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Abstract

Common tasks related to image processing or augmented reality include rendering new objects into existing ima-
ges, or matching objects with unknown illumination. To facilitate such algorithms, it is often necessary to infer
from which directions a scene was illuminated, even if only a photograph is available. For this purpose, we present
a novel light source detection algorithm that, contrary to the current state-of-the-art, is able to detect multiple light
sources with sufficient accuracy. 3D measures are not required, only the input image and a very small amount of
unskilled user interaction.

Categories and Subject Descriptors (according to ACM CCS): Computing Methodologies [I.3.7]: Computer
Graphics—3D Graphics; Computing Methodologies [I.4.10]: Image Processing and Computer Vision—Image
Representation

1. Introduction

This paper deals with the problem of obtaining the positions
and relative intensities of light sources in a scene, given only
a photograph as input. This is generally a difficult and under-
constrained problem, even if only a single light source illu-
minates the depicted environment.

Traditionally light probes are used to acquire the light-
ing data. A light probe is an object of known 3D shape
and BRDF properties (Bidirectional Reflectance Distribu-
tion Function; description of the reflectance properties of the
material) which is positioned in the scene when the image is
captured. Unfortunately, in several cases this technique is not
applicable: e.g. paintings, photographs taken under uncon-
trolled conditions, etc. Instead, it would be possible to use
any object in the image if geometry information were avail-
able, allowing light source positions or directions to be esti-
mated [GHH01]. Conversely, if the light source is known,
the 3D geometry can be approximately recovered, an ill-
posed problem known as shape-from-shading [ZTCS99].

However, we are interested in the problem of light source
recovery without the benefit of any geometric prior. To this
end, we first carry out a psychophysical experiment to quan-
tify the accuracy with which humans can generally detect
light sources. The results of this experiment are then used
to validate the results of our light detection algorithm, both
numerical and perceptually. We then use any existing ob-

ject in the image as a de-facto light probe. We have found
that assuming a globally convex shape for such light probe
is sufficient to reconstruct light directions. The user only
needs to provide its silhouette in the image, a task sim-
ilar or simpler than other existing image editing applica-
tions [OCDD01, LHE∗07]. We then analyze the information
in the contour and the gradients contained in the shape to
infer the light directions and relative intensities.

Real environments are likely to contain multiple light
sources. We found that in practice finding up to four sources,
combined to provide similar illumination as in the image,
suffices for most situations. This keeps the dimensionality
of the solution manageable, in a way similar to profession-
ally lit environments, which are usually lit by a three-light
setup. Additionally, although we do assume in principle that
the chosen light probe is Lambertian, we will show that this
is not a strong requirement.

We believe that by analyzing lighting consistency between
images our algorithm can help improve several types of ap-
plications, such as Photo Clip Art [LHE∗07], Interactive
Digital Photomontage [ADA∗04] or Photo Tourism [SSS06].

2. Previous Work

The computation of light source directions from images is
an ill-posed problem, with many possible solutions leading
to the same observed image. As a result, assumptions about
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the environment are made, known geometry must be present
in the scene, or extra information must be captured to change
the problem into a solvable one.

For detecting single light sources, by itself a strong as-
sumption on the environment, a local analysis of the surface
and image derivatives may be used to estimate the direc-
tion of the light source [Pen82, BH85, LR89]. Alternatively,
occluding contours within a single object [Hor86, NE01] or
texturing [KP03, VZ04] provide clues as to where the light
is coming from.

To detect multiple lights, the environment could be pho-
tographed along with the aforementioned lightprobe: a cali-
bration object of known size and shape. For instance, a Lam-
bertian sphere could be employed, and subsequently ana-
lysed for multiple light source directions [HA93, ZY01], or
alternatively multiple specular spheres can be triangulated
for the same purpose [PSG01,LF06]. Combinations of Lam-
bertian and specular spheres have also been used [ZK02].
Finally, reflections of a human eye can be analysed to detect
light sources [NN04].

Another way to overcome the under-constrained nature of
the problem is to use a range camera to record geometry, a-
llowing light sources to be inferred from the combination of
photograph and range data [MG97]. Known geometry can be
used to the same effect [WS02, SSI99]. In contrast, our ap-
proach is free of previous restrictions, e.g.: there is no need
for a calibration object or known geometry. Furthermore, we
do not require shadows being cast on nearby objects, nor is
any camera information needed.

3. Light Detection

Consider a typical input image as depicted in Figure 1a. The
problem at hand is to estimate the number of illumination
sources, their dominant directions and the relative intensi-
ties. We propose to use any object in the image as a virtual
light-probe, as long as it covers a reasonable area in the i-
mage. The user provides the outline defining the object, ty-
pically with the aid of a smart selection tool [WAC07]. We
do not assume any restrictions on the shape, the color or any
other peculiarities for the object.

3.1. Assumptions and Overview

To achieve a reasonable solution, we rely on the particular
characteristics of human vision. In estimating illumination,
the human visual system tends to ignore the local shape
variations, and treats the object as a globally convex geo-
metry [LB01]. We also leverage the tendency of the human
visual system to perceive objects correctly as long as the i-
llumination is locally consistent [OCS05]. Further, we ob-
serve that humans are surprisingly good at estimating back-
lighting using cues from shadows [KvDP04]. Based on these
assumptions, we devise a three-step algorithm as follows.

Figura 1: a) Input Image b) Object c) Silhouette Normals d)
Coordinate System

1. To estimate the number of lights N and their respective
azimuth coordinates φi, i = 1 · · ·N; we analyze the inten-
sity variation along the silhouette of the object. We as-
sume that the surface normals of the object at the sil-
houette lie in the image plane [Hor86]. Using the silhou-
ette normal assumption and the nominal diffuse lighting
equation, we can accurately predict the azimuth coordi-
nate φ of the individual lights. The number of lights and
their relative intensities are estimated in an iterative fash-
ion.

2. We use the globally convex assumption to estimate the
zenith angles θi, i = 1 · · ·N and relative intensities Ii. For
each light detected in the first step, we sweep the im-
age from the silhouette to the interior along the azimuth
direction, looking for maxima in the shading. The cor-
responding shape normal at the maxima ~ni is indicative
of the direction of the light and thus the zenith angle
θi. To robustly handle local non-convexities and back-
lighting we detect and use shadows. Following Khan et
al. [KRFB06], we differentiate the relatively high fre-
quency variations of the luminance due to albedo (tex-
ture), from the low frequency variations of luminance due
to shading, using bilateral filtering.

3. By analyzing median intensity in the shadow areas, we
estimate the ambient light intensity.

Each of these steps are explained in detail in the following
sections.

However, we start by defining the coordinate system used.
As depicted in Figure 1d, the image plane is assumed to be
aligned with the y−z plane, whereas the x axis points out of
the image plane. The origin lies at the center of the image.
We also set a polar coordinate system such that the equator
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is aligned with the image plane and the axis is aligned with
x axis. Thus the direction of a light is uniquely identified by
the azimuth angle φ and the zenith angle θ .

3.2. Estimating Azimuth Angles

We assume that the normals at the silhouette lie in the image
plane. We further assume that there are N discrete lights,
each being either a directional light or a far away point light
(we estimate N below). Thus each light is uniquely charac-
terized by its unknown luminance L j and unknown unit di-
rection ω j , j = 1 · · ·N. To analyze the intensity variation of
the silhouette pixels, we assume a nominal Lambertian sur-
face. Consider all pixels {pi} that belong to the silhouette.
Let ni be the normal and Lv

i be the known luminance of the
object at point pi:

Lv
i =

N

∑
j=1

Ωi j L j (1)

Ωi j = Ω(ni,ω j) =

{
0 if ni·ω j < 0,

Kd
i ni·ω j if ni·ω j ≥ 0

where Ω represents the occlusion function of pixel i
in the viewing direction and Kd

i is the unknown dif-
fuse reflectivity or albedo. We encode the normals, which
are in the y−z plane, as polar coordinates φ n

i → ni =
[0,sin(φ n

i ),cos(φ n
i )]T ,0≤ φ n

i ≤ 2π .

To estimate the lights’ azimuth angles φ l
j , we use a k-

means clustering algorithm. In traditional k-means cluster-
ing algorithms, each data point belongs to a certain cluster,
and affects the centroid of only that cluster. Unfortunately, a
silhouette pixel may be illuminated by more than one light.
Thus, we should not partition the pixels into exclusive clus-
ters. Instead, we devise a partial voting scheme based on the
occlusion function to form the ‘fuzzy’ clusters, and simulta-
neously compute the corresponding centroids as the lighting
directions, as outlined in Algorithm 1.

We go through the list of pixels sorted by luminance (line
7) to perform the normal voting. Notice that each silhou-
ette normal φ n

i votes all the N light clusters (lines 10 to
16), according to their luminances Lv

i . However, each nor-
mal only partially votes to each light cluster according to
the occlusion function (line 12). For that, the individual oc-
clusion function with respect to each light direction Ωi j is
normalized with the aggregate of occlusion functions Ω

⊕
i =

∑ j Ω(ni,w j).

We repeat the voting process (line 7 to 17) until we con-
verge on the light azimuth angles φ

l (line 6 and 18). The
choice of the initial guess (line 3) for the azimuth angles is
important to ensure a speedy and effective convergence. We
assign the azimuth of the brightest pixel’s normal φ n

1 to the
first light φ l

1. For the successive lights, we set the azimuth
angles to φ l

1 +2π( j−1)/N.

For the estimation of the number of lights N, our approach

Algorithm 1 Contour Voting - N lights
Require: Lv ≡ {Lv

i } {discrete luminances}
Require: n≡ {ni} {silhouette normals}
Require: φ

n ≡ {φ n
i } {azimuth coordinates of the nor-

mals}
1: sort( Lv, n, φ

n ) {sort by decreasing luminances}
2: φ

l ≡ {φ l
j} | j ∈ [1 · · ·N] {azimuth coordinates of the

lights}
3: seed( φ

l )
4: α⊕ ≡ {α⊕j } | j ∈ [1 · · ·N] {aggregate of weights per

light}
5: α⊕ ← 0
6: repeat
7: for all Lv

i ∈ Lv do
8: ω j← [0,sin(φ l

j),cos(φ l
j)]

T {current direction}
9: Ω

⊕
i ← ∑ j Ω(ni,ω j) {total occlusion weight}

10: for all j ∈ [1 · · ·N] do
11: ω j← [0,sin(φ l

j),cos(φ l
j)]

T {current direction}

12: αi j← Lv
i Ω(ni,ω j)/Ω

⊕
i {weight of normal i}

13: φ l
j ← α

⊕
j φ l

j +αi jφ
n
i {update direction}

14: α
⊕
j ← α

⊕
j +αi j

15: φ l
j ← φ l

j/α
⊕
j

16: end for
17: end for
18: until convergence(φ l)
19: return φ

l

will subsequently increase the number of lights N = 1..i until
either the error is below a given tolerance or the added light
source does not improve the result. In practice, we found
that the number of iterations is usually below N = 4. This is
due to the quantization associated with the image’s finite bit-
depth. As the number of opposed lights increases, the varia-
tion in the shading over the surface decreases and becomes
rather constant.

Although the proposed voting method has built-in resis-
tance to local variations in albedo due to its search of global
tendencies, ultimately the results are biased if the points in
the contour form large clusters with very different luminance
values as the first image of Figure 2a demonstrates.

It is possible to reduce this bias, in a second pass, as fol-
lows. Once we have a set of N centroids (light directions),
we go through all the voting pixels assigned to each k-group,
corresponding to a light direction. We then check that the
dot product of the normal and the estimated light direction
yields a luminance value equal to the original luminance of
the pixel, fractioned by its occlusion function. If not, we
force the fractional albedo of the pixel to be coherent with
the fractional luminance of the brightest pixel in the group.
Then we repeat the contour voting algorithm. This correc-
tion in albedo values usually produces small shifts (10 to 20
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a b

Figura 2: a1) Sphere with a change in the albedo a2) Initial
biased estimation due to higher albedo a3) Corrected light
direction estimate b1) An estimate incorrectly biased due to
the geometry of the silhouette b2) The correct result, after
eliminating multiple normals.

degrees) in the directions in the case of extreme albedo vari-
ations (Figure 2a).

As in other previous approaches based on contour analy-
sis [YY91,VY94,NE01], the first step will fail if the light is
situated around the x axis, e.g.: θ ≈ π/2. In this case there
is no variation in luminances due to shading. This would re-
sult in erroneous estimation of azimuth angles. However, the
final direction of the light would be estimated accurately in
the second step when we analyze the shading in the interior.

Finally, we correct the potential bias along the direction
stemming from the geometry of the silhouette. As depicted
in Figure 2b, a significant number of silhouette normals
point in y axis, biasing the resultant light towards that di-
rection. We propose to correct this by eliminating multiple
normals. We choose a set of discrete normal directions φ̄ n

i
and distribute all the silhouette normals into bins. Then we
compute the average of luminances for each bin L̄i and use
this set of silhouette normals and luminances instead.

3.3. Estimating Zenith Angles and Intensities

To estimate zenith angles {θ j} accurately, we disambiguate
the luminance variations due to shading from the variations
due to texture, which are relatively high in frequency. We use
bilateral filtering to remove high frequencies, while keep-
ing lower frequency content which is typically attributed to
shading [KRFB06].

Then, for each light detected in the previous step, march-
ing in the light’s direction ω j = ω(φ l

j) from the silhouette
to the interior, we analyze the luminances. As the pixels are
lit by multiple lights, this directional derivative of the lumi-
nance ω j ·∇Lv is the main indicator of the shading due to a
particular light j aligned to its direction. There are two cases
of luminance variations in the interior.

Case 1: If the directional derivative ω j ·∇Lv is positive
at the silhouette, the light is towards the camera from the
image (θ ≥ 0). In this case, the luminances will continue to

a b

Figura 3: Estimating zenith angle a) Scanning in lights di-
rection for highlight or shadow b) Ellipsoidal geometry

increase as we march along the direction of the light, to reach
the first local maximum. We denote this point as phi

j . At this
point the surface normal points in the direction of the light,
e.g.: θ j = θ n(phi

j ). We ignore all the pixels thereafter as the
geometry might be self-occluding or under the influence of
another light.

Case 2: At the silhouette, if the directional derivative is
negative, this is an indication of back lighting (θ < 0). The
luminances will successively decrease as we march along
the light direction to reach a singularity. This point is the
first self-shadow point plo

j , and is marked by either a change
of sign in the gradient of the directional derivative ω j ·∇Lv

or a zero value of its luminance Lv. A change of sign will
be produced when the contribution to the luminance value at
that point by a second light is greater than the contribution
of Lv. At this point, the surface normal is perpendicular to
the light direction, e.g.: θ j−θ n(plo

j ) = π/2,θ j < 0.

To estimate the normal at each point we cannot rely
on shape-from-shading due to the overlapping of multiple
lights. It is not possible to know a priori which combina-
tion of light sources is contributing to a certain point. Good
solutions for estimate a valid normal at points phi

j or plo
j in

arbitrary images do not exist [ZTCS99].

Furthermore, this is complicated if two given points on
the surface of the object are lit by a different and unknown
number of light sources. Wang et al. [WS02] determined the
number of lights, but they could perform this thanks to ac-
curate knowledge of 3D depth and normals. Instead, we re-
vert once more to our global convexity assumption and fit an
ellipse along the scanline: one of the axis is given by the in-
tersection of such scanline and the silhouette; the other axis
will approximate the object convexity and is a user parame-
ter. By default, both axes are equal (in fact defining a circum-
ference). The surface normal is subsequently assumed to be
the normal of the ellipse at the point under consideration.

We could start marching along the light direction from a
brightest silhouette point that corresponds to the light. How-
ever, in order to minimize the influence of albedo variations,
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we scan the light direction from multiple silhouette points.
One way to realize this scheme is to rotate the image such
that the light direction ω(φ l

j) is aligned with the y-axis and
the light on the left, see Figure 3. Then we simply scan each
raster line i, starting from the silhouette boundary on left into
the interior. We detect the set of points {phi

i j} or {plo
i j }, cor-

responding zenith angles {θi j} and luminances Lv
i j . Thus for

the light j, the resultant zenith angle is the weighted sum:

θ j =
∑i Lv

i j θi j

∑i Lv
i j

(2)

By using two objects in the image as light probes and re-
peating the process for the second one, we can approximate
the position of a point light source, e.g.: a source that is not
infinitely far away. Given that the directions computed for
both objects cannot be absolutely precise (we asssume direc-
tional lights), there will be no intersection point. We simply
place the light source halfway between the points d1 and d2
defining its minimum distance.

Once we have estimates of the light directions, estimat-
ing the relative intensities is fairly straight forward. For each
light j, we compute the total sum of luminances normalized
by the occlusion function of the light, over all the pixels i
of the contour of the object. The intensity of the light I j is
proportional to:

I j ∝ ∑
i

Lv
j/Ω(ni,ω j) (3)

Any potentially remaining light sources will be treated by
our algorithm as ambient illumination which we will explain
next.

3.4. Ambient Illumination

The shading contribution of the ambient light is assumed to
be constant for all pixels and we can therefore estimate its
intensity by analyzing pixels in the shadow regions. We al-
ready have detected the shadow lines in the previous step.
The region bounded by these shadow lines is determined to
be a shadow region. We average the set of samples along
these boundaries. This ambient intensity estimate is also rel-
ative to the previously detected lights.

4. Results

We have tested our algorithm on several images with con-
trolled (known) light configurations, in order to measure
the errors of our light detection. The images include var-
ied configurations (see Figure 4): Apple1, Apple2 and Ap-
ple3 show a relatively simple geometry under very different
lighting schemes (with one or two light sources, plus am-
bient light). The Guitar and Quilt images show much more
complex scenes lit by three and two light sources respec-
tively. The light directions returned by our algorithm show

errors usually below 20 degrees for the more restrictive az-
imuth angle θ . This error range is discussed in the next sec-
tion. Even for the zenith angle φ , only the second light in
the Quilt scene returned a larger error due to the bouncing of
that light in the surface on the left. Table 1 shows all the data
for the input images shown in Figure 4: for each light source
present in the scene, we show the real measured locations
of the light sources, the results output by our algorithm and
the corresponding absolute error. The light probe used in the
first three images is the apple; for the other two, we used the
head of the guitar player and the Scottish quilt.

Figura 4: Input images for the error analysis of Table 1.
From left to right: Apple1, Apple2 and Apple3, Guitar and
Quilt.

Light 1 Light 2 Light 3
φ θ φ θ φ θ

A
pp

le
1 R −15.00 40.00 165.00 −40.00 − −

A 5.71 35.31 162.25 −64.03 − −
E 20.71 4.69 2.75 24.03 − −

A
pp

le
2 R 90.00 −70.00 − − − −

A 94.54 −65.70 − − − −
E 4.54 4.3 − − − −

A
pp

le
3 R 180.00 0.00 0.00 0.00 − −

A 168.50 14.48 0.0 11.31 − −
E 12.50 14.48 0.00 11.31 − −

G
ui

ta
r R 180.00 10.00 30.00 −45.00 260.00 45.00

A 185.71 29.66 25.64 −49.19 272.29 41.48
E 5.71 19.66 4.36 4.19 12.29 3.16

Q
ui

lt R 10.00 −35.00 120.00 −10.00 − −
A 24.70 −51.79 162.25 4.74 − −
E 14.70 16.79 42.25 14.74 − −

Tabla 1: Real measured light directions (R), value returned
by our algorithm (A) and absolute error (E) for the zenith φ

and azimuth θ angles in the scenes depicted in Figure 4.

We have further tested our algorithm on uncontrolled im-
ages, depicting scenes with unknown illuminations and vary-
ing degrees of diffuse-directional lighting ratios. Given that
we obviously cannot provide error measures in those cases,
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we provide visual validation of the results by rendering a
synthetic object with the lighting scheme returned by our al-
gorithm. Figure 5, left, shows the original image and an un-
textured version of the 3D objects to be rendered. The image
on the right shows the results of illuminating the 3D objects
with the output returned by our algorithm. The chosen light
probe was one of the mushrooms. Figure 6 shows additional
examples of uncontrolled input images with synthetic ob-
jects rendered into them, using the head of the doll and the
whole human figure as light probes respectively. Note how
our system is robust enough even if the light probe is com-
posed of multiple objects with very different BRDFs (such
as the skin, glasses and hair in the doll image). Shadows cast
onto the original images are generated in the usual way by
defining synthetic planes at approximately the right locations
when placing the synthetic objects.

Figura 5: Rendering synthetic objects into the images. Left,
top: original input image. Left, bottom: 3D models lit ac-
cording to the output of our light detection algorithm. Right:
final result, with the 3D models textured and inserted in the
image.

Figura 6: Additional examples of synthetic objects rendered
into images using the results of our algorithm. Left: synthetic
teapot. Right: synthetic cone.

5. Discussion and Future Work

We have presented a novel light detection algorithm from
single images, which only requires the silhouette of any ob-
ject in the image as additional user input. Our method yields
a result in less than 4 seconds using a 512x512 version of
the original image. Although it works in smaller resolutions,
higher resolutions have small effect on its accuracy. It may
seem that the average error of our method is too high in
comparison with previous works in the field, however in op-
position to those works we are not limited to detecting just

Figura 7: Spheres rendered with information from the Gui-
tar image in Figure 4. Left: using the image as an environ-
ment map. Middle: using the real measured data. Right: us-
ing the results of our algorithm. Our algorithm provides a
much better solution if the light sources are not present in
the original image.

one light and no knowledge of the actual 3D geometry is
required.

Additionally, this error (around 15 degrees in average)
might be below the human perception sensitivity as sug-
gested by the work of [OCS05] and shown in our rendered
images. However the accuracy of human vision in light de-
tection has not been measured yet and it should be quantified
by psychophysical experiments in a future research.

We have shown good results both with controlled lighting
environments (where the light positions were measured and
thus numerical data could be compared), and uncontrolled
settings (with free images downloaded from the internet,
and rendering synthetic objects with the results of our algo-
rithm). Our algorithm could potentially help photographers
mimic a given lighting scheme inspired by any other shot,
for which a reduced set of light directions (namely the ty-
pical three-light setup made up of key, fill and rim lights) is
preferable.

It could be argued that given that humans are not particu-
larly good at detecting light sources, simpler algorithms that
approximate light sources could be employed as well. For
instance, in the context of rendering synthetic objects into
existing images, one of the most popular recent approaches
is to build an environment map from the image. Whilst this
approach would provide reasonable results in certain cases
(as shown in [KRFB06]), it would fail if the main light
sources are actually outside the image. One such example
would be the Guitar image in Figure 4. If we were to render
an object into the image, it would appear unrealistically dark.
Figure 7 shows a sphere rendered with the actual measured
lights for that scene, compared to the results from rendering
with an environment map and using the lights detected by
our algorithm.

Several existing applications can benefit from our sys-
tem, specifically those based on combining pictures from
an existing stack to create novel images. This kind of appli-
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cations are gaining popularity due to, among other factors,
the current existence of huge databases and their accessibil-
ity through the internet. Some examples include Photo Clip
Art [LHE∗07], Interactive Digital Photomontage [ADA∗04]
or Photo Tourism [SSS06].

We assume global convexity for the chosen de-facto light
probes in the images. Whilst this is true for most objects,
the algorithm will return wrong values if a concave object is
chosen instead. Our algorithm will also fail in the presence
of purely reflective or transparent (refractive) objects chosen
as light probes, which break our assumption about shading.
In these cases, an approach similar to [NN04] may be more
suitable, although previous knowledge about the geometry
of the objects in the image would be needed. As future work,
we would like to address these cases.
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