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Figure 1: Some models created with our system: Left: roman bridge. Middle: hermit. Right: hermit inside view.

Abstract

Procedural modeling has become the accepted standard for the creation of detailed large scenes, in particular
urban landscapes. With the introduction of visual languages there has been a huge leap forward in terms of
usability, but there is still need of more sophisticated tools to simplify the development process. In this paper we
present extensions to the visual modeling of procedural buildings, which adapt concepts from general purpose
programming languages, with the objective of providing higher descriptive power. In particular, we present the
concepts of visual modules, parameter linking and the possibility to seamlessly add abstract parameter templates
to the designer visual toolbox. We base our demonstrations on a new visual language created for volume-based
models like historic architectonic structures (aqueducts, churches, cathedrals, etc.), which cannot be modeled as
2D facades because of the intrinsic volumetric structure of these construction (e.g. vaults or arches).

Categories and Subject Descriptors (according to ACM CCS): 1.3.6 [Computer Graphics]: Computer Graphics—
Languages 1.3.5 [Computer Graphics]: Computer Graphics—Computational Geometry and Object Modeling 1.3.5

[Computer Graphics]: Computer Graphics—Three-Dimensional Graphics and Realism

1. Introduction

The creation of new content always had a great importance
in Computer Graphics’ applications, and this is becoming
even more important as hardware is getting more power-
ful for handling complex geometry and real time render-
ing. Now, traditional tools like Autodesk’s Maya [GuiO5],
3DStudio or Blender, which had been the tool of choice
for professional artists up to now, are becoming impracti-
cal tools when it comes to model massive highly detailed
scenes. Even more, any modification often requires a con-
siderable time, independently of how small it is (e.g. chang-
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ing the type of windows used in a facade). For these reasons,
procedural modeling has emerged as a well established ap-
proach for handling these highly complex scenes.

The current trend in procedural building modeling is to
use grammar-based techniques that have shown promising
results, as shown by Wonka et al. [WWSRO03] and by Miiller
et al. [MWH®06]. Later, Lipp et al. [LWWO8] introduced
an interactive visual editing paradigm for shape grammars.
However, although they realized it was difficult for an artist
to see the effects that a rule produced, they still relied on
separate workspaces for rule editing and rule execution. Re-
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cently, these tools have been enhanced with the introduction
of non-terminal symbols [KPK10], but this solution still re-
mained inside the text-based paradigm. More recently, Esri’s
CityEngine [Esr12], Epic Games’ UDK [Epil2] and Pa-
tow [Patl2] simultaneously introduced very similar visual
languages for these shape grammars, where each node is a
command and the connection between two nodes represents
the flux of geometry between them. However, these visual
tools lack the possibility to define higher-level abstraction
tools, which is important for large-scale productions.

In this paper we intend to introduce tools to generate
and generalize visual languages to simplify the creator’s
work. We start by presenting a volume-based visual lan-
guage on which we base our developments, followed by
the introduction of the definition of modules, non-terminal
symbols, parameters, and links between them within a vi-
sual modeling language. As this was already implemented
elsewhere [BD04], we do not claim any contribution in this
sense, we just offer a new interpretation of modules and pa-
rameters as functions and its parameters in a programming
language sense. So, we can enumerate our contributions in
the following four main points:

e A visual language for volume-based architecture, on
which we base successive developments (Section 3).

e Higher-level abstractions based on the volume-based vi-
sual language (Section 4).

e A mechanism to introduce abstract parameter templates
in a visual modeling language (Section 5).

e High-level post-processing tools, which further expand
the modeling possibilities (Section 6).

All these contributions enable the final user to achieve
not only higher-level abstractions which greatly enhance the
artist’s pipeline, but also simplify their work. Also, the learn-
ing curve of our extensions is smoothly blended into tradi-
tional visual modeling approaches, becoming a natural ex-
tension of existing techniques. Even non-expert users are
now able to generate nontrivial structures and new modules
within seconds thereby quickly creating complex scenes.

2. Previous Work

As mentioned, the current trend follows the basic principles
of a shape grammar, presented by Miiller et al [MWH*06].
The main concept of a shape grammar is based on a rule-
base: starting from an initial axiom shape (e.g. a building
outline), rules are iteratively applied, replacing shapes with
other shapes. A rule has a labelled shape on the left hand
side, called predecessor, and one or multiple shapes and
commands on the right hand side, called successor. Com-
mands are macros creating new shapes or commands.

predecessor —
SuccessorCommandA,

SuccessorCommandB;

— Repeat_Floors
— Repeat_Windows

[ & linsert_door

| = lInsert_Window

Figure 2: A visual representation of a simple rulebase. Ob-
serve that the rules themselves form a graph.

Traditionally, four = commands were introduced
in [MWH™06]: Split of the current shape into multiple
shapes, Repeat of one shape multiple times, Component
Split (called Comp) creating new shapes on components
(e.g. faces or edges) of the current shape and Insert of pre-
made assets replacing a current predecessor (e.g. traditional
triangle-based models). Every rule application creates a new
configuration of shapes. Traditionally, during a rule appli-
cation, a hierarchy of shapes is generated corresponding to
a particular instance created by the grammar, by inserting
a rule successor shapes as children of the rule predecessor
shape [MWH*06] [LWWO08]. This production process is
executed until only terminal shapes are left. An example
rulebase is visualized in Figure 2.

Kelly and Wonka [KW11] proposed a generalization of
the classic concept of an extrusion where a set of profiles
are used to extrude a floor-plan to generate whole build-
ing structures, plus an anchoring system to locate assets like
doors, windows or other elements. Simultaneously, Talton et
al. [TLL* 11] proposed a Markov Chain Monte Carlo system
to generate the variations on a given ruleset to achieve a de-
sired target. Their applications included all king of procedu-
ral modeling techniques, from plants and trees (L-systems)
to buildings (CGA Shapes) to whole cities (random blocks).
Lin et al. [LCOZ"11] presented an algorithm for interac-
tive structure-preserving retargeting of irregular 3D archi-
tecture models, taking into account their semantics and ex-
pected geometric interrelations such as alignments and ad-
jacency. The algorithm performs automatic replication and
scaling of these elements while preserving their structures
by decomposing the input model into a set of sequences,
each of which is a 1D structure that is relatively straight-
forward to retarget. As the sequences are retargeted in turn,
they progressively constrain the retargeting of the remain-
ing sequences. Musialski et al. [MWW12] proposed a novel
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interactive framework for modeling building facades from
images, exploiting partial symmetries across the facade at
any level of detail. Their workflow mixes manual interac-
tion with automatic splitting and grouping operations based
on unsupervised cluster analysis. Ceylan et al. [CML*12]
presented a framework for image-based 3D reconstruction
of urban buildings based on symmetry priors: Starting from
image-level edges, they generate a sparse and approximate
set of consistent 3D lines, which are then used to simultane-
ously detect symmetric line arrangements while refining the
estimated 3D model.

Krecklau et al. [KPK10] introduced a new language
(called G for Generalized Grammar) which adapts concepts
from general purpose programming languages in order to
provide more descriptive power to designers. However, the
same authors later recognize [KK12] that their procedural
modeling workflow better compares to a programmer writ-
ing a piece of code rather than an artist creating a 3D scene.
One of the most recent works in the field, done by Krecklau
and Kobbelt [KK12], introduces a set of tools to simplify
the intuitive and interactive manipulation complex procedu-
ral grammars allowing non-programmers to easily modify
and combine existing procedural models. However, the cre-
ation of these easy-to-use modules still requires high-level
programming skills, mainly because its text-based paradigm.

Visual editing was introduced later, in Esri’s City En-
gine [Esr12] and Epic’s UDK [Epil2], and independently
described by Patow [Pat12], and emerged as a powerful al-
ternative to avoid manually editing rulesets, which is tedious
and error-prone. Actually, these works build on the semi-
nal work by [Hae88], and extensions have been thought be-
fore for plants [LD98, LD99], or shaders [AW90], and can
be classified as purely visual languages [BD04].

Cutler et al. [CDM*02] resented a procedural approach
to authoring layered, solid models. They defined the inter-
nal structure of a volume from one or more input meshes,
and sculpting and simulation operators were applied within
to shape and modify the model. Their key contribution
was a concise procedural approach for seamlessly building
and modifying complex solid geometry. On the other hand,
Whiting et al. [WODO09] introduced a procedural approach
to adjust the constructive parameter of a masonry building
to achieve structural soundness. Their approach, based on
an optimization loop, was based on a text-based language to
describe the input volumes, followed by a simulation step
to adjust the parameters that the user defined for the pro-
cess (e.g. wall thickness, column width, ...). Our approach
builds on these approaches by defining a visual language for
the volume-modeling operations plus further mechanisms to
provide higher expressiveness to the end-user.

3. A visual language for volume-based architecture

In this section we will introduce our volume-based visual
language intended for the recreation of historic architec-
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Figure 3: Operations for volumes. (a) SplitVol (b) RepeatVol
(c) ReplaceFaces (d) Symmetric (e) InsertVol (f) TransVol

tonic structures like stone bridges and churches. To create
our structures, we use procedural modeling methods as de-
scribed by Miiller et al. [MWH*06]. Beginning with a coarse
volumetric model, production rules iteratively refine the ge-
ometry with internal structure and facade details. The proce-
dural system carries semantic information including archi-
tectural labels (e.g. arch, wall, column) and rule parameters
(e.g. column diameter). However, as mentioned, a difference
in our approach to traditional procedural geometry is our
use of mass modeling. Miiller et al. [MWH™06] consider
the building volume as a single solid object with no inte-
rior. In contrast, like Whiting et al. [WODO09] did, we model
solid objects as interior columns, walls, and other supporting
structures. However, we give a step further by introducing
a visual language for volume-based procedural modeling to
simplify user creation and editing tasks. Therefore, the above
mentioned language will be the visual representation of a
language for procedural modeling of volumetric buildings,
consisting of a set of rules with clearly defined syntax.

Here we provide an easy to manipulate visual equivalent
to the commands introduced by Whiting et al. [WODO09].
Visual languages are not new at all in Computer Graph-
ics, as they were used before for plants [LD98, LD99], and
Esri’s CityEngine [Esr12] and Epic Games’ UDK [Epil2]
use them to represent the ruleset for building design. This re-
sults in a streaming visual node-editing paradigm for shape
grammars, in which each node is an operation applied on
its incoming geometry stream. A connection wire routes the
output from a node to the input of another downstream node.
In our implementation, each volume carries its own local co-
ordinate system and scale, called scope, which is identical to
the one defined by Miiller et al. [MWH*06].

For the sake of brevity, we will follow a notation similar
to the classic one [MWH™06]:

label ~ command(parms){ productLabels}
These are:
SplitVol This is an operator that is the volumetric counter-

part of the two-dimensional Split command defined above.
See Figure 3(a). Its syntax is:
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:%j CreateVol1

SubdivVol5

= TRepeatVold = TRepeatVol5
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T=Tinsertvol2 InsertVol3

T=TSubdivVol7

Eéj InsertVol4

Figure 4: Aqueduct example. Top: Final model. Bottom: the
graph of operations needed to build the aqueduct.

A~ SplitVol(Z”,0.2,0.2,0.6){B|C|D}

RepeatVol This is an operator that is the equivalent to the
two-dimensional Repeat command defined above. See Fig-
ure 3(b). Its syntax is:

A~ RepeatVol(”X”,0.2){B}

ReplaceFaces This is an operator that has no 2D equivalent.
It is used to replace (some) faces of the input geometry by
new volumes to be later processed. It needs the ID of the face
to be replaced and the depth of the new volume. See Figure
3(c). Its syntax is:

A~ ReplaceFaces(1,0.3){B}

Symmetric This is an operator that has no 2D equivalent in
standard implementations. Basically, it duplicates and mir-
rors geometry. The user can specify the distance of the mir-
ror plane along its normal. See Figure 3(d). Its syntax is:

A ~> Symmetric(”Y”){B}

InsertVol This operation replaces an input geometry by the
geometry provided as parameter. The new geometry will be
scaled and translated so its bounding box coincides with the
input geometry scope. See Figure 3(e). Its syntax is:

A~ InsertVol("asset.obj”){B}

TransVol This operation allows to translate, rotate and scale
a given pice of geometry. See Figure 3(f). Its syntax is:

A~ TransVol(Trans formationMatrix){B}

Note that all directional nodes like SplitVol, RepeatVol,
and Symmetric, a direction must be specified, which can be
X,YorZ.

Figure 4 shows the Aqueduct example. The correspond-
ing network, also at the figure, consists of only 10 nodes to
model the whole structure. The time needed to create this
structure from scratch is less than 5 minutes. More examples
of the possibilities of this volumetric primitives, and its uti-
lization in conjunction of the other features presented in this
paper can be seen in Figure 1.

At Figure 5 we can see the Sainte Chapelle example,
which is a Gothic temple located at the lle de la Cité, at the
center of Paris, France. In this example we have reused the
windows node previously created, but with the parameters
corresponding to the Gothic windows in the temple. More
examples can be found elsewhere [BP12].

4. Visual languages, Encapsulation & Parameters

Formally speaking, a spatial arrangement of icons that con-
stitutes a visual sentence is a two-dimensional counterpart
of a one dimensional arrangement of tokens in conventional
(textual) programming languages, so we can safely establish
a correspondence between the tools of traditional text-based
languages and the ones of visual-based languages [BD04]. In
formalizing visual programming languages, it is customary
to distinguish process icons from object icons. The former
express computations; the latter identify primitive objects in
the language or a spatial arrangement of the elementary ob-
jecticons. In the languages developed for procedural model-
ing [LD98, AW90, Pat12], object icons are largely replaced
by further operations that create them, resorting only to the
use of process icons.

As already mentioned, the original idea of generating
higher-level modules was introduce to procedural modeling
by Krecklau et al. [KPK10]. Here we extend that idea to
visual languages and we seamlessly blend it with a visual-
paradigm pipeline [Pat12]. For that, we also use the concept
of a module. Whenever someone has a part of a network that
could be re-used within the pipeline, a module can be cre-
ated that encapsulates that subnetwork. By reducing several
operators into a single new operator, the number of repetitive
operations is strongly reduced. Actually, this mechanism is
exactly the same mechanism of procedure/function defini-
tion in programming languages, but here integrated into our
visual development environment. Modules defined this way
are new custom operator types built from node networks.
The author encapsulates the network in a module, and then
promotes parameters from nodes inside the module up as pa-
rameters of the module itself. This way, the functionality of
the network is encapsulated in the module, with all the well
known re-usability benefits. Observe that module definition
is slightly more general than the one defined by Krecklau
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Figure 5: Sainte Chapelle model. Based on a model courtesy of Emily Whiting.

et al. [KPK10] mainly because it does not need a distinc-
tion between non-terminal symbols and terminal ones: all
are treated exactly the same way.

In order to define a new module, the author must create
the module contents (the network), define its interface, and
store it in the form of a library. In case of need of a more
complex functionality, the user is free to add custom scripts
that are called either as callback functions when a parame-
ter changes, or when an event external to the module occurs
(e.g. a change in the module input geometry). Parameters are
only declared in the scope of a module, and thus we avoid
dependencies and keep our visual grammar both simple and
clear. Each parameter has a unique name within its node, and
have predefined types (a float, a 3-component vector, a ref-
erence to another node, etc.). At module definition time the
user must specify whether a given node parameter is linked
to the user interface or not. When parameters are linked this
way, they implement a simple direct copy of the values en-
tered in the user interface, but the user is free to, later on,
edit the expression stored at each internal node parameter to
introduce more complex operations. See Section 4.1.

To simplify subsequent modeling operations by simplify-
ing graph layout and reuse, we created a module to encapsu-
late the process of repeatedly creating windows of a certain
style in a wall. This module is simply called "windows". In
Figure 6-top we can see its internal implementation, plus its
user interface, which is offered to the user/artist. Observe
that the user interface provides a number of constructive pa-
rameters, as well as references to the window type to be
used. Its implementation, shown in Figure 6-bottom, simply
repeatedly subdivides the wall in equally sized chunks, and
each one is subdivided to generate the space where the actual
geometry is created. With the help of our volume library, this
meant the use of only 19 operations (nodes).
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At Figure 7 we can see the hermit example, where our
volumetric library plus our module abstraction mechanism
allowed to model the whole building, with only 11 nodes.
In the figure observe that the windows and windowsI nodes
are both instances of the windows module. We have set the
widowType parameter of the window node to the romanesque
style, but it can be easily changed with an abstract parameter
template, see Section 5. The creation of the whole model
takes a few minutes, provided that the window non-terminal
node was already created.

4.1. Inter-Parameter Relationships

Here we further expand the concept of parameter linking by
introducing a mechanism to allow to establish dependencies
between parameters. In order to do that, we re-use the con-
cept of the observer pattern [GHJV95], in such a way that
a parameter, called the subject, maintains a list of its depen-
dents, called observers, and notifies them automatically of
any value changes. The essence of this mechanism is to de-
fine a one-to-many dependency between parameters so that
when one object changes its value, all its dependents are
notified and updated automatically. Parameter dependencies
are basically implemented following this scheme: A param-
eter registers itself to the observed dependents list by using
some explicit function calls. In particular, any reference in-
side a parameters definition to another parameter automati-
cally triggers this behavior. As an example, the Aqueduct in
Figure 4 has the height of its floors linked such that, if there
are two floors, the top one is 30% of the bottom one, if there
are three the relation is 50%, 25% and 25% (smaller on top),
and if there are more, the total height is equally distributed
among the floors.



62 S. Barroso & G. Patow / Visual Generalization for Building Modeling

B —— 1 )"
Input |face [~
Select Face |0
Wall width 2.4 '=J—
Heigh |0.3 |
width [0.4 |
O Import | ® Edit
Mumber |5 |=——— JI
Arch Type |/obj/primitives/arch_Gothic ‘éﬁl 'fE
Column Width 6.1 —f—
Arch heigh 0. 43 |
Column |/obj/primitives/wall ‘éﬁl 'fE
Posx |0.5 J
PosY |0.6 JI
Output
wall
| Input Operators (Drag/Drop to reorder] ]
| #|ReplaceFaces3 x

[«

Figure 6: The windows module implementation (top) and its
user interface (bottom).

5. Abstract Parameter Templates

Modules are a good choice for enclosed, dynamic, procedu-
rally generated objects in the scene, but the concept can be
further extended by allowing non-terminal symbols as pa-
rameters. Basically, this usage of the modules is equivalent
as passing a function as parameter to another one, as done
in traditional programming languages. This creates abstract
structure templates which can be reused at several places in
the grammar. Krecklau et al. [KPK10] used the term abstract
since the evaluation of such templates does not yield a stand-
alone object. The user has to pass non-terminal symbols for
further evaluation. For instance, we can create a module that
just creates the grid tiling ignoring of what will be generated
within the tiles. Even more, we extended the ideas in that pa-
per by introducing the possibility to have parameters in the
modules used as non-terminal symbols.

As a proof of concept, we have re-implemented
the architectural examples provided by Krecklau et
al. [KPK10] (http://www.graphics.rwth-aachen.de/

C=DCreateNave2

groinVaults2

= TReplaceFaces4

SubdivVol7

SubdivVoI8

SubdivVol9

EéjSubdivVoHO

f

Houdini

Figure 7: A hermit and its corresponding graph. Top: the
operation’s graph. Middle: Inside view. Bottom: Outside
view. Left: models before post-processing. Right: models af-
ter post-processing

index.php?id=314). That code defines a simple basic fa-
cade (See Figure 8-Top) consisting of a first, two middle
and a last floor. The floors have ledges as separators, and
each ledge corner is defined with a free from deformation
algorithm. In general, the facade has 4 entry points where
the user can select different methods for the ledge and ledge
corner color, and for the windows and the building door. In
Figure 8-Top we can see the initial building where all four
entries are just geometry-coloring operations. In Figure 8-
Middle we can see the replacement of the door and windows
by slightly ameliorated versions. These assets basically use
a module called embed to generate a frame where the actual
window is placed. The module to be executed as content of
the embed module is passed as parameter. In both cases, door
and window, in this example the embed module receives
simple color module as parameter. Finally, Figure 8-Bottom
illustrates the behavior when changing the node passed to
the embed node by a more sophisticated one, which subdi-
vides the window space in smaller areas so simulate smaller
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Figure 8: Generalized grammars applied to a facade de-
sign. Top: a simple color-based definition. Middle: the sim-
ple color-based assets where replaced by a frame that inside
calls, again, the same simple flat color pattern. Bottom: the
final model replacing the windows in the middle image by
more elaborate procedural assets.

panels. In this example the nodes where also provided with
different coloring modules.

def changeType():
node = current node ()
allowEditing (node)

refNode = node.parm(’callNode’).eval()
type = identify the type of refNode
target = locate module’s dummy node

target.changeNodeType(type)
copyParms (refNode, target)

Listing 1: Procedure to change the type inside the
nonTerminalSymbolCall module.

As traditional visual modeling languages are not intended
for using modules as parameters, only their resulting geom-
etry, we had to use some non-standard techniques to build
our prototype. In particular, we developed an abstract node
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called nonTerminalSymbolCall that implements a call to the
non terminal symbol passed as parameter. Basically, the
module is implemented using the State pattern [GHIV95],
as this is a clean way for an object to partially change its
type at runtime. In our implementation, the module starts
encapsulating a simple dummy node which is replaced later
on by an instance of the node to be called. this replacement
is performed every time the parameter associated with the
node to be called from the nonTerminalSymbolCall module
is changed. Also, to guarantee the node correct behavior, the
internal state is verified every time an instance is created
or its inputs change. The main procedure in the module is
changeType, which is shown at Listing 1.

def copyParms(source, target):
for p in source.parms():
t = target.parm(p.name())
t.set(p.eval())

Listing 2: Procedure to unlock the current module hierarchy
for modification.

In the code, callNode is the name of the parame-
ter in the nonTerminalSymbolCall module used to pro-
vide the name of the sample node to use. Function
node.changeNodeType(nodeType) is a method that instan-
tiates a node of the required type (nodeType) and reconnects
all inputs and outputs from the original node. Actually, as
this method only changes the reference that to the type the
node has, this change simply implies a change in its inter-
nal structure, so all references to this node need not to be
changed. Also, it is important to remark that we have decided
to provide a sample node (pointed by variable re fNode in
the code) instead of a module abstract class name because
this allowed us to set parameters in the call. As can be seen
in Listing 2, this simply implies to take every single param-
eter in the referenced node and to copy its contents (values)
into the target node.

def allowEditing (node):
while node is not root node:
node . allowEditingOfContents ()
node = node.parent()

Listing 3: Procedure to unlock the current module hierarchy
for modification.

To demonstrate the usefulness of this mechanism, we have
extended our previous windows node with one parameter
template: the kind of arch used. First of all, we have de-
fined two non-terminal nodes, called RomanesqueArch and
GothicArch, which are shown in Figure 9-left. The modified
windows node with this change allows the user to choose be-
tween different types of windows (namely, the between the
styles defined above), see Figure 9-right. The final result can
be appreciated at Figure 10.
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Figure 9: The two arch modules (left) and their usage in the
windows node (right).

CIOUClnL |

Figure 10: The arch modules used to change the style of the
hermit windows. Top: Romanesque. Bottom: Gothic.

6. Post-processing primitives

In this section we will present two post-processing operators
we have created which are seamlessly integrated into our
volume-based pipeline and our visual modeling approach.
The first of these operations are the transformation of each
volumetric primitive into its brick-paved equivalent. Once
we model structures as an assemblage of rigid blocks, we
are able to analyze the force distributions at the interfaces be-
tween adjacent elements and use this for different physical
simulations. This step is needed for any further simulation
of the building soundness. This was also done by Whiting et
al. [WODO09] as an intermediate step before the physical sim-
ulation to guide the optimization of the building constructive
parameters.

Bricks: Once we have the volumetric-based structure, mod-
eled using the volume-oriented visual language presented
in Section 3, we can use a specific node called foBrick to
transform the input volumes into an assemble or rigid blocks
(bricks). This node allows the user to choose the tag of the
input geometry to apply the operation to, the size of each

Figure 11: The toBrick operator. top: Its basic construction
principles.

block and the tag to assign to the resulting geometry. This
last parameter is needed if the user intends to further process
the model.

This module proceeds by first subdividing each input vol-
ume into two by the axis of its thinest dimension. This is
done because this will be the one that will hold the walls
that we build in subsequent steps. See Figure 11-top. Our al-
gorithm iterates over the number of vertical rows of blocks,
from bottom to top, shifting each block by half its width. The
rationale behind this shift is to guarantee a stronger structure
than the one that would result with perfectly aligned blocks.
See Figure 11-bottom-left. After this process, the walls have
the structure shown in Figure 11-bottom-middle. Finally, we
apply an aesthetic rounding to each individual block, with
the objective of increasing the realism of the reconstruction.
See Figure 11-bottom-right.

Physical Simulation: Once we have subdivided our
volume-based model, we can proceed to simulate its struc-
tural soundness as done by Whiting et al. [WODO09]
work, or simply to simulate its destruction with time
(Figure 1) or impacts (Figure 12). This can be done
by plugging any simulation engine, like Nvidia’s PhysX
(http://developer.nvidia.com/physx), Bullet (http:
//bulletphysics.org/), Open Dynamics Engine (http:
//www.ode.org/), or even Houdini’s own dynamic system.
See Figure 13. Please, note that this can be done with tradi-
tional tools, too, but here we would like to show the flexi-
bility associated with a volume-based representation. We do
not claim a contribution in this respect.

Simulation of physical interaction can also be observed at
the right images at Figure 7, where the building was post-
processed with a simulation that produces building degrada-
tion. The resulting model was rendered in a dusty environ-
ment to complete the ambiance of the scene.

7. Implementation

Our system is implemented over the publicly available
buildingEngine system, which is part of the skylineEngine
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Figure 12: Once the volumes are replaced by an assemblage
of rigid blocks, we can select some for an artist-controlled
destruction process, or for a simple impact simulation.

[RP10] system, which runs on top of SideFX’s Houdini
[Sid12]. Now, we will present some implementation de-
tails of our system. The interested reader can download the
full source code for our demos and libraries from http:
//g9g9g.udg.edu/skylineEngine/.

Modules: For the implementation, we have used the Hou-
dini Digital Assets (HDA). A digital asset defines a node type
and exists inside an Object Template Library (OTL) file. The
node type is implemented in terms of other nodes wired to-
gether inside a node called a subnet. These nodes inside the
subnet are called the definition’s contents. A module’s al-
gorithm is determined by the nodes inside it. To edit those
nodes the user has to create an instance of the digital as-
set, unlock it, modify the contents, and save the definition.
New digital asset instances are normally locked, meaning
that they are read-only, and they automatically update when
the asset’s definition changes. An unlocked instance is ed-
itable, does not update when the definition changes, and you
can save its contents to change the definition [Sid12].

Parameter dependencies: We have used Houdini’s own
linking mechanism through so called channels. Houdini of-
fers several ways to define these links, but in the end they all
sum up to an explicit reference to a node’s parameter and its
current value. Parameters are implemented as instances of
the Parameter class, and this basic procedure is reflected by
a call like parm(path).eval(), where parm() is a command
that returns the parameter referenced by the path, followed
by an evaluation request. Observe that in Houdini parameters
are strongly typed, so the types of the observed parameters
and the types of the dependent parameters should coincide.

(© The Eurographics Association 2012.

8. Discussion and Future Work

We have introduced a set of visual tools that will help cur-
rent production pipelines based on visual procedural lan-
guages. These tools include a volume-based visual language,
and the visual counterparts for modules, non terminal sym-
bols, parameter linking, and abstract parameter templates.
Our extensions blend smoothly into traditional visual mod-
eling approaches, becoming a natural extension of existing
techniques. As mentioned, all these contributions enable the
final user to achieve not only higher-level abstractions which
greatly enhance the artist’s pipeline, but also simplify their
work. We believe that even non-expert users are now able to
generate nontrivial structures and new modules within sec-
onds thereby quickly creating complex scenes, but a thor-
ough user study is left as future work. Finally, once designers
have finished, the resulting models can be incorporated into
any application, like 3D GIS or other content-production
pipelines.

Our abstract template prototype is not free of drawbacks,
though. In particular, Houdini is not intended for this sort
of dynamic node-changing manipulations, which forced us
to find some workarounds for them. For instance, an HDA
can be either locked, so changes in the module definition
are propagated automatically; or it can be unlocked, so it
may have a current implementation that is different from any
other instance of the same node. The problem is that the con-
tents of an HDA, when it is locked, cannot be changed nor
altered in any way. As a consequence, module instances can-
not be locked, as this blocks the changeNodeType operation,
in fact raising an error message. To allow the change to hap-
pen, we need to unlock the HDA instance. But this unlocking
should be propagated upwards to any module using this un-
locked one. The code in Listing 3 implements this simple
self-plus-upwards-unlocking mechanism. We would like to
emphasize that this does not represent any problem for end-
user development. However, problems appear if one needs
to debug something inside the module or inside any module
this one uses, as changes would be local only to the current
node. To propagate changes to all other module instances,
one has to manually lock back each one, and then they will
update their contents next time they are called. This process
can be cumbersome for large structures with many nested
module calls.


http://ggg.udg.edu/skylineEngine/
http://ggg.udg.edu/skylineEngine/
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