions associated to some nodes are highlighted; these re-
gions contain all patches associated to the subgraph nodes.

3.2. Graph matching

The sub-part shape correspondence between two objects is
obtained by matching the directed attributed graphs. Inexact
graph matching has been topic of research since many years
and several techniques are available [MB98, CFSV04]: re-
cently, the framework proposed in [MSF05] formalizes the
enumeration of all common subgraphs of two graphs in a
way that makes it straightforward usable for plugging heuris-
tics in it and, according to the specific case, achieves differ-
ent approximations of the optimal solution. The matching

algorithm proposed in this paper is a specialization of that
described in [MSF05] for partial graph matching applica-
tions.

According to the notation proposed in [MSF05] we name
a graphG a common subgraph of G1 andG2 if there exists
a subgraph isomorphism fromG1 to G and fromG2 to G. A
maximal common subgraph is a common subgraph that can
not be extended to another subgraph by the addition of nodes
or edges. Amaximum common subgraph of G1 andG2 is a
common subgraphG such that there exists no other common
subgraph having more nodes thanG. The maximum com-
mon subgraph in not necessarily unique.

The output of the matching process should be the largest
maximal common subgraph that minimizes the geometrical
and the structural differences. The proposed matching algo-
rithm can be synthetically described by the two following
steps:

1. Select a mappingsM among the nodes of the two graphs
G1 andG2. The mappingM is a set of node pairs(v1,v2),
wherev1 is a node ofG1 andv2 is a node ofG2;

2. compute the common subgraph betweenG1 andG2 by
expanding the mappingM.

The step2. expands the initial mappingM as much as possi-
ble while respecting the definition of common subgraph.

As discussed in [Mar05], running the algorithm onM
yields an approximation of the maximum common sub-
graph. Heuristic techniques can be used to select the best
initial mappings and the subgraph expansion rules, in order
to better approximate the optimal solution.

Depending on the attributes and on the topology of the
graph, some nodes are more relevant than others. Since the
considered input graphG is directed, each nodev identifies
a subgraphG′ induced by the set of nodes havingv as ances-
tor plus v itself [BMM∗03]. The notion of node relevance
is used to select the initial mappingM and it is captured
by the subgraph associated to the node: a large subgraph
corresponds to a large amount of structural and geometric
information and then to a more relevant articulated object
sub-part. Another useful heuristic has been constructed as-
sociating to the pair of nodes(v1,v2) the information about
how much the common subgraph would expand with the ad-
dition of that pair. To this end, a distance functiond(v1,v2)
between two nodesv1 andv2 that involves node and edge
attributes and the approximation of the structure of the sub-
graphs related tov1 and v2 has been defined in [MSF05].
Then, the similarity between the subgraph structures is de-
fined as:

St_S =
in+out + sub_n+ sub_in+ sub_out

5
,

where

X =

{

0 if max(X(v1),X(v2)) = 0
|X(v1)−X(v2)|

max(X(v1),X(v2))
otherwise
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in andout represent the indegree and the outdegree of the
two nodes,sub_n the number of the subgraph nodes,sub_in
andsub_out the indegree and outdegree sum of the subgraph
nodes. FinallySz_S = sub_s, wheresub_s is the sum of the
edge attributes of the subgraph.

The graph matching algorithm follows the framework
proposed in [MSF05]. The relevance of a node is computed
with respect to the average size of all subgraphs induced,
and the set of the initial nodes mapping (CANDIDATES) is
obtained by combining all relevant graph nodes. The node
pairs belonging toCANDIDATES are ordered with respect
to d; then, the candidate node pair with the smallest value of
d is extracted. New node pairs are added toCANDIDATES
by combining all the nodes outcoming from the initial pair.
In particular we observe that the initial mapping among rele-
vant nodes makes the algorithm robust with respect to struc-
tural noise allowing the construction of a not necessarily
connected common subgraph enabling the recognition of
similar sub-parts even if the overall objects shape/structure
is dissimilar.

3.3. Computational complexity

The computational cost of the algorithm is given by the
sum of the costs of two main steps: the extraction of the
structural algorithm and the graph matching phase. The first
step of the algorithm (that includes the extraction of the
ERG structure and the coding of the models sub-parts us-
ing the spherical harmonic descriptor in [KFR03]) may be
stored in an out-of-core pre-processing phase. As shown
in [Bia04] the complexity of the ERG extraction process is
O(max(m + n,n log(n))) with m the number of vertices in-
serted in the triangulation during the slicing phase andn the
number of vertices in the original mesh. The storage of the
graph nodes using the spherical harmonic descriptor requires
O(b4)) operations using a volumetric regular grid having
O(b3) cells, see [Kaz06] for details.

The computation of the commmon subgraph between two
graphs, withn andm nodes respectively, is polynomial with
respect tok = max(n,m). In fact, identifying the relevant
nodes is linear with respect to the number of nodes of the
graphO(k), while the mappingM is obtained by combining
all relevant graph nodesO(s ∗ k2), wheres is the compu-
tational cost of the comparison of two geometric attributes
associated to the graph nodes. The construction of the or-
dered setCANDIDATES takesO(k ∗ log ∗ k) while the ex-
traction of the smallest value ofd is constant; new elements
of CANDIDATES are obtained by combining all the nodes
outcoming from the pair of nodesO(s ∗ k2) and this oper-
ation is repeated at most once for each node belonging to
the common subgraph. By all these observations the com-
putational complexity of the graph matching algorithm is
O(s∗ k3).

Figure 2: Sub-part correspondence among three animals:
these models have similar structure and geometry.

4. Examples and discussion

In this section some experimental results are provided and
discussed. Sub-part correspondence represented in the fig-
ures of this section is obtained by giving the same color to
similar sub-parts.

In figure 2 is shown the partial correspondence obtained
by comparing similar models, in our case three horses. Al-
though the overall shape of the animals is the same, the mod-
els differ over some details: for example, the structure of
the head, the tail and the posture. Our partial matching cor-
rectly recognizes the correspondence among the bodies and
the front/rear sub-parts of the models. If some shape features
have no correspondence in the other models (like the tail)
they are not mapped at all. Nevertheless it could happen that
features like the legs may be switched. This is caused by
a lack of structural information into the leg description, in
these cases the sub-parts mapping is completely demanded
to the geometric descriptor that produces this output.

Other experimental results of the application of our
matching method to models having same overall shape but
different spatial embedding are shown in figure3. The
geodesic distance distribution on a human model does not
change if the legs and the arms are stretched rather than
curled up. Therefore, since our structural descriptor is inde-
pendent of different poses of the same object, our method
can recognize human features like hands, head, legs and
body in arbitrary positions, see figure3.

An example of partial correspondence among models hav-
ing different overall appearance is given in figure4. In this
case the models differ both in structure and geometry but
they have similar sub-parts: even if the two big protrusions
are not similar from a geometric point of view they have sim-
ilar structure. The coupling of geometry and structure pur-
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Figure 3: Correspondence of shape features on a human
model in different poses.

sued by our algorithm correctly map these sub-parts. On the
contrary, the central parts of the models are different both
in structure and geometry, thus they are not recognized as
similar sub-parts.

Figure 4: The correspondence between the sub-parts of the
two models is highlighted by the color.

In figure5 an example where a whole model is a sub-part
of another one is shown: the graph of the cow head is a sub-
graph of the cow graph. The matching algorithm computes
the common subgraph reasoning on the graph structure and
on the geometric attributes, with the result that the mouth,
the ears and the horns are correctly mapped. In this case,
the algorithm expands as much as possible the initial map-
ping among the relevant nodes so that the front part of the
cow head is correctly mapped, but its neck is mapped with a
part of the body. This is intrinsic to the sub-parts correspon-
dence problem. The cow head is described as a global object
and the Reeb graph has a different edges orientation with re-
spect of the head of the whole model. This fact may produce
unexpected node mappings where the structural descriptor
carries a small amount of information, that is the neck of the
cow head.

5. Concluding remarks and future work

In summary, in this paper we have presented a new method
for measuring similarity and recognizing sub-part corre-
spondence between 3D shapes. Main research contribution
is the new similarity matching mechanism to compare 3D
shapes coupling geometry and topology. Since this method

Figure 5: Recognition of the head of a cow with respect to
the whole animal model.

computes an approximation of the maximal common sub-
graph of two structural shape descriptors, it is particularly
suitable for sub-part shape correspondence. In addition, it
is flexible, because it can be applied to any skeletal structure
with the same properties of our topological graph (attributed,
directed and acyclic), and tuneable, as it can be used in a
multistep query approach, to progressively refine the set of
geometrically similar candidates. Even if the flexibility of
the mapping function makes adaptable to various applica-
tion contexts, other shape descriptors like theshape graph
proposed in [MPS∗03] may be considered.

The method proposed in this paper produces an object
segmentation without any user interaction while the ap-
proaches in [RCSM03] and [FKS∗04] do. Furthermore, dif-
ferently from [HKDH04] that always splits a shape into three
parts, our segmentation depends on the shape complexity of
the object and decomposes it into a set of significant sub-
parts. The method proposed in [FGN89] produces an auto-
matic and structural subdivision of the object surface but it
works only on simple surfaces where shape discontinuities
are present and easily recognized. As shown in figures2 and
3, coupling structure and geometry like in our approach is
advantageous for comparing models having similar overall
shape and structure but different posture.
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