
 

 

A GPU Based Method for the Automatic Generation of Near-

Optimal Navigation Meshes 
 

R. Oliva1 and N. Pelechano1 

1
Universitat Politècnica de Catalunya, Barcelona, Spain 

 

 

Abstract 

In this paper we present a novel, robust and efficient GPU based technique to automatically generate a Navigation 

Mesh for complex 3D scenes. Our method consists of two steps: firstly, starting with a 3D scene representing  a 

complex environment of one floor with slopes, steps, and other obstacles, it automatically generates a 2D represen-

tation based on a single polygon (floor) with holes (obstacles).This step can handle degeneracies of the starting 3D 

scene model, such as interpenetrating geometry. Secondly, a novel method that exploits the GPU efficiency is used 

to automatically generate a near-optimal convex decomposition which will represent the cell and portal graph of 

the environment. Such convex decomposition is a 2D representation of the walkable areas of the environment with 

portals indicating the crossing borders. The results show that the presented technique not only is more robust than 

previous CPU methods, but also for the tested environments with up to 1000 vertices, it performs five times faster. 

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computational Geometry and Object Model-

ing]: Geometric algorithms, languages and systems 

 

1. Introduction 

A popular solution to solve the problem of navigation in 

a complex scene, consist of subdividing the scene into con-

vex regions (cells) forming what is commonly known as a 

Navigation Mesh (NavMesh). A Cell-and-Portal Graph 

(CPG) is then created where a node of the graph corre-

sponds to a convex region of the NavMesh and a portal is 

an edge shared by two cells. Path-finding can then be 

solved using an algorithm such as A*.  

Although NavMeshes are widely used on complex appli-

cations such as videogames and virtual simulations, there 

are not many applications to automatically generate a 

NavMesh appropriate for path planning, so often either the 

user need to refine those semi-automatic NavMeshes, or 

create them by hand from scratch which is extremely time 

consuming and a source of errors.  

In [OP11], we presented a method to automatically gen-

erate near-optimal NavMeshes in the CPU. The method, 

entitled ANavMG, calculates for every notch (concave 

vertex) of the scene, the closest element that lies on the 

area formed by the prolongation of the edges incident to the 

notch, and creates a portal between the notch and the clos-

est element, which can be a vertex, an edge or a previously 

created portal. The main target of this algorithm is to create 

a near-optimal convex decomposition of the scene, and the 

brute force version of the algorithm solves the problem in 

quadratic time. 

In this paper we present an efficient and robust GPU ap-

proach to speed up the step of searching for the closest 

element, based on performing renders of the scene for each 

notch with the camera parameters defined by characteris-

tics of the notch. The new method not only has higher per-

formance values which allow the user to have very large 

environments, but it is also more robust since it overcomes 

several problems that ANavMG presented. Unlike our pre-

vious work which created NavMeshes for 2D floor plans, 

this new method can also deal with complex one-level 3D 

environments. 

The main contribution of this paper is a novel GPU 

based method to generate a NavMesh for a given 3D scene, 

representing a complex environment of a single floor. Our 

method has two main steps: firstly it abstracts away the 

information of the 3D model that represents the scene (with 

its slopes, steps and other obstacles) to automatically con-

vert it into a 2D representation based on a single simple 

polygon (floor) that can contain holes (obstacles). Second-

ly, it automatically generates a near-optimal convex de-

composition of this 2D representation. Our method is ro-

bust against degeneracies of the starting 3D model, such as 

interpenetrating geometry.  
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2. Related Work 

The concept of Navigation Mesh first appeared in 

[Sno00] described as a triangular decomposition of the 

walkable area. Some notions to construct an acceptable 

NavMesh are given, such as trying to create as few cells as 

possible and avoid to have overlapping cells. It does not 

provide an automatic method, so the NavMesh needs to be 

manually constructed.  

Triangular Meshes are commonly used to represent a 

Navigation Mesh. In [KBT03, Kal05], a dynamic Con-

strained Delaunay Triangulation (CDT) is used to represent 

the walkable area of a scene. Triangular NavMeshes are a 

good first approach because it guarantees that every cell 

created is convex and in the case of Delaunay triangulation, 

it also guarantees that it generates the lowest possible num-

ber of ill-conditioned triangles. The method proposed also 

allows the incremental insertion, move and removal of 

obstacles, adapting the Navigation Mesh in consequence. 

The main drawback is that many unnecessary cells are 

created, increasing the time for calculating a path between 

two given cells, which can be specially problematic in ap-

plications such as videogames, where a real-time response 

is required. In [DB06] the CDT technique is compared 

against grid-based maps of real commercial videogames. 

The results show that the use of a CDT to represent the 

walkable space dramatically reduces the computation time 

to find a path between two points, compared to the grid 

representation of the same map.  In [Kal10], more uses of 

the CDT are explored, such as the automatic placement of 

agents in the free space and path planning with clearance. 

In a recent publication [QCT12], a method for computing 

the CDT using the GPU has been presented. The imple-

mentation is done using the CUDA programming model 

[cud] on NVIDIA GPUs and the results show that it runs 

several times faster than any CPU method. 

Lerner et al. [LCC06] presented a method to automati-

cally generate a Cell-and-Portal Graph that worked both 

for interior and outdoor scenarios. The goal of their algo-

rithm was to solve visibility problems, so the cells are not 

guaranteed to be convex. However, this algorithm could be 

easily adapted to create a Navigation Mesh using a post-

processing step to convert the resulting cells into convex, 

for example, using the Hertel-and-Mehlhorn method 

[HM83] that is used to decompose a simple polygon with-

out holes into convex regions.   

In [HYD08], an automatic NavMesh generator method is 

described, that consists in spreading a certain number of 

unitary quad seeds on the scene. Those quads are expanded 

as much as possible, adjusting to the contour of the obsta-

cles even if they are not Axis-Aligned. When the algorithm 

ends, a merging process is applied to reduce the number of 

resulting cells. The problem is that it is restricted by quads, 

so depending on the complexity of the scene, many of them 

need to be created to completely full-fill the walkable area. 

Another issue is that there can be intersection of portals 

which could be problematic when applying a local-

movement method, leading to unnatural movement of the 

characters. The merging process helps to reduce the final 

number of cells, but the result is far from the optimal sub-

division. In addition to these problems, the method only 

works if every obstacle is convex, so a previous step to 

decompose the obstacles into convex parts is required. A 

3D version of this algorithm was proposed in [HY09], but 

it has the same limitations as the 2D version.  

Toll et al. [TCG11] presented an automatic NavMesh 

generator for a multi-layered environment, such as an air-

port or a multi-story car-park, where the different layers of 

the scene are connected by elements such as stairs or 

ramps. Each layer is represented as a set of 2D polygons 

that lies in the same plane, and the medial axis set for the 

layer is computed. The connections between layers are 

used to iteratively merge the different sets of medial axis 

and create a single data structure. Then, they extend this 

structure by adding segments with the closest obstacle to 

create a convex partition of the scene. The main problem is 

that the use of the medial axis seems to be inadequate for 

the computation of the NavMesh because a great number of 

unnecessary cells are created. Also, this technique creates 

many degenerated cells, which can introduce artifacts on 

the movement of the virtual characters. An approximation 

of the medial axis set can be computed using the GPU, as 

described in [HCK*99].The implementation of this 

NavMesh generation method, restricted to one single layer, 

can be found in [ecm]. It requires to manually creating a 

file that describes the contour of the obstacles, so the pro-

cess is not fully automatic.  

Even though Navigation Mesh is the most commonly 

used solution to solve the navigation problem in video-

games, just a few Game Engines and third party applica-

tions offers the possibility of creating this NavMeshes au-

tomatically. Valve’s Game Engine has an automatic 

NavMesh generator method based on subdividing the virtu-

al map by axis-aligned quads [val]. As any method based 

exclusively on quads, it is not really extensible to maps 

with arbitrary geometry. In addition, if the environment 

contains very steep stairs, ramps or hills, the generator 

system makes errors, resulting in a NavMesh that does not 

cover the entire map. So it is necessary to manually com-

plete the NavMesh.  

Unreal Engine [unr] has also its own NavMesh generator. 

Firstly, a high-density grid that covers all the walkable area 

is automatically generated. To adjust to the obstacle con-

tours, the size of the cell used is modified. Secondly, this 

grid is simplified, merging all quads into concave slabs 

separated only by differences in slope. Finally, those con-

cave slabs are decomposed into convex shapes.  

Recast [rec] is an automatic open-source NavMesh gen-

erator broadly used in popular videogames and other com-

plex virtual applications. The method used by Recast is 

based on the work by Haumont et al. [HDS03] that consists 

on a voxelization of the scene, followed by the generation 

of the cells through a watershed algorithm applied to the 

distance map of the scene. The cells generated by this 

method are not necessarily convex, so Recast applies a 

final step of convexalization to the resulting cells to obtain 

a convex partition. The main problem of using watershed to 

generate the cell-and-portal graph is that every local-

minimum generates a cell, leading to a non-optimal parti-

tion. The voxelization step makes the method robust 

against degeneracies (such as cracks, holes and intersecting 

geometry) as well as reduces the number of local minima, 
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but even with this improvement, the number of generated 

cells is far from the optimum. 

Regarding the use of shaders for visibility, in 

[MMG*09], a 3D urban visualization and navigation appli-

cation is presented. Their approach renders the environ-

ment geometry in a cube map, using a shader that calcu-

lates the distance to the viewer for each fragment. One of 

the main uses of this representation is collision avoidance: 

If a fragment is inside the bounding radius of the viewer, a 

force is applied to avoid the obstacle. This method also 

allows them to automatically find a path outside of a 

bounding geometry (such as a building), if the exit point is 

visible from the viewer position, i.e., it is mapped on the 

cube map.  

3. Converting a 3D World into 2D Polygons 

As most NavMesh generation methods, the Navigation 

Mesh is constructed in 2D. However, especially in the case 

of videogames, the virtual world is typically generated 

using a 3D software modeler. Since we want the method to 

be fully automatic, the first step of our method transforms 

the 3D input data into a 2D representation. In particular, the 

input required by the Navigation Mesh Generator consists 

on a single polygon defying the floor, with the vertices 

given in counter-clockwise order, and holes representing 

the static obstacles with the vertices given in clockwise 

order. The 2D Abstraction step is subdivided in several 

stages, as can be seen in figure 1. 

 

Figure 1: This figure describes the data flow of the pipe-

line of the 2D Abstraction step to convert from the 3D 

world to the 2D representation.  

3.1 Normal and Depth Map Extraction 

The first stage of the pipeline takes the 3D model of the 

scene as input and performs a render of the model from a 

top view, using an orthographic camera. A texture is creat-

ed using the fragment shader, that stores the normal per 

fragment (red, green and blue channels) and its normalized 

depth (alpha channel). Figure 2 shows the resulting Nor-

mal-and-Depth Map for a given scene.  

  

Figure 2: The initial 3D scene (Left) and its Normal-

and-Depth Map generated with the shader (Right).  

3.2 Obstacle Detection 

The target of this stage is to identify walkable space 

(floor) vs. non-walkable (obstacles). The obstacle detection 

is solved using a flood fill algorithm, where the seed is 

introduced by the user over a walkable area (notice that this 

is the only input required by the user). The Normal-and-

Depth map is used to determine if a neighboring fragment 

is similar to our current fragment. Two adjacent fragments 

are similar if the character can overcome the angle formed 

by their normals and the difference of depth. These pa-

rameters are configured through the application and depend 

on the walking abilities of the characters. If the neighbor 

fragment is reachable from the current one, then it belongs 

to the walkable area; otherwise it belongs to the frontier of 

an obstacle (contour). 

The output of this stage are a Rough Binary Partition 

(RBP) and a Rough Contour Table (RCT). The former is a 

binary image representing the walkable areas (white pixels) 

and the obstacles (black pixels), and the latter is a table 

containing those pixels marked as contour (black pixels in 

the RBP that have at least one white neighbor). In Figure 3 

we can see the binary partition with the walkable areas and 

the obstacles. Notice that the torus is treated as a solid ob-

stacle seen from above and thus the floor underneath it will 

not be treated as walkable. 

 

Figure 3: The Rough Binary Partition resulting of the 

Obstacle Detection stage.  
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3.3 Contour Expansion and Refinement 

In order to ensure a one pixel wide continuous contour 

with an area greater than zero (i.e. no obstacles of size one 

pixel or line obstacles) the RBP and RCT need to be further 

refined. 

This stage is subdivided into two sub-steps. Firstly, the 

contour is expanded by iterating over all the pixels in the 

Contour Table marking as contour those adjacent pixels 

that in the binary partition belong to the floor, i.e. white 

pixels. The target of this sub-step is to avoid future degen-

eracies such as having obstacles mapped into a single ver-

tex. 

The Contour Refinement step removes those contour 

pixels that have end up completely surrounded by black 

pixels i.e. pixels of an obstacle, and hence, they do not 

belongs to the frontier of an obstacle anymore. Figure 4 

shows these two steps over a given obstacle.  

 

Figure 4: The initial contour of an obstacle (Left); the 

expanded contour (Center); the refined contour (Right).  

At the end of this process we obtain the final Contour 

Table and Binary Partition adequate to carry out polygon 

reconstruction. 

3.4 Polygon Reconstruction and Simplification 

This step will generate the 2D model representing the 

floor and obstacles to feed the NavMesh generator. 

Firstly, the pixels on the Contour Table are sorted by its 

x coordinate, i.e., they are sorted from left to right. If the x 

coordinate of two contour pixels is the same, they are sort-

ed by the y coordinate from top to bottom. Each contour 

pixel is considered a vertex of a polygon and then a simpli-

fication method is used to reduce the final number of verti-

ces. Initially all contour pixels are marked as not-visited. 

The algorithm proceeds by iterating over all the pixels on 

the Contour Table, until it finds the first not-visited contour 

pixel. The order of the Contour Table guarantees that this 

pixel is the most left one of a polygon on the Binary Parti-

tion. When reconstructing the floor, the vertices have to be 

given in counter-clockwise order, so for the most left con-

tour pixel, we have to start moving to the S, SE or E neigh-

bor pixel that is contour. If we are reconstructing an obsta-

cle, the vertices have to be given in clockwise order, so we 

have to start moving to the N, NE or E. Figure 5 exempli-

fies the process of reconstructing an obstacle from its most 

left contour pixel C. In this case, the vertices have to be 

given in clock-wise order, so the neighbor chosen is the 

one marked with E.  

Once the first neighbor has been decided, the process 

continues by selecting and setting as visited at each itera-

tion the contour pixel that is closest to the current one, that 

has not been visited yet. In this case, all the adjacent neigh-

bors of the current pixel are checked. The Contour Expan-

sion and Refinement stage ensures that we always have a 

unequivocal neighbor contour pixel to choose as next. It 

also ensures that every reconstructed polygon has an area 

greater than 0, and that we do not have degeneracies such 

as obstacles reconstructed as a single point. The process of 

reconstructing a polygon ends when the start pixel is 

reached and the process of reconstructing all the polygons 

finishes when all the pixels on the Contour Table have been 

marked as visited. 

 

Figure 5: The most left contour pixel C of an obstacle 

and the potential neighbors that can be chosen as next.  

To reduce the total number of vertices per polygon, the 

first straight forward simplification consists on eliminating 

all vertices that belong to segments aligned horizontally, 

vertically or with 45º angle and are not end points. This 

pre-simplification step is done during the reconstruction 

process. Next, the Ramer-Douglas-Peucker Algorithm 

[Ram72, DP73] is applied to further simplify the polygon 

(figure 6).  

 

 

Figure 6: A polygon on the Binary Partition (Left); A 

high density pre-simplified polygon (Center); The final 

simplified polygon (Right).  

4. Automatically Generating NavMeshes 

The algorithm to generate NavMeshes requires as an in-

put the 2D simple polygon with holes described in this 

paper. Such polygon can either be the output of the algo-

rithm described in section 3, or it could be a 2D input given 

by the user. The algorithm presented in our previous work 

[OP11], which was fully implemented on the CPU, con-

sisted on identifying the notches (vertices with an angle 

greater than π) and transforming them into convex vertices. 

Notches are vertices that cause concavities in the geometry, 

and thus transforming them into convex vertices provides a 

convex subdivision of the space which was proved to be a 

near-optimal partition of the polygon. The transformation 
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from concave to convex is performed by creating a portal 

between each notch and the closest element (vertex, edge 

or portal) lying inside the Area of Interest of the notch. The 

Area of Interest is determined by the area formed by pro-

longing the incident edges of the notch. The method en-

sures that in the cases where the closest element is a vertex 

or an edge, only one portal needs to be created per notch. In 

the cases when the closest element is a portal with neither 

endpoints lying inside the Area of Interest, it is required to 

create two portals to transform the notch into a convex 

vertex. Hence, this algorithm leads to a near-optimal con-

vex partition of the space.  

In this paper we present an improved version of the CPU 

solution introduced in [OP11] as well as a novel GPU solu-

tion which is not only more efficient but also more robust. 

We encountered a problem in the previous work which 

appears when the closest element of a notch is a previously 

created portal. In this case a portal is created between the 

notch and one (or both) of the endpoints of the portal, but 

without checking whether the endpoint is visible from the 

notch, which in some cases can lead to intersecting geome-

try. On section [4.2] a solution to this problem is presented.  

4.1 The GPU based version 

The CPU solution presented in [OP11] has a cost of 

O(n·r), where n=number of vertices and r=number of 

notches. So if r is similar to n, the algorithm to generate 

NavMeshes has a O(n2) cost to solve the problem. This is 

not an important handicap a priori, since the NavMesh con-

struction is normally an offline process, but it becomes an 

issue when dealing with dynamic environments that require 

continuous updates of the NavMesh, as it happens in vide-

ogames. 

The new method based on GPU, starts by assigning a 

unique color identifier to each edge of the scene, which 

will be used for rendering and identification purposes. 

Then, the 2D scene is rendered from the point of view of 

every notch, with the parameters of the camera set based on 

the characteristics of the notch. The position of the camera 

is given by the position of the notch, the FOV of the cam-

era is equal to the angle formed by the prolongation of the 

edges that define the Area of Interest of the notch and the 

forward direction of the camera is defined as the sum of the 

unitary vectors that define the Area of Interest. Once the 

camera has been configured, the scene is rendered and the 

result is stored on a one-dimensional texture that contains 

those elements visible from the point of view of the notch, 

as can be seen in figure 7.  

                            

Figure 7: A simple scene with all edges drawn with a 

unique color (Left) and the texture generated from the 

point of view of the notch (Right).  

To recover the edges visible from the notch, we check 

every pixel of the texture. The color of such pixel identifies 

the edge. Then, we determine which of those edges is the 

closest one to the notch and we create a portal with its best 

candidate. We cannot simply read the depth of each pixel, 

because we need Euclidean distances to the notch. 

A critical parameter that affects directly the performance 

of the algorithm is the zFar of the camera. To avoid render-

ing an unnecessary number of elements that are occluding 

each other, the zFar is dynamically updated. A variable 

zFarScene contains the average of the distances to the clos-

est element of the already visited notches. Initially, 

zFarScene is set to 1/10th of the diagonal of the bounding 

box of the scene. Then for each notch, a render is per-

formed with zFar set to zFarScene. If no element has been 

rendered with such zFar, the zNear is set to the current 

zFar and the zFar is doubled in order to carry out a new 

render. This process continues until at least one element 

has been found that lies in the Area of Interest of the notch.  

Once the closest element to the notch is found, zFarScene 

is updated accordingly. Notice that this process implies 

several renders for some notches, but we have found empir-

ically that the zFarScene converges towards an optimal 

value that results in the most efficient render for a large 

number of the notches in the given scene. The entire pro-

cess is described on figure 8.  

 

Figure 8: Diagram describing the dynamic update of the 

zFar.  
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4.2 The Portal Vertex-Portal case 

The most complicated case that our algorithm must han-

dle is when the closest element to the notch is a previously 

created portal. In order to avoid intersections between por-

tals, the algorithm presented in [OP11] proposes creating a 

portal between the notch and one of the endpoints of the 

portal that is inside the Area of Interest of the notch. If 

neither endpoint lies within the Area of Interest, then two 

portals are created to join the notch with each of the end-

points of the previous portal. However, that approach can 

cause intersection problems, when the endpoints are not 

actually visible from the notch (see figure 9). 

To solve this problem and carry out a fair comparison 

between the CPU solution, and the new approached based 

on GPU, we have modified the previous algorithm so when 

a portal is created with another portal, we check for inter-

sections between the segment formed by the notch and the 

endpoint of the portal and the rest of edges in the scene. If 

there are no intersections, then the portal can be created; 

otherwise, the portal is created with the new found closest 

edge. 

In GPU mode this problem is solved by using one extra 

render step. The new Area of Interest is defined as the one 

delimited by the segments that join the notch with the end-

points of the previous portal as can be seen in figure 9.  

 

Figure 9: The original Area of Interest of a notch nk 

(Left). When the closest element is a portal pi, the new Area 

of Interest is defined by the notch and the endpoints of the 

portal (Right).  

The camera parameters are thus updated accordingly and 

a new render of the scene is performed. Then the algorithm 

checks for intersections between the segments joining the 

notch with the endpoints and the edges that appear on the 

new render. Notice that the GPU version needs to check 

against a reduced number of edges unlike the CPU version 

that checks against all edges in the scene.  

5. Results 

In this paper we have presented a framework to obtain 

Navigation Meshes from 3D complex environments con-

sisting of one layer where we could carry out navigation for 

characters. Firstly a method has been described to abstract 

the 3D geometry into a 2D simple polygon with holes. The 

results shown in figures 2,3,13 demonstrate the robustness 

of the method to deal with complicated environments with 

ramps, steps, holes, and so on. The method provides the 

flexibility of being adjusted to the walking abilities of the 

characters, to determine the height of the steps, and the 

angle of a ramp that a character can easily overcome. Sec-

ondly we described a novel GPU based approach to speed 

up the search for closest element to a notch. 

The experimental results have been obtained on a 

NVIDIA GeForce 8800 GTX and an Intel Core 2Quad 

Q6700 at 2.66GHz with 8 GB of RAM. We have tested the 

new GPU based algorithm presented in this paper to gener-

ate automatically NavMeshes against an optimized version 

of the work presented in [OP11] with the extension of 

checking for visibility in the case of creating portals be-

tween a notch and a previous portal. 

To test the overall performance of the algorithm, we cre-

ated 10 scenarios of increasing complexity ranging from 23 

vertices to 965.The algorithm applied dynamic zFar calcu-

lation. Figure 10 shows the time taken by both CPU and 

GPU implementations. As we can see, the time taken by 

the CPU version to solve the problem increases quadrati-

cally, whereas the GPU version increases nearly linearly 

with the number of vertices of the environment. Notice that 

the GPU algorithm can be quadratic in the worst case, but 

in practical scenarios it performs with nearly linear time, 

since it applies geometry culling using an octree to render 

the 1D texture for each notch. 

 

Figure 10: Time comparison between the CPU and GPU 

versions of 10 scenarios with different complexity.  

The experimental results were obtained performing ren-

ders over a viewport of 1x32 pixels that were then mapped 

onto a texture. The size of the texture (and thus the view-

port) used is important for the overall performance of the 

algorithm, as can be seen in figure 11.  
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    Figure 11: Time spend to solve the most complex test 

environment, for different sizes of texture.  
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We have found empirically that a size of 32 pixels for 

the texture is adequate to correctly identify the closest ele-

ment. This comparison table was obtained with the largest 

scene of 965 vertices, since for smaller scenes the differ-

ence is less significant. 

The value of the zFar chosen for performing the render 

from each notch has also an impact on the performance, 

since it determines how many segments get discarded at an 

earlier stage of the graphics pipeline. A large zFar will 

guarantee that all segments visible from the given notch are 

rendered, but with a high cost, whereas a small zFar will 

result in faster renders but may not render segments that are 

visible and relevant for creating the NavMesh. The optimal 

zFar, is thus the shortest one that allows the closest ele-

ment to be rendered without rendering many additional 

segments that are far away and thus either not visible or 

simply not relevant. 

In order to calculate the optimal zFar, we have carried 

out an experiment with the largest scenario. Empirically we 

found that for the given scenario, the optimal zFar was 2. 

Figure 12 shows the time results of generating the 

NavMesh with increasing zFar starting with the optimal 

value 2 (any value under 2 would not guarantee that the 

closest element is found for all notches). 
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Figure 12: Time spend to solve the most complex test envi-

ronment, for different values of fixed zFar.  

Our goal with this experiment was to test whether the au-

tomatic method for calculating the zFar dynamically would 

solve the problem in similar times. Therefore we then test-

ed that same scenario with the method presented in section 

4.1. The resulting time was 0,312 seconds, with an average 

zFar of 1,25 which is automatically calculated and changes 

dynamically when necessary. This shows that our automat-

ic method achieves time results similar to the optimal zFar 

calculated manually. 

The presented GPU based method not only is more effi-

cient than the previous CPU version, but also is more ro-

bust, since by carrying out renders, it automatically solves 

any visibility issues. Even though, the visibility problem 

when creating new portals of the type notch-portal could be 

treated with the CPU, we have shown an efficient and 

straight forward approach to solve the problem simply by 

performing a second render. 

 

6. Conclusions and Future Work 

We have presented a novel GPU based method to auto-

matically compute a Navigation Mesh for a complex 3D 

scene, representing a single floor plant. Our method has 

two main steps: first a 2D abstraction is constructed from 

the 3D model. Then the NavMesh is computed using this 

2D abstraction.  

The results show that the GPU based version is more ef-

ficient and scalable than the CPU version. The GPU ver-

sion is also more robust than the previous CPU version 

since it solves efficiently visibility issues that could lead to 

intersecting geometry. 

Currently, the presented method works for complex 3D 

scenes representing a single layer (with ramps, steps, holes, 

etc.). If the original scene consisted of more levels, the user 

would need to manually subdivide it, treat each level inde-

pendently and connect its Navigation Meshes. In the future 

we would like to extend our work to deal with several 

floors automatically to handle also multilayered scenes.  

Finally, our current method only takes into account the 

static geometry which is enough for most applications. 

However, it is common in applications such as videogames 

to have worlds that are constantly changing (for example, 

an explosion that creates a crack on the floor; a tree that 

falls and blocks a path; a door that blocks or makes acces-

sible a region of the scene, etc.). In those situations, the 

NavMesh needs to be modified. We would like to further 

improve our application to also handle such dynamic 

events in real time and modify the NavMesh in conse-

quence.   

 

Figure 13: The resulting NavMesh of the scene de-

scribed in figure 2.  
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Figure 14: The resulting Navigation Mesh for the scene containing 965 vertices and 650 notches. 
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