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Abstract
This paper presents a new system to add direct and persistent local control to the visual editing of rules for
procedural buildings, avoiding a combinatorial explosion of grammar rules. In this paper we follow the ideas
initially proposed by Lipp and co-workers [LWW08]. For this, we have added a few simple new commands, which
are added to the artist-provided ruleset in a way completely transparent to the user. The end-user selects the
primitives/assets to modify, and the system automatically incorporates these modifications into the ruleset. This
change is performed using graph-rewriting techniques, which are both simple to define and control, but also very
powerful and practical for these situations.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Computer Graphics—
Languages I.3.5 [Computer Graphics]: Computer Graphics—Computational Geometry and Object Modeling I.3.5
[Computer Graphics]: Computer Graphics—Three-Dimensional Graphics and Realism

1. Introduction

Content creation remains as one of the most important chal-
lenges in computer graphics today. One of the most com-
mon approaches is to use 3D modeling tools like Autodesk
Maya or 3DS Max. However, this is time consuming te-
dious and repetitive, but gives the designer full control of
the whole process. However, this approach scales badly with
the number of assets to model, like in the case of a large
virtual city. In that case, the currently accepted solution for
modeling of large urban landscapes is the use of procedural
techniques [WWSR03, MWH∗06]. The recent introduction
of a visual paradigm that allows the easy editing of the rule-
set [Esr12, Epi12, Pat12] has produced a shift in the current
trend towards simpler, yet effective, tools.

However, when the user wants to assign a different tex-
ture, different window type or different ornamentation rule
to a specific window or facade, problems arise as they would
have to write several new rules to identify the floor and col-
umn of the window and add the corresponding modifica-
tions. Later on, the community developed an obvious inter-
est in providing more direct control over the ruleset and the
local changes the user might be interested in. This was the
path followed by Lipp et al. [LWW08]. However, this semi-
nal work was still based on tools to edit the text-based rules

and to provide control by directly modifying the production
tree, which are not reflected in the ruleset itself.

So, the motivation behind this paper is to obtain a system
that combines the advantages of the above mentioned sys-
tems, namely:

• A simple system for local control in building design which
blends the tree-view and the graph-view of the system.
See Section 2.1.

• A mechanism that allows to store local modifications both
in an independent way, as done by Lipp et al. [LWW08],
but also in an seamless way integrated with the ruleset
itself.

• The implemented mechanism is able to provide persis-
tency.

With the techniques presented in this paper, designers will
be able to avoid the cumbersome and sometimes difficult
ruleset modifications that result from the change of a sim-
ple asset or parameter. Also, the results can be persistently
saved, both as an automatically generated (modified) ruleset
and as an external independent file. This way, local modifi-
cations are now truly integrated into the expressive power of
design grammars, bringing procedural modeling even closer
to the artistic workflow.
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2. Previous Work

The current trend in procedural modeling of buildings fol-
lows the basic principles of a shape grammar, presented by
Müller et al [MWH∗06]. The main concept of a shape gram-
mar is based on a rule-base: starting from an initial axiom
shape (e.g. a building outline), rules are iteratively applied,
replacing shapes with other shapes. A rule has a labelled
(tagged) shape on the left hand side, called predecessor, and
one or multiple shapes and commands on the right hand
side, called successors. Commands are macros creating new
shapes or commands.

predecessor→
SuccessorCommandA;

SuccessorCommandB;

The resulting geometry will also be assigned new tags with
the purpose of being further processed. In our implemen-
tation, a given pice of geometry carries all tags that this
primitive or any ancestor has received during the production
process. Traditionally, four commands were introduced in
[MWH∗06]: Split of the current shape into multiple shapes,
Repeat of one shape multiple times, Component Split (called
Comp) creating new shapes on components (e.g. faces or
edges) of the current shape and Insert of pre-made assets re-
placing a current predecessor. Every rule application creates
a new configuration of shapes. Traditionally, during a rule
application, a hierarchy of shapes is generated correspond-
ing to a particular instance created by the grammar, by insert-
ing a rule successor shapes as children of the rule predeces-
sor shape [MWH∗06] [LWW08]. This production process
is executed until only terminal shapes are left. An example
rulebase is visualized in Figure 1. Visual editing was intro-
duced later, in Esri’s City Engine [Esr12] and Epic’s UDK
[Epi12], and independently described by Patow [Pat12].

Figure 1: A visual representation of a simple rule-base. Ob-
serve that the rules themselves form a graph.

Talton et al. [TLL∗11] proposed a Markov Chain Monte

Carlo system to generate the variations on a given ruleset to
achieve a desired target. Their applications included all king
of procedural modeling techniques, from plants and trees (L-
systems) to buildings (CGA Shapes) to whole cities (random
blocks). Lin et al. [LCOZ∗11] presented an algorithm for
interactive structure-preserving retargeting of irregular 3D
architecture models, taking into account their semantics and
expected geometric interrelations such as alignments and ad-
jacency. The algorithm performs automatic replication and
scaling of these elements while preserving their structures
by decomposing the input model into a set of sequences,
each of which is a 1D structure that is relatively straightfor-
ward to retarget. As the sequences are retargeted in turn, they
progressively constrain the retargeting of the remaining se-
quences. Merrell et al. [MSK10] presented a method for au-
tomated generation of building layouts for computer graph-
ics applications. In their approach, given a set of high-level
requirements, an architectural program is synthesized using
a Bayesian network trained on real-world data. The archi-
tectural program is realized in a set of floor plans, obtained
through stochastic optimization. The floor plans are used
to construct a complete three-dimensional building with in-
ternal structure. Krecklau and Kobbelt [KK11] presented a
system for the easy generation of interconnected structures
such as bridges or roller coasters where a functional inter-
action between rigid and deformable parts of an object is
needed. Their approach mainly relies on the top-down de-
composition principle of shape grammars to create an ar-
bitrarily complex but well structured layout. None of these
works introduce a local control mechanism like we do here.

In their work, Benes et al. [BSMM11] present guided pro-
cedural modeling, an approach that allows a high level of
top-down control by breaking the system into smaller build-
ing blocks that communicate. In their work, the user creates
a set of guides that define a region in which a specific pro-
cedural model operates. These guides are connected by a set
of links that serve for message passing between the proce-
dural models attached to each guide. In this approach, local
control is introduced by the building blocks themselves, but
further control is left to the the detailed level of procedu-
ral systems, thus being completely compatible with the ap-
proach proposed here.

2.1. Direct Local Control, the graph-vision and the
tree-vision

As mentioned, traditional implementations [MWH∗06]
[LWW08] rely on a data structure called configuration of
shapes, such that every rule application operates on a con-
figuration and provides as a result a new configuration. In
general, this behavior is illustrated as a tree, where each
primitive gives as a result a new set of primitives after being
processed by an operation [Esr12]. This view of the process
actually is of limited help, as it disassociates the primitive
tree from the operation that actually produce that tree. even
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worse, as the ruleset is expressed as a set of text-based rules,
realizing the correspondences between the geometry and the
operation that produced it is very difficult. One of the reasons
for the introduction of the visual graph-based approach was
to break this disassociation and showing in one single frame-
work both approaches [Pat12], as primitives can be seen to
"flow" from one operation to the next one. Actually, we can
informally say that the tree view is the dual of the graph-
based one.

(a)

(b)

Figure 2: A very simple building and the two possible vi-
sions of its structure: as a graph (top-right) or as a tree
(middle). Actually, both visions are complementary, as each
node represents an operation that receives some geometry
as input and provides the processed geometry as output, as
shown in Figure 3.

A clear example of this paradigm can be seen in Figure 2.
In Figure 2(a)-left we can see a trivial example of a simple
building, and at its right we can see the simple graph of oper-
ations that produced it, while the primitive tree can be seen at
Figure 2(b). In the graph view, every operation is represented
as a node, while in the tree view every node is a primitive.
But the most important realization is that both views repre-
sent exactly the same process, which is illustrated in Figure
3 for a single node: the repeat node called Repeat_Floors

receives the building upper part, and repeatedly subdivides
it into the floors, which are provided as its output.

Figure 3: Each node represents an operation that receives
some geometry as input and provides the processed geome-
try as output.

For direct modeling, in the visual graph-based paradigm,
these two views are well integrated and work harmonically
to achieve the desired goal. However, when it comes to ex-
ception control, the two views collide and are difficult to in-
tegrate.

The only way to locally control any change in traditional
approaches [MWH∗06] [Esr12] was to edit the ruleset and
rewrite it completely, which is not only tedious, but also
very error prone and, more important, can lead to a com-
binatorial explosion of grammar rules for modifications that
should not affect all instances. Later, Patow [Pat12] intro-
duced an explicit Exception command, while Krecklau and
Kobbelt [KK12] added specific rules selecting a given tag
with a given primitive index to apply the different change.
Both methods basically are instances of the same rough
mechanism for adding local control to the grammar, by in-
troducing commands which allowed to add new specific tags
to a given element in the productions. This has the clear ad-
vantage of integrating local control into the ruleset with a
simple and human-readable mechanism. However, the user
was required to know exactly the primitive ID number in or-
der to select and label it. The problem with this approach is
its lack of persistence under building modifications, as the
primitive ID numbers change when any rule executed be-
fore the primitive is changed. Also, bear in mind that this
also produces a complete change in the tree, rendering use-
less any precomputation possibility. Another clear drawback
is the impossibility of using more human-friendly selection
mechanisms, like allowing the user to select a specific win-
dow or an specific floor.

Lipp et al. [LWW08] provided a direct and persistent lo-
cal control mechanism over the generated instances, avoid-
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Figure 4: Parent/children primitives: a primitive q, when
processed by an operation, results in a set of primitives p.
Any primitive p is called descendant of q.

ing the ruleset explosion mentioned before. However, their
method works entirely on the tree-view of the building, in a
completely separate way of the ruleset. Because of this, they
are forced to keep all local changes independent on a sepa-
rate file. This approach has some clear benefits, though. For
instance, the independence of the local changes and the rule-
set allow to keep the original model while still being able to
have the changes made afterwards. However, this approach
also forces the system to store independent files and have in-
dependent processing systems for the building creation and
the exceptions introduced through the local control way.

As mentioned above, our objective in this paper is to pro-
vide a tool that offers all the advantages of the previous men-
tioned works, smoothly blending their benefits in a visual
editing environment.

3. Visual Local Control

3.1. Direct Visual Selection

The first step is to provide a system that allows to select
primitives by a traversal of the primitive-tree, but at the same
time keeping track of the operations that produce each primi-
tive, in order to be able to have an accurate positioning of the
primitive to control. This clearly implies navigating through
the primitive hierarchy, which means tracking which prim-
itives resulted from the operation of a node on any given
incoming primitive.

In essence, this can be done by tracking the par-
ent/children relationships between primitives by tracking
their unique tag names. The basic verification is whether a
given primitive q is ancestor of another one p: If the set of
tags associated to q is included in the set of p, both sets not
being equal, then we say that q is ancestor of p, or that p is

descendant of q. Verification of parenthood between q and
p requires both verification of the ancestor relationship and
that that the size of the set of tags of p is at most the size of
the tag set of q plus one. With this basic functionality, par-
enthood becomes easy to verify, and the whole hierarchy of
primitives can be easily traversed with simple tree-traversal
operators. For instance, to know which primitive is the par-
ent from a given one, we simply check all primitives that
the current operation (node) receives and perform the parent-
hood verification for each one. Also, every primitive knows
the operation (node) that produced it, bridging the gap be-
tween the graph and the tree views.

In our case, we have developed a simple library that
bridges the two worlds, called productTree that provides this
functionality. The library provides a full API, strongly in-
spired by W3C’s Document Object Model [Mar02]: we pro-
vide functions to go from a primitive to its parent, its chil-
dren, and to its following sibling (the operation nextSibling
applied to the last child primitive returns a null value).

Our graphical user interface uses this library to allow the
user to navigate through the primitive tree. Once the user
selected a primitive, either as a result of this navigation
through the primitive tree, or by direct point and click, we
can precisely locate it both at the tree level and at the graph
level. See Figure 5. This allows the introduction of changes
at the selected primitives, which can be at any level in the
hierarchy. Clearly, traditional tools Autodesk Maya or 3DS
Max would require considerable more effort from the user
to achieve even a simple change in the building structure.
This is where the procedural approach excels: in its ability
to manipulate and modify a model created by the end-user.

3.2. Local Control Though Graph Transformation

Once we have an accurate localization mechanism we can
rely on, it is time to incorporate the desired user changes
into the ruleset. We do this by adding a few new operations
that are added to the traditional artistic toolbox, although in
our system they are not intended to be directly manipulated
by the user.

3.2.1. Operations

We have created four new operations, although only three of
them are used for the objective of this paper. The other one,
the tagToAttrib, is presented here with the sole purpose of
completeness. The way these extensions work is by adding
an attribute to each primitive, so that each one carries this
extra information. Of course, for the whole system to hold,
traditional operations should preserve this information. For
instance, a subdiv node must propagate the attributes of the
parent primitive to each children resulting from this oper-
ation. Basically, this requirement is the same as the ones
for the flag propagation mechanism in the works by Lipp
et al. [LWW08] and Krecklau et al. [KPK10].
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Figure 5: The selection process: the user browses the prim-
itive tree to find the place to apply the desired changes. In
this case, they select a block of windows (top-left), a floor
inside the block (top right) or a single window.

initAttrib : This operation initializes a given attribute to a
null value. Basically, it plays the role as variable declaration
in traditional programming languages, to avoid querying any
primitive for an inexistent attribute (variable). Without loss
of generality, in our implementation all attributes are stored
as strings, but a simple conversion suffices to have any type
needed. In the examples for this paper, we have initialized an
attribute labelled "selection" with an empty string. This ini-
tialization is done just after the comp operator that converts
3D geometry into 2D primitives [MWH∗06].

addAttrib : This operation sets a given value to one prim-
itive attribute. As logical, it requires the attribute to exist in
that primitive, which is done with the previous operation.
Then, this operation simply needs the current primitive ID,
which can easily be obtained from the primitive itself, and
assigns a value for the selected attribute at the chosen prim-
itive. In the examples in this paper, the addAttrib simply
needs the name of the variable to assign (i.e. selection), the
primitive ID, and the value to assign to the variable. For the
value we have used the concatenation of the string "select_"
and the string-converted selection number.

attribToTag : This operation simply converts attribute val-
ues into tags, as used by the rest of the system. This way,

we can have specific tags for each primitive value. This op-
eration works like a switch... case... default construct in pro-
gramming languages. This default tag value is used for all
the primitives not carrying any of the required attributes. In
the examples shown in Figure 11, as we have applied only
two instances of local control, we have used the selection
value assigned above and added a small substring (we used
"tag_") to the tag name. This is equivalent to use the follow-
ing code:

switch( selection ){
case select_1: assign tag "tag_select_1"
case select_2: assign tag "tag_select_1"
default: assign tag "tag_select_default"

}

tagToAttrib : This operations represents the inverse of the
previous one, assigning an attribute value to any primitive
carrying a given tag value. It also has the structure of a
switch... case... default statement.

3.2.2. Ruleset Transformation

Once the user has selected with the mechanism in Section
3.1 a position where to change a given asset or parameter,
we need to adapt the ruleset to accommodate the change. For
that reason we used the new commands introduced in the last
section. The first one to use is the initAttrib command. As it
is used only for initialization purposes, we add it as soon as
we start using 2D primitives. In a standard modeling setting,
this is done with a comp command, so we locate it and we
put the initAttrib just after. See Figure 6.

Figure 6: The introduction of an initAttrib node into the
graph.

Once initialized, we have to mark the selected primitive.
We do this by setting its attribute with the addAttrib com-
mand. As the selection mechanism described in Section 3.1
already provides us with the selected primitive, we simply
need to query it for its ID and the operation that created it,
called parent operation. This can be done with two straight-
forward lines of code. Once we have this information, we
simply instantiate a new addAttrib operation node, set its pa-
rameters, reconnect all outputs from the parent to the addAt-
trib output, and connect this node to the output of the parent
node. See Figure 7.

Finally, once we have selected the primitive we want to
change, no matter its position at the primitive tree, we need
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Figure 7: The introduction of an addAttrib node into the
graph.

to add the operations (nodes) that will introduce the actual
change at the geometry level. Our system starts by locat-
ing all insert nodes that process geometry resulting from the
selected primitive. This can be simply done by collecting
all tags used for the insert nodes that process primitives de-
rived from the current one. Then, the user is allowed to select
among these options which asset to modify. For instance, if
we select the whole ground floor in order to change its win-
dows, the user will probably only need to select between tags
"door" and "window", so this is not a problematic step unless
weird names were chosen for the tags. Then, when the user
decides to finally apply the change, the algorithm traverses
the product tree and locates the insert nodes that operate on
parts of the selected primitive. For each of these insert nodes,
the system automatically creates an attribToTag node and re-
connects all the insert inputs as inputs of the new node, and
reconnects the insert to the attribToTag output. The tag se-
lector field of the insert is also changed to the attribToTag
default tag value. Finally, new insert nodes are connected to
the output of the attribToTag operator, and their input selec-
tors are set to their respective tag values. These changes can
be seen in figure 8.

Figure 8: The introduction of an attribToTag node into the
graph and the subsequent new insert noes.

For a more complex example, in Figure 9-top we can see a

part of the operations graph corresponding to the left part of
the Raccolet House. See Figure 11. Observe that the whole
process only requires from the user the selection of the as-
set to change (or its parameters), which is done with the vi-
sual mechanism presented in Section 3.1 plus a couple of pa-
rameters indicating the replacement asset and the tag of the
target primitive (in case several primitives were selected).
Thus, this mechanism completely frees the user from the
burden to manually modify the original ruleset to introduce
the desired changes.

Figure 9: Two close-up views of the graph transformation
process. Top: Graph before the rewriting. Bottom: after.
These changes correspond to the bottom image in Figure 11.

4. Implementation

Our system is implemented over the buildingEngine sys-
tem, which is part of the skylineEngine [RP10] system,
which runs on top of SideFX’s Houdini [Sid12]. Our se-
lection mechanism, presented in Section 3.1, together with
the visual selection interface, were implemented as external
Python libraries working on the visual ruleset that defines
the operations that construct the building [Pat12]. Each of
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the four new operations presented in Section 3.2.1 was cre-
ated as a visual module using a mixture of Houdini’s own
nodes and embedded Python scripts. The graph transfor-
mation mechanism presented in Section 3.2.2, on the other
hand, works a a layer defined through scripts that operate ex-
ternally to the ruleset definition, modifying it and replacing
the "old" ruleset by the "new" one, which can be saved and
re-used in a production setting. The code for this paper is
available from the project web page, at http://ggg.udg.
edu/skylineEngine/.

5. Results

In Figure 10 we can see an example of the navigation
through the model primitive hierarchy, performed on the Sea
View Hotel model. In Figure 11 we can see our system work-
ing on the Raccolet House. The input building is shown in
11-top-left. The user starts by selecting the assets to change,
as shown in Figure 5 (top-right and bottom). The user has to
further specify the asset to use instead of the original one,
and, in the case of a multiple-selection (e.g. Figure 5-top-
right), the tag of the assets to change. Then our mechanism
modifies the ruleset as shown in Figure 9, resulting in the
finished building. This final result can be seen in Figure 11-
top-right for single asset and in Figure 11-bottom for a whole
row of assets which were changed at once. As mentioned be-
fore, this later case required the user to clarify if they wanted
to change the columns, the door or the windows, as was done
here. The insets in Figure 11 show a zoomed view of the
changed area.

6. Discussion

In this paper we have presented a new system to add direct
and persistent local control to the visual editing of rules for
procedural buildings, avoiding a combinatorial explosion of
grammar rules. This system only requires a small an intu-
itive input from the user: just to point the assets to change,
and the system automatically produces a new ruleset that in-
cludes the selected modifications. The only change needed
for current procedural production systems is the introduction
of three new commands, and a graph-rewriting mechanism
on top of the whole system. We demonstrate that this suffices
to have the same flexibility and simplicity as Lipp et al.’s ap-
proach, but seamlessly integrated into any visual pipeline.
We honestly think that this greatly enhances the artist tool-
box, and even better, this system does so without adding any
extra modeling effort. All complex manipulations are auto-
matic an transparent to the end user.

One pice of further research to conduct is, obviously, to
assess the system by architects and designers in general. We
also believe that the selection system offers a whole set of
new possibilities which should be explored, like more ab-
stract selection mechanism, rule-identification and general-
ization, or even automatic building design by example.
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Figure 10: Another example of selection for local control. .
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Figure 11: Results: The user decides to change a single window from its original type (top-left) to a new one (top-right), and
finally changes a whole set at once (bottom).
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