

A GPU Based Method for the Automatic Generation of Near-

Optimal Navigation Meshes

R. Oliva1 and N. Pelechano1

1
Universitat Politècnica de Catalunya, Barcelona, Spain

Abstract

In this paper we present a novel, robust and efficient GPU based technique to automatically generate a Navigation

Mesh for complex 3D scenes. Our method consists of two steps: firstly, starting with a 3D scene representing a

complex environment of one floor with slopes, steps, and other obstacles, it automatically generates a 2D represen-

tation based on a single polygon (floor) with holes (obstacles).This step can handle degeneracies of the starting 3D

scene model, such as interpenetrating geometry. Secondly, a novel method that exploits the GPU efficiency is used

to automatically generate a near-optimal convex decomposition which will represent the cell and portal graph of

the environment. Such convex decomposition is a 2D representation of the walkable areas of the environment with

portals indicating the crossing borders. The results show that the presented technique not only is more robust than

previous CPU methods, but also for the tested environments with up to 1000 vertices, it performs five times faster.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computational Geometry and Object Model-

ing]: Geometric algorithms, languages and systems

1. Introduction

A popular solution to solve the problem of navigation in

a complex scene, consist of subdividing the scene into con-

vex regions (cells) forming what is commonly known as a

Navigation Mesh (NavMesh). A Cell-and-Portal Graph

(CPG) is then created where a node of the graph corre-

sponds to a convex region of the NavMesh and a portal is

an edge shared by two cells. Path-finding can then be

solved using an algorithm such as A*.

Although NavMeshes are widely used on complex appli-

cations such as videogames and virtual simulations, there

are not many applications to automatically generate a

NavMesh appropriate for path planning, so often either the

user need to refine those semi-automatic NavMeshes, or

create them by hand from scratch which is extremely time

consuming and a source of errors.

In [OP11], we presented a method to automatically gen-

erate near-optimal NavMeshes in the CPU. The method,

entitled ANavMG, calculates for every notch (concave

vertex) of the scene, the closest element that lies on the

area formed by the prolongation of the edges incident to the

notch, and creates a portal between the notch and the clos-

est element, which can be a vertex, an edge or a previously

created portal. The main target of this algorithm is to create

a near-optimal convex decomposition of the scene, and the

brute force version of the algorithm solves the problem in

quadratic time.

In this paper we present an efficient and robust GPU ap-

proach to speed up the step of searching for the closest

element, based on performing renders of the scene for each

notch with the camera parameters defined by characteris-

tics of the notch. The new method not only has higher per-

formance values which allow the user to have very large

environments, but it is also more robust since it overcomes

several problems that ANavMG presented. Unlike our pre-

vious work which created NavMeshes for 2D floor plans,

this new method can also deal with complex one-level 3D

environments.

The main contribution of this paper is a novel GPU

based method to generate a NavMesh for a given 3D scene,

representing a complex environment of a single floor. Our

method has two main steps: firstly it abstracts away the

information of the 3D model that represents the scene (with

its slopes, steps and other obstacles) to automatically con-

vert it into a 2D representation based on a single simple

polygon (floor) that can contain holes (obstacles). Second-

ly, it automatically generates a near-optimal convex de-

composition of this 2D representation. Our method is ro-

bust against degeneracies of the starting 3D model, such as

interpenetrating geometry.

CEIG - Spanish Computer Graphics Conference (2012)
Isabel Navazo and Gustavo Patow (Editors)

c© The Eurographics Association 2012.

DOI: 10.2312/LocalChapterEvents/CEIG/CEIG12/049-056

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/LocalChapterEvents/CEIG/CEIG12/049-056

© The Eurographics Association 2012.

2. Related Work

The concept of Navigation Mesh first appeared in

[Sno00] described as a triangular decomposition of the

walkable area. Some notions to construct an acceptable

NavMesh are given, such as trying to create as few cells as

possible and avoid to have overlapping cells. It does not

provide an automatic method, so the NavMesh needs to be

manually constructed.

Triangular Meshes are commonly used to represent a

Navigation Mesh. In [KBT03, Kal05], a dynamic Con-

strained Delaunay Triangulation (CDT) is used to represent

the walkable area of a scene. Triangular NavMeshes are a

good first approach because it guarantees that every cell

created is convex and in the case of Delaunay triangulation,

it also guarantees that it generates the lowest possible num-

ber of ill-conditioned triangles. The method proposed also

allows the incremental insertion, move and removal of

obstacles, adapting the Navigation Mesh in consequence.

The main drawback is that many unnecessary cells are

created, increasing the time for calculating a path between

two given cells, which can be specially problematic in ap-

plications such as videogames, where a real-time response

is required. In [DB06] the CDT technique is compared

against grid-based maps of real commercial videogames.

The results show that the use of a CDT to represent the

walkable space dramatically reduces the computation time

to find a path between two points, compared to the grid

representation of the same map. In [Kal10], more uses of

the CDT are explored, such as the automatic placement of

agents in the free space and path planning with clearance.

In a recent publication [QCT12], a method for computing

the CDT using the GPU has been presented. The imple-

mentation is done using the CUDA programming model

[cud] on NVIDIA GPUs and the results show that it runs

several times faster than any CPU method.

Lerner et al. [LCC06] presented a method to automati-

cally generate a Cell-and-Portal Graph that worked both

for interior and outdoor scenarios. The goal of their algo-

rithm was to solve visibility problems, so the cells are not

guaranteed to be convex. However, this algorithm could be

easily adapted to create a Navigation Mesh using a post-

processing step to convert the resulting cells into convex,

for example, using the Hertel-and-Mehlhorn method

[HM83] that is used to decompose a simple polygon with-

out holes into convex regions.

In [HYD08], an automatic NavMesh generator method is

described, that consists in spreading a certain number of

unitary quad seeds on the scene. Those quads are expanded

as much as possible, adjusting to the contour of the obsta-

cles even if they are not Axis-Aligned. When the algorithm

ends, a merging process is applied to reduce the number of

resulting cells. The problem is that it is restricted by quads,

so depending on the complexity of the scene, many of them

need to be created to completely full-fill the walkable area.

Another issue is that there can be intersection of portals

which could be problematic when applying a local-

movement method, leading to unnatural movement of the

characters. The merging process helps to reduce the final

number of cells, but the result is far from the optimal sub-

division. In addition to these problems, the method only

works if every obstacle is convex, so a previous step to

decompose the obstacles into convex parts is required. A

3D version of this algorithm was proposed in [HY09], but

it has the same limitations as the 2D version.

Toll et al. [TCG11] presented an automatic NavMesh

generator for a multi-layered environment, such as an air-

port or a multi-story car-park, where the different layers of

the scene are connected by elements such as stairs or

ramps. Each layer is represented as a set of 2D polygons

that lies in the same plane, and the medial axis set for the

layer is computed. The connections between layers are

used to iteratively merge the different sets of medial axis

and create a single data structure. Then, they extend this

structure by adding segments with the closest obstacle to

create a convex partition of the scene. The main problem is

that the use of the medial axis seems to be inadequate for

the computation of the NavMesh because a great number of

unnecessary cells are created. Also, this technique creates

many degenerated cells, which can introduce artifacts on

the movement of the virtual characters. An approximation

of the medial axis set can be computed using the GPU, as

described in [HCK*99].The implementation of this

NavMesh generation method, restricted to one single layer,

can be found in [ecm]. It requires to manually creating a

file that describes the contour of the obstacles, so the pro-

cess is not fully automatic.

Even though Navigation Mesh is the most commonly

used solution to solve the navigation problem in video-

games, just a few Game Engines and third party applica-

tions offers the possibility of creating this NavMeshes au-

tomatically. Valve’s Game Engine has an automatic

NavMesh generator method based on subdividing the virtu-

al map by axis-aligned quads [val]. As any method based

exclusively on quads, it is not really extensible to maps

with arbitrary geometry. In addition, if the environment

contains very steep stairs, ramps or hills, the generator

system makes errors, resulting in a NavMesh that does not

cover the entire map. So it is necessary to manually com-

plete the NavMesh.

Unreal Engine [unr] has also its own NavMesh generator.

Firstly, a high-density grid that covers all the walkable area

is automatically generated. To adjust to the obstacle con-

tours, the size of the cell used is modified. Secondly, this

grid is simplified, merging all quads into concave slabs

separated only by differences in slope. Finally, those con-

cave slabs are decomposed into convex shapes.

Recast [rec] is an automatic open-source NavMesh gen-

erator broadly used in popular videogames and other com-

plex virtual applications. The method used by Recast is

based on the work by Haumont et al. [HDS03] that consists

on a voxelization of the scene, followed by the generation

of the cells through a watershed algorithm applied to the

distance map of the scene. The cells generated by this

method are not necessarily convex, so Recast applies a

final step of convexalization to the resulting cells to obtain

a convex partition. The main problem of using watershed to

generate the cell-and-portal graph is that every local-

minimum generates a cell, leading to a non-optimal parti-

tion. The voxelization step makes the method robust

against degeneracies (such as cracks, holes and intersecting

geometry) as well as reduces the number of local minima,

R. Oliva & N. Pelechano / A GPU Based Method for the Automatic Generation of Suboptimal Navigation Meshes

c© The Eurographics Association 2012.

50

© The Eurographics Association 2012.

but even with this improvement, the number of generated

cells is far from the optimum.

Regarding the use of shaders for visibility, in

[MMG*09], a 3D urban visualization and navigation appli-

cation is presented. Their approach renders the environ-

ment geometry in a cube map, using a shader that calcu-

lates the distance to the viewer for each fragment. One of

the main uses of this representation is collision avoidance:

If a fragment is inside the bounding radius of the viewer, a

force is applied to avoid the obstacle. This method also

allows them to automatically find a path outside of a

bounding geometry (such as a building), if the exit point is

visible from the viewer position, i.e., it is mapped on the

cube map.

3. Converting a 3D World into 2D Polygons

As most NavMesh generation methods, the Navigation

Mesh is constructed in 2D. However, especially in the case

of videogames, the virtual world is typically generated

using a 3D software modeler. Since we want the method to

be fully automatic, the first step of our method transforms

the 3D input data into a 2D representation. In particular, the

input required by the Navigation Mesh Generator consists

on a single polygon defying the floor, with the vertices

given in counter-clockwise order, and holes representing

the static obstacles with the vertices given in clockwise

order. The 2D Abstraction step is subdivided in several

stages, as can be seen in figure 1.

Figure 1: This figure describes the data flow of the pipe-

line of the 2D Abstraction step to convert from the 3D

world to the 2D representation.

3.1 Normal and Depth Map Extraction

The first stage of the pipeline takes the 3D model of the

scene as input and performs a render of the model from a

top view, using an orthographic camera. A texture is creat-

ed using the fragment shader, that stores the normal per

fragment (red, green and blue channels) and its normalized

depth (alpha channel). Figure 2 shows the resulting Nor-

mal-and-Depth Map for a given scene.

Figure 2: The initial 3D scene (Left) and its Normal-

and-Depth Map generated with the shader (Right).

3.2 Obstacle Detection

The target of this stage is to identify walkable space

(floor) vs. non-walkable (obstacles). The obstacle detection

is solved using a flood fill algorithm, where the seed is

introduced by the user over a walkable area (notice that this

is the only input required by the user). The Normal-and-

Depth map is used to determine if a neighboring fragment

is similar to our current fragment. Two adjacent fragments

are similar if the character can overcome the angle formed

by their normals and the difference of depth. These pa-

rameters are configured through the application and depend

on the walking abilities of the characters. If the neighbor

fragment is reachable from the current one, then it belongs

to the walkable area; otherwise it belongs to the frontier of

an obstacle (contour).

The output of this stage are a Rough Binary Partition

(RBP) and a Rough Contour Table (RCT). The former is a

binary image representing the walkable areas (white pixels)

and the obstacles (black pixels), and the latter is a table

containing those pixels marked as contour (black pixels in

the RBP that have at least one white neighbor). In Figure 3

we can see the binary partition with the walkable areas and

the obstacles. Notice that the torus is treated as a solid ob-

stacle seen from above and thus the floor underneath it will

not be treated as walkable.

Figure 3: The Rough Binary Partition resulting of the

Obstacle Detection stage.

R. Oliva & N. Pelechano / A GPU Based Method for the Automatic Generation of Suboptimal Navigation Meshes

c© The Eurographics Association 2012.

51

R. Oliva & N. Pelechano / A GPU Based Method for the Automatic Generation of Suboptimal Navigation Meshes

© The Eurographics Association 2012.

3.3 Contour Expansion and Refinement

In order to ensure a one pixel wide continuous contour

with an area greater than zero (i.e. no obstacles of size one

pixel or line obstacles) the RBP and RCT need to be further

refined.

This stage is subdivided into two sub-steps. Firstly, the

contour is expanded by iterating over all the pixels in the

Contour Table marking as contour those adjacent pixels

that in the binary partition belong to the floor, i.e. white

pixels. The target of this sub-step is to avoid future degen-

eracies such as having obstacles mapped into a single ver-

tex.

The Contour Refinement step removes those contour

pixels that have end up completely surrounded by black

pixels i.e. pixels of an obstacle, and hence, they do not

belongs to the frontier of an obstacle anymore. Figure 4

shows these two steps over a given obstacle.

Figure 4: The initial contour of an obstacle (Left); the

expanded contour (Center); the refined contour (Right).

At the end of this process we obtain the final Contour

Table and Binary Partition adequate to carry out polygon

reconstruction.

3.4 Polygon Reconstruction and Simplification

This step will generate the 2D model representing the

floor and obstacles to feed the NavMesh generator.

Firstly, the pixels on the Contour Table are sorted by its

x coordinate, i.e., they are sorted from left to right. If the x

coordinate of two contour pixels is the same, they are sort-

ed by the y coordinate from top to bottom. Each contour

pixel is considered a vertex of a polygon and then a simpli-

fication method is used to reduce the final number of verti-

ces. Initially all contour pixels are marked as not-visited.

The algorithm proceeds by iterating over all the pixels on

the Contour Table, until it finds the first not-visited contour

pixel. The order of the Contour Table guarantees that this

pixel is the most left one of a polygon on the Binary Parti-

tion. When reconstructing the floor, the vertices have to be

given in counter-clockwise order, so for the most left con-

tour pixel, we have to start moving to the S, SE or E neigh-

bor pixel that is contour. If we are reconstructing an obsta-

cle, the vertices have to be given in clockwise order, so we

have to start moving to the N, NE or E. Figure 5 exempli-

fies the process of reconstructing an obstacle from its most

left contour pixel C. In this case, the vertices have to be

given in clock-wise order, so the neighbor chosen is the

one marked with E.

Once the first neighbor has been decided, the process

continues by selecting and setting as visited at each itera-

tion the contour pixel that is closest to the current one, that

has not been visited yet. In this case, all the adjacent neigh-

bors of the current pixel are checked. The Contour Expan-

sion and Refinement stage ensures that we always have a

unequivocal neighbor contour pixel to choose as next. It

also ensures that every reconstructed polygon has an area

greater than 0, and that we do not have degeneracies such

as obstacles reconstructed as a single point. The process of

reconstructing a polygon ends when the start pixel is

reached and the process of reconstructing all the polygons

finishes when all the pixels on the Contour Table have been

marked as visited.

Figure 5: The most left contour pixel C of an obstacle

and the potential neighbors that can be chosen as next.

To reduce the total number of vertices per polygon, the

first straight forward simplification consists on eliminating

all vertices that belong to segments aligned horizontally,

vertically or with 45º angle and are not end points. This

pre-simplification step is done during the reconstruction

process. Next, the Ramer-Douglas-Peucker Algorithm

[Ram72, DP73] is applied to further simplify the polygon

(figure 6).

Figure 6: A polygon on the Binary Partition (Left); A

high density pre-simplified polygon (Center); The final

simplified polygon (Right).

4. Automatically Generating NavMeshes

The algorithm to generate NavMeshes requires as an in-

put the 2D simple polygon with holes described in this

paper. Such polygon can either be the output of the algo-

rithm described in section 3, or it could be a 2D input given

by the user. The algorithm presented in our previous work

[OP11], which was fully implemented on the CPU, con-

sisted on identifying the notches (vertices with an angle

greater than π) and transforming them into convex vertices.

Notches are vertices that cause concavities in the geometry,

and thus transforming them into convex vertices provides a

convex subdivision of the space which was proved to be a

near-optimal partition of the polygon. The transformation

c© The Eurographics Association 2012.

52

© The Eurographics Association 2012.

from concave to convex is performed by creating a portal

between each notch and the closest element (vertex, edge

or portal) lying inside the Area of Interest of the notch. The

Area of Interest is determined by the area formed by pro-

longing the incident edges of the notch. The method en-

sures that in the cases where the closest element is a vertex

or an edge, only one portal needs to be created per notch. In

the cases when the closest element is a portal with neither

endpoints lying inside the Area of Interest, it is required to

create two portals to transform the notch into a convex

vertex. Hence, this algorithm leads to a near-optimal con-

vex partition of the space.

In this paper we present an improved version of the CPU

solution introduced in [OP11] as well as a novel GPU solu-

tion which is not only more efficient but also more robust.

We encountered a problem in the previous work which

appears when the closest element of a notch is a previously

created portal. In this case a portal is created between the

notch and one (or both) of the endpoints of the portal, but

without checking whether the endpoint is visible from the

notch, which in some cases can lead to intersecting geome-

try. On section [4.2] a solution to this problem is presented.

4.1 The GPU based version

The CPU solution presented in [OP11] has a cost of

O(n·r), where n=number of vertices and r=number of

notches. So if r is similar to n, the algorithm to generate

NavMeshes has a O(n2) cost to solve the problem. This is

not an important handicap a priori, since the NavMesh con-

struction is normally an offline process, but it becomes an

issue when dealing with dynamic environments that require

continuous updates of the NavMesh, as it happens in vide-

ogames.

The new method based on GPU, starts by assigning a

unique color identifier to each edge of the scene, which

will be used for rendering and identification purposes.

Then, the 2D scene is rendered from the point of view of

every notch, with the parameters of the camera set based on

the characteristics of the notch. The position of the camera

is given by the position of the notch, the FOV of the cam-

era is equal to the angle formed by the prolongation of the

edges that define the Area of Interest of the notch and the

forward direction of the camera is defined as the sum of the

unitary vectors that define the Area of Interest. Once the

camera has been configured, the scene is rendered and the

result is stored on a one-dimensional texture that contains

those elements visible from the point of view of the notch,

as can be seen in figure 7.

Figure 7: A simple scene with all edges drawn with a

unique color (Left) and the texture generated from the

point of view of the notch (Right).

To recover the edges visible from the notch, we check

every pixel of the texture. The color of such pixel identifies

the edge. Then, we determine which of those edges is the

closest one to the notch and we create a portal with its best

candidate. We cannot simply read the depth of each pixel,

because we need Euclidean distances to the notch.

A critical parameter that affects directly the performance

of the algorithm is the zFar of the camera. To avoid render-

ing an unnecessary number of elements that are occluding

each other, the zFar is dynamically updated. A variable

zFarScene contains the average of the distances to the clos-

est element of the already visited notches. Initially,

zFarScene is set to 1/10th of the diagonal of the bounding

box of the scene. Then for each notch, a render is per-

formed with zFar set to zFarScene. If no element has been

rendered with such zFar, the zNear is set to the current

zFar and the zFar is doubled in order to carry out a new

render. This process continues until at least one element

has been found that lies in the Area of Interest of the notch.

Once the closest element to the notch is found, zFarScene

is updated accordingly. Notice that this process implies

several renders for some notches, but we have found empir-

ically that the zFarScene converges towards an optimal

value that results in the most efficient render for a large

number of the notches in the given scene. The entire pro-

cess is described on figure 8.

Figure 8: Diagram describing the dynamic update of the

zFar.

R. Oliva & N. Pelechano / A GPU Based Method for the Automatic Generation of Suboptimal Navigation Meshes

c© The Eurographics Association 2012.

53

© The Eurographics Association 2012.

4.2 The Portal Vertex-Portal case

The most complicated case that our algorithm must han-

dle is when the closest element to the notch is a previously

created portal. In order to avoid intersections between por-

tals, the algorithm presented in [OP11] proposes creating a

portal between the notch and one of the endpoints of the

portal that is inside the Area of Interest of the notch. If

neither endpoint lies within the Area of Interest, then two

portals are created to join the notch with each of the end-

points of the previous portal. However, that approach can

cause intersection problems, when the endpoints are not

actually visible from the notch (see figure 9).

To solve this problem and carry out a fair comparison

between the CPU solution, and the new approached based

on GPU, we have modified the previous algorithm so when

a portal is created with another portal, we check for inter-

sections between the segment formed by the notch and the

endpoint of the portal and the rest of edges in the scene. If

there are no intersections, then the portal can be created;

otherwise, the portal is created with the new found closest

edge.

In GPU mode this problem is solved by using one extra

render step. The new Area of Interest is defined as the one

delimited by the segments that join the notch with the end-

points of the previous portal as can be seen in figure 9.

Figure 9: The original Area of Interest of a notch nk

(Left). When the closest element is a portal pi, the new Area

of Interest is defined by the notch and the endpoints of the

portal (Right).

The camera parameters are thus updated accordingly and

a new render of the scene is performed. Then the algorithm

checks for intersections between the segments joining the

notch with the endpoints and the edges that appear on the

new render. Notice that the GPU version needs to check

against a reduced number of edges unlike the CPU version

that checks against all edges in the scene.

5. Results

In this paper we have presented a framework to obtain

Navigation Meshes from 3D complex environments con-

sisting of one layer where we could carry out navigation for

characters. Firstly a method has been described to abstract

the 3D geometry into a 2D simple polygon with holes. The

results shown in figures 2,3,13 demonstrate the robustness

of the method to deal with complicated environments with

ramps, steps, holes, and so on. The method provides the

flexibility of being adjusted to the walking abilities of the

characters, to determine the height of the steps, and the

angle of a ramp that a character can easily overcome. Sec-

ondly we described a novel GPU based approach to speed

up the search for closest element to a notch.

The experimental results have been obtained on a

NVIDIA GeForce 8800 GTX and an Intel Core 2Quad

Q6700 at 2.66GHz with 8 GB of RAM. We have tested the

new GPU based algorithm presented in this paper to gener-

ate automatically NavMeshes against an optimized version

of the work presented in [OP11] with the extension of

checking for visibility in the case of creating portals be-

tween a notch and a previous portal.

To test the overall performance of the algorithm, we cre-

ated 10 scenarios of increasing complexity ranging from 23

vertices to 965.The algorithm applied dynamic zFar calcu-

lation. Figure 10 shows the time taken by both CPU and

GPU implementations. As we can see, the time taken by

the CPU version to solve the problem increases quadrati-

cally, whereas the GPU version increases nearly linearly

with the number of vertices of the environment. Notice that

the GPU algorithm can be quadratic in the worst case, but

in practical scenarios it performs with nearly linear time,

since it applies geometry culling using an octree to render

the 1D texture for each notch.

Figure 10: Time comparison between the CPU and GPU

versions of 10 scenarios with different complexity.

The experimental results were obtained performing ren-

ders over a viewport of 1x32 pixels that were then mapped

onto a texture. The size of the texture (and thus the view-

port) used is important for the overall performance of the

algorithm, as can be seen in figure 11.

0

0,1

0,2

0,3

0,4

0,5

0,6

32 64 128 256 512 768

T
im

e
 (

in
 s

e
cs

)

Texture size

Time per texture size

 Figure 11: Time spend to solve the most complex test

environment, for different sizes of texture.

R. Oliva & N. Pelechano / A GPU Based Method for the Automatic Generation of Suboptimal Navigation Meshes

c© The Eurographics Association 2012.

54

© The Eurographics Association 2012.

We have found empirically that a size of 32 pixels for

the texture is adequate to correctly identify the closest ele-

ment. This comparison table was obtained with the largest

scene of 965 vertices, since for smaller scenes the differ-

ence is less significant.

The value of the zFar chosen for performing the render

from each notch has also an impact on the performance,

since it determines how many segments get discarded at an

earlier stage of the graphics pipeline. A large zFar will

guarantee that all segments visible from the given notch are

rendered, but with a high cost, whereas a small zFar will

result in faster renders but may not render segments that are

visible and relevant for creating the NavMesh. The optimal

zFar, is thus the shortest one that allows the closest ele-

ment to be rendered without rendering many additional

segments that are far away and thus either not visible or

simply not relevant.

In order to calculate the optimal zFar, we have carried

out an experiment with the largest scenario. Empirically we

found that for the given scenario, the optimal zFar was 2.

Figure 12 shows the time results of generating the

NavMesh with increasing zFar starting with the optimal

value 2 (any value under 2 would not guarantee that the

closest element is found for all notches).

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

2 4 6 8 10

T
im

e
 (

in
 s

e
cs

)

zFar

Time per fixed zFar

Figure 12: Time spend to solve the most complex test envi-

ronment, for different values of fixed zFar.

Our goal with this experiment was to test whether the au-

tomatic method for calculating the zFar dynamically would

solve the problem in similar times. Therefore we then test-

ed that same scenario with the method presented in section

4.1. The resulting time was 0,312 seconds, with an average

zFar of 1,25 which is automatically calculated and changes

dynamically when necessary. This shows that our automat-

ic method achieves time results similar to the optimal zFar

calculated manually.

The presented GPU based method not only is more effi-

cient than the previous CPU version, but also is more ro-

bust, since by carrying out renders, it automatically solves

any visibility issues. Even though, the visibility problem

when creating new portals of the type notch-portal could be

treated with the CPU, we have shown an efficient and

straight forward approach to solve the problem simply by

performing a second render.

6. Conclusions and Future Work

We have presented a novel GPU based method to auto-

matically compute a Navigation Mesh for a complex 3D

scene, representing a single floor plant. Our method has

two main steps: first a 2D abstraction is constructed from

the 3D model. Then the NavMesh is computed using this

2D abstraction.

The results show that the GPU based version is more ef-

ficient and scalable than the CPU version. The GPU ver-

sion is also more robust than the previous CPU version

since it solves efficiently visibility issues that could lead to

intersecting geometry.

Currently, the presented method works for complex 3D

scenes representing a single layer (with ramps, steps, holes,

etc.). If the original scene consisted of more levels, the user

would need to manually subdivide it, treat each level inde-

pendently and connect its Navigation Meshes. In the future

we would like to extend our work to deal with several

floors automatically to handle also multilayered scenes.

Finally, our current method only takes into account the

static geometry which is enough for most applications.

However, it is common in applications such as videogames

to have worlds that are constantly changing (for example,

an explosion that creates a crack on the floor; a tree that

falls and blocks a path; a door that blocks or makes acces-

sible a region of the scene, etc.). In those situations, the

NavMesh needs to be modified. We would like to further

improve our application to also handle such dynamic

events in real time and modify the NavMesh in conse-

quence.

Figure 13: The resulting NavMesh of the scene de-

scribed in figure 2.

R. Oliva & N. Pelechano / A GPU Based Method for the Automatic Generation of Suboptimal Navigation Meshes

c© The Eurographics Association 2012.

55

7. References

[cud] CUDA. A parallel computing architecture developed

by NVIDIA for graphics processing.
http://nvidia.com/object/cuda_home_new.html

[DB06] DEMYEN D, BURO, M.: Efficient triangulation-
based pathfinding. In Proc. AAAI ’06 (2006), vol. 1, pp.
942-947.

[DP73] DOUGLAS D. H., PEUCKER T. K.: Algorithms for the
reduction of the number of points required to represent a
digitized line or its caricature. Cartographica: The Inter-
national Journal for Geographic Information and Geo-
visualization 10, 2 (December 1973), 112-122.

[ecm] Explicit Corridor Map generator.
http://www.staff.science.uu.nl/~gerae101/motion_p
lanning/cm/index.html

[HCK*99] HOLF III K. E., CULVER T., KEYSER J., LIN M.
C., MANOCHA D.: Fast computation of generalized
Voronoi diagrams using graphics hardware. In Proc.
SIGGRAPH ’99 (1999), pp. 277-286.

[HDS03] HAUMONT D., DEBEIR O., SILLION B.: Volumetric
 cell-and-portal generation. Computer Graphics Forum 3,
22 (2003), 303-312.

[HM83] HERTEL S., MEHLHORN K.: Fast triangulation of
simple polygons. In Proc. FCT ’83 (1983), vol. 158, pp.
207-218.

[HY09] HALE D. H., YOUNGBLOOD G, M.: Full 3D Decom-
position for the Generation of Navigation Meshes. In
Proc. AAAI ’09 (2009), pp. 142-147.

[HYD08] HALE D. H., YOUNGBLOOD G, M., DIXIT P, N.:
Automatically-generated Convex Region Decomposition
for Real-time Spatial Agent Navigation in Virtual
Worlds. In Proc. AAAI ’08 (2008), pp. 173-178.

[Kal05] KALLMANN M.: Path Planning in Triangulations. In
 Proc. IJCAI ’05 (2005), pp. 49-54.

[Kal10] KALLMANN M.: Navigation Queries from Triangu-
lar Meshes. In Proc. MIG ‘10 (2010), pp. 230-241.

[KBT03] KALLMANN M., BIERI H., THALMANN D.: Fully

Dynamic Constrained Delaunay Triangulations. Geomet-
ric Modeling for Scientific Visualization (2003), 241-
257.

[LCC06] LERNER A., CHRYSANTHOU Y., COHEN-ORD.:
Efficient Cells-and-portals Partitioning. Computer Ani-
mation & Virtual Worlds 17, 1 (February 2006), 21-40.

[MMG*09] MCCRAE J., MORDATCH I., GLUECK M., KHAN,
A.: Multiscale 3D navigation. In Proc. I3D ’09 (2009),
pp. 7-14.

[OP11] OLIVA R., PELECHANO N.: Automatic Generation of
Suboptimal NavMeshes. In Proc. MIG ’11 (2011), pp.
328-339.

[QCT12] QIM, CAO, T-T., TAN, T-S.: Computing 2D con-
strained Delaunay triangulation using the GPU. In Proc.
I3D ’12 (2012), pp. 39-46.

[Ram72] RAMER U.: An iterative procedure for the
polygonnal approximation of plane curves. Computer
Graphics and Image Processing 1, 3 (November 1972),
244-256.

[rec] Recast Navigation Toolkit.
http://code.google.com/p/recastnavigation/

[Sno00] SNOOK G.: Simplified 3D movement and pathfind-
ing using navigation meshes. Game Programming Gems
(February 2000), 288-304.

[TCG11] TOLL W., COOK IVA. F., GERAERTS R.: Naviga-
tion Meshes for Realistic Multi-Layered Environments.
In Proc. IROS ’11 (2011), pp. 3526-3532.

[unr] Unreal Engine’s NavMesh Generation Method.
http://udn.epicgames.com/Three/NavigationMeshRefe
rence.html

[val] Valve’s NavMesh Generation Method.
http://developer.valvesoftware.com/wiki/Navigatio
n_Meshes

Figure 14: The resulting Navigation Mesh for the scene containing 965 vertices and 650 notches.

R. Oliva & N. Pelechano / A GPU Based Method for the Automatic Generation of Suboptimal Navigation Meshes

c© The Eurographics Association 2012.

56

