CEIG’09, San Sebastian, Sept. 9-11 (2009)
C. Anddgjar and J. LLuch (Editors)

Locally-Adaptive Texture Compression

C. Andujar1 and J. Martinez'

I'MOVING research group, Universitat Politécnica de Catalunya

Abstract

Current schemes for texture compression fail to exploit spatial coherence in an adaptive manner due to the strict
efficiency constraints imposed by GPU-based, fragment-level decompression. In this paper we present a texture
compression framework for quasi-lossless, locally-adaptive compression of graphics data. Key elements include a
Hilbert scan to maximize spatial coherence, efficient encoding of homogeneous image regions through arbitrarily-
sized texel runs, a cumulative run-length encoding supporting fast random-access, and a compression algorithm
suitable for fixed-rate and variable-rate encoding. Our scheme can be easily integrated into the rasterization
pipeline of current programmable graphics hardware allowing real-time GPU decompression. We show that our
scheme clearly outperforms competing approaches such as S3TC DXTI on a large class of images with some
degree of spatial coherence. Unlike other proprietary formats, our scheme is suitable for compression of any
graphics data including color maps, shadow maps and relief maps. We have observed compression rates of up to

12:1, with minimal or no loss in visual quality and a small impact on rendering time.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: 3D Graphics and

Realism—Texture

1. Introduction

Storing and accessing large texture maps with fine detail is
still a challenging problem in computer graphics. In hard-
ware systems supporting real-time texture mapping, textures
are generally placed in dedicated memory that can be ac-
cessed quickly as fragments are generated. Because dedi-
cated texture memory is a limited resource, using less mem-
ory for textures may yield caching benefits, especially in
cases where the textures do not fit in main memory and cause
the system to swap. Texture compression lowers both mem-
ory and bandwidth requirements and thus can help to achieve
higher graphics quality with a given memory budget, or re-
duce memory and bandwidth consumption without substan-
tially degrading quality.

The availability of programmable shaders in low-cost
graphics hardware provides new, attractive solutions for tex-
ture compression. Today’s programmable graphics hardware
allows the integration of texture decoders into the raster-
ization pipeline. Thus, only compressed data needs to be
stored in dedicated texture memory provided that each tex-
ture lookup includes a decoding step. Texture decoding in
programmable hardware is considerably faster than software
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decoding, and also reduces bandwidth requirements as com-
pressed texture data may reside permanently in texture mem-

ory.

There are many techniques for image compression, most
of which are geared towards compression for storage or
transmission. Texture compression systems for GPU on-the-
fly decoding exhibit special requirements which distinguish
them from general image compression systems. In choos-
ing a texture compression scheme there are several issues to
consider:

Decoding Speed. In order to render directly from the com-
pressed representation, the scheme must support fast de-
compression so that the time necessary to access a sin-
gle texel is not severely impacted. A transform coding
scheme such as JPEG is too expensive because extract-
ing the value of a single texel would require an expensive
inverse Discrete Cosine Transform computation.

Random Access. Texture compression formats must pro-
vide fast random access to texels. Compression schemes
based on entropy encoding (e.g. JPEG 2000) and deflate
encoding (e.g. PNG) produce variable rate codes requir-
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ing decompressing a large portion of the texture to extract
a single texel.

Cache-friendly. Texture caches are used in graphics hard-
ware to speed up texture accesses. A texture compression
system should work well with existing caches, thus it is
important to preserve the locality of references.

A number of fixed-rate, block-based compressed texture
formats such as S3TC DXT1, 3Dfx FXT1 and ATI 3Dc are
natively supported by low-cost hardware. However, block-
based approaches present two major limitations. A first lim-
itation is the lack of flexibility of proprietary formats, which
difficults the compression of non-color data such as light
fields, parallax occlusion maps and relief maps. A second
limitation is that most block-based approaches use a uniform
bitrate across the image, and thus lose information in high-
detail regions, while over-allocating space in low-detail re-
gions. This lack of adaptivity often results in visible artifacts
all over the texture, which are particularly noticeable around
sharp image features and areas with high color variance.

Spatial data in computer graphics is often very coher-
ent. There is a large body of work on compressing coherent
data, particularly in the context of images. However, most
compression schemes such as JPEG2000 involve sequential
traversal of the data for entropy coding, and therefore lack
efficient fine-grain random access. Compression techniques
that retain random access are more rare. Adaptive hierar-
chies such as wavelets and quadtrees offer spatial adaptivity,
but compressed tree schemes generally require a sequential
traversal and do not support random access [LHO7].

Contributions

In this paper we present a locally-adaptive texture compres-
sion scheme suitable for both fixed-rate and variable-rate en-
coding. Novel elements include:

e Use of space-coherent scans such as the Hilbert scan to
exploit texel correlation.

e Efficient encoding of homogeneous image regions
through arbitrarily-sized texel runs which provide a more
flexible approach to segment coherent data from fine de-
tail. Tree-based methods can only segment coherent data
in square regions whose size and boundaries are given by
the tree subdivision. Our approach is able to detect cor-
related areas in several orders of magnitude more regions
than quadtree-based approaches.

e A cumulative run-length encoding of coherent texel runs
supporting fast random-access. Cumulative RLE allows
for texel recovery using binary search. We present an O(1)
decoding algorithm requiring less than 3.5 texture lookups
on average.

e A compression algorithm suitable for fixed-rate and
variable-rate encoding. The compression algorithm is
driven by an error-sorted priority-queue which decides the
order in which texel runs are collapsed.

Our scheme can be easily integrated into current pro-
grammable graphics hardware allowing real-time GPU de-
compression.

2. Previous work
General image compression

The reasons why conventional image compression schemes
such as PNG, JPEG and JPEG2000 are not suitable as com-
pressed texture formats has been extensively reported in
the literature, see e.g. [BAC96, LHO7]. Most compression
strategies, including entropy coding, deflate, and run-length
encoding, lead to variable-rate encodings which lack effi-
cient fine-grain random access. Entropy encoders, for exam-
ple, use a few bits to encode the most commonly occurring
symbols. Entropy coding does not allow random access as
the compressed data preceding any given symbol must be
fetched and decompressed to decode the symbol. Thus the
most common approach for texture compression is fixed-rate
encoding of small image blocks, as fixed-rate compression
eases address computations and facilitates random access.

Vector quantization and block-based methods

Vector quantization (VQ) has been largely adopted for tex-
ture compression [NH92, BAC96]. When using VQ, texture
is regarded as a set of texel blocks. VQ attempts to character-
ize this set of blocks by a smaller set of representative blocks
called a codebook. A lossy compressed version of the orig-
inal image is represented as a set of indices into this code-
book, with one index per block of texels [BAC96]. Indexed
color can be seen as vector quantization using 1x1 blocks.
Color quantization algorithms such as the Median Cut Al-
gorithm use this same indexed-lookup technique for repre-
senting 24 bit images with 8 bpp. The most critical part of
VQ encoding is the construction of the codebook. The Gen-
eralized Lloyd Algorithm yields a locally optimal codebook
for a given set of pixel blocks. VQ can also be applied hier-
archically. Vaisey and Gersho [VGS88] adaptively subdivide
image blocks and use different VQ codebooks for different-
sized blocks.

Block-based data compression has been a very active area
of research [MB98, SAMO05]. S3TC formats [MB98] are a
de facto standard in today’s programmable graphics hard-
ware. S3TC DXT1 [BA] stores a 4x4 texel block using 64
bits, consisting of two 16-bit RGB 5:6:5 color values and
a 4x4 two-bit lookup table. The two bits of the look-up ta-
ble are used to select one color out of four possible com-
binations computed by linear interpolation of the two 16-
bit color values. A variant called VTC has been proposed
by Nvidia to extend S3TC to allow textures of width and
height other than multiples of 4. Unfortunately, the accuracy
of the DXT1 texture compression is often insufficient and
the scheme is hardly customizable. The low number of col-
ors (4) used to encode each 16-texel block, and the RGB
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f Scan order to map 2D data into 1D data

L= (C()w-‘cwhfl)
R = ((co,r0)..-(cn—1,rn—1))
S = ((c0,50) ---(€n—1,8n—1)

Linear version of the input image
RLE version of L. r; is run length
Cumulative RLE of R. s is accumulated length

B,b  Block size and no. of blocks resp.

1= ((00,00),---(0p—1,lp—1))-

Index data. o,/ are origin and length of blocks in §

Tabla 1: Notation used in the paper

5:6:5 color quantization result in visible artifacts all over the
texture. ETC [SAMOS] also stores a 4x4 texel block using
64 bits, but luminance is allowed to vary per texel while the
chrominance can be changed for multiple texels at a time
only, reflecting the fact that humans are more sensitive to
changes in luminance than in chrominance. ETC is good at
areas of uniform chromacity where only luminance varies,
but it cannot represent smooth chrominance changes or hard
edges between colors of the same luminance. ETC2 [SP07]
extends ETC by introducing three new modes.

All fixed-rate schemes discussed above are non-adaptive
as a uniform bit-rate is used across the image, and thus they
over-allocate space in low-detail regions while loosing qual-
ity in detailed parts.

Adaptive compression

Hierarchical structures such as wavelets and quadtrees of-
fer spatial adaptivity. However, most compressed tree struc-
tures require sequential traversals and therefore give up ran-
dom access [LHO7]. Kraus and Ertl [KEO2] propose a two-
level hierarchy to represent a restricted form of adaptive
texture maps. The hierarchical representation consists of
a coarse, uniform grid where each cell contains the ori-
gin and scale of a varying-size texture data block. This al-
lows representing different blocks of the image at vary-
ing resolutions, using only one level of indirection. The
main challenge though is to provide continuous interpolation
across data block’s boundaries and to avoid visible artifacts
at these boundaries. Other adaptive representations include
page tables [LKS*06] and random-access quadtrees [LH07]
for compressing spatially coherent graphics data using an
adaptive multiresolucion hierarchy encoded as a randomly-
accessible tree structure.

Our approach differs from prior adaptive schemes in that
coherent regions are allowed to have any size (they do not
have the power-of-two size restriction) and allows a larger
class of shapes (not just squares), thus allowing a better ad-
justment to the boundary of coherent regions.

3. Locally-adaptive compression
3.1. Overview
We first focus on 2D textures encoding RGB color data.

The input of our algorithm is an image /m containing w X h
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Figura 1: Sample image and corresponding sequences L,
R, S obtained with the Hilbert scan shown on the right.

color tuples (r, g,b). Our compressed representation operates
on a one-dimensional sequence. Therefore our representa-
tion is parameterized by a bijective function f : 7> 7
which defines a scan traversal of the pixels in /m. Func-
tion f can be defined in a variety of ways, including
traversals based on space-filling curves, line-by-line scans,
column-by-column scans, and block-based scans. A desir-
able property of the scan function f is locality-preservation,

ie. H O (a8 H should be kept small.

Function f maps two-dimensional texel data into a one-
dimensional sequence L = (cq,c...¢p_1) Where ¢, =
Im(f~'(k)). A simple example based on a Hilbert scan
is shown in Figure 1. Adaptive compression of L can be
achieved by grouping neighboring texels with similar color
into texel runs, and computing the run-length encoding
(LRE) of L. The grouping algorithm might collapse only
identical texels for loss-less encoding, or approximately-
similar texels for lossy encoding. A simple grouping algo-
rithm is described in Section 3.4. The result after grouping
and LRE encoding is a collection of pairs (¢, r) where ¢ is an
(r,g,b) tuple and r is the run length. The run sequence will
be referred to as R = ((co,70) .- (ch—1,M—1))- The recon-
struction of the original sequence from R is given simply by
R = (Co,Co...Co...Cn_l,Cn_l -~~Cn—l) .

o Tn—1

This representation is not suitable as a compressed tex-
ture format, as the evaluation of ﬁ(k) for any given k
takes O(n) time, n being the number of runs. A better op-
tion for on-the-fly decompression is to replace run lengths
by cumulative run lengths. We denote this encoding as
S = ((co,50)---(cn—1,8n—1)) Where s = Zf:o r;. Note that
Sp_1 = Z?:_Ol ri = w- h, i.e. the number of pixels in the im-
age. The main advantage of S with respect to R is that the

computation of S(k) for any given k takes O(log, n) time, as
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it simply accounts for a binary search of (the interval con-
taining) & in the sorted sequence (sg...s,—1), see Figure 1.

This new represention has two major limitations, though.
First, a fixed-length encoding of each cumulative value sy, re-
quires log, (w - h) bits. On a 512 x 512 input image, each s,
would require 2log, 512 = 18 bits. This would severely limit
compression performance since no entropy encoding can be
applied without interfering with random access. A second
limitation is that worst-case O(log, n) time can be still a lim-
iting speed factor for GPU decoding. For instance, the 8:1
encoding of a 512 x 512 image results in a search space of
n=512-512/8 = 32,768 runs. Since log,(32,768) = 15,
the decompressor will have to perform in the worst case 15

random accesses to S in order to evaluate S(k).

Our solution to the above problems is to decide a block
size B and uniformly subdivide L into b blocks of size B.
This uniform partition of L induces a non-uniform partition
of S into another b blocks (see Figure 2). This constraint
can be easily enforced during compression by simply com-
pressing each block independently. A first consequence is
that each cumulative run length is now upper-bounded by B,
i.e. each s value requires only log, B bits. For B = 64, this
accounts for 6 bits.

50 56 65

7581 120

Figura 2: Partition of L into uniform blocks defining a non-
uniform partition on its compressed version S.

Furthermore, the above subdivision can be used to reduce
the range of the binary search required to decode a texel. The
subdivision of L is uniform and hence it is not required to be
stored explicitly, provided that B is known. The subdivision
induced on S is non-uniform and must be encoded explicitly.
A simple option is encode each block as a pair (0;,/;) where
o; is an index to the origin of the i-th block on § and /; is
its length. This results in a collection of b pairs that will be
referred to as index data, I = ((0o lp), ... (0p—1,1p—1)). Stor-
ing I allows for performing binary search locally on each
block in O(log, (B)) time. For B = 64, at most 6 texture ac-
cesses are required to decode a given texel. Indeed, we have
found that the average number of texture accesses varies
from 2.57 to 3.51 (including fetching index data), depend-
ing on the compression ratio and the run-length distribution
(discussed in Section 4.2).

3.2. Compressed representation

Our compressed representation consists of an encoding of
the cumulative run-length encoding S plus the index data /.

We have control over several parameters that can be used to
tradeoff compression rate for quality and decoding speed:

Scan order. Function f defines a scan order to map 2D
color data into a one-dimensional sequence. Locality-
preservation is critical for exploiting texel correlation.
We have tested several scan orders including raster
scans (line-by-line or column-by-column), block-based
scans, and scans defined by space-filling curves such as
Hilbert/Moore curves, and Z-order (Morton codes). It
turns out that Hilbert/Moore curves and Z-order clearly
outperform raster scans. On the one hand, space-filling
curves provide much better locality preservation. On the
other hand, raster scans produce runs which correspond to
thin regions of the image (line segments), whereas space-
filling curves lead to thicker runs. Thick runs are often
more efficient at encoding coherent regions. Thick runs
also minimize the ratio between run’s boundary and run’s
area, which is often desirable as aggressive compression
might produce artificial edges along run boundaries. Fi-
nally, space-filling curves yield a more evenly distribution
of the error, whereas raster scans tend to produce coherent
error. Since humans are more sensitive to coherent error,
space-filling curves provide perceptually better compres-
sion. We have adopted the Hilbert scan for our test imple-
mentation.

Block size. Recall that parameter B determines exactly the
block size of uniform subdivisions on L, whereas it is only
an upper bound of the block size of the corresponding
subdivisions on S. Meaningful values for the block size
parameter B vary from 2 to ”Th The value of B have a
varying effect on compression ratio and decompression
speed. In particular, choosing a small value for B has the
following positive (+) and negative (-) effects:

e (+) Resulting blocks will be smaller, thus reducing the
range for the binary searches. This means a smaller
number of accesses for the worst-case scenario, which
occurs when the corresponding block in S has exactly
B unit-length runs.

e (+) Less bits (log, B) are required to encode sy values,
thus reducing memory space.

e (-) Since B is an upper bound for run length, more runs
will be needed to encode large coherent areas. Encod-
ing more runs means consuming more space.

e (-) Smaller block size also means a larger number of
indices to encode, as |I| = b = WTEI’.

In our prototype implementation we use B = 64, which

gives a good balance between compression rate and de-

coding speed. Cumulative run lengths can be encoded us-
ing 6 bits/run, binary searches require at most 6 textures
accesses, and the length of index data is a &-th of the
image size.

Color encoding. Programmable hardware allows for a
number of options to encode the color associated to each
run. Encoding can be performed in any color space (RGB
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and YUYV color spaces are two reasonable options), with
or without color quantization (e.g. DXT1 uses RGB 5:6:5
quantization, ETC uses RGB 5:5:5 and OpenGL supports
RGB 3:3:2) and with optional indexed color (palettized
texture). In our experiments we tested two color encod-
ings: RGB 8:8:8 for loss-less compression and RGB 6:6:6
for lossy compression. This last choice allows encoding
color data and cumulative run-lengths in 24 bit textures.
Cumulative run-length encoding. Since s; € [1,B], a nat-
ural choice is to simply store s, — 1 using 6 bit integers.
Index data encoding. Index data consists of b pairs (0;,/;)
where o; is an index to the origin of the i-th block on S
and /; is its length. Each index o; can be encoded with

[logz WTh—‘ bits, ¢ being the compression ratio, whereas
l;yvalues require log, B bits. Thus encoding them sepa-
rately requires [logz WTh—‘ +log, B bits. A more concise
option is to just encode the sum e; = 0; +1; — 1, (i.e. the
end of the i-th block) which requires [logz w-lﬂ bits. This

-
is possible because we know that o9 =0, 0; = ¢;—1 + 1,
and obviously /; = e; — 0; + 1. Using 24 bits for each e;
value is enough for compressing up to 8192x 8192 tex-
tures, assuming a minimum compression ratio of 4:1.

Data layout. We represent the sequence C = (I, ) as a 1D

virtual array stored as a 2D texture.

3.3. Decompression algorithm

The decompression algorithm takes as input the compressed
texture representation C(/, S) and integral texel coordinates
(i, j), and outputs the color of texel (i, j). The decompression
algorithm proceeds through the following steps:

1. Map (i, j) into the one-dimensional structure L using the
scan traversal defined by f, i.e. k — f(i, j).

2. Compute the block b in S containing texel k using integer
division, i.e. b — k/B.

3. Compute the lower bound for the binary search with
o«—I,_1+1ifb >0, 0 — 0 otherwise.

4. Compute the upper bound for the binary search, e <« I;,.

5. Compute the color of the run containing texel kmod B by
binary search on the ordered sequence s, ... Se.

3.4. A simple compression algorithm

‘We now present a simple algorithm to convert an input image
into a compressed representation C = (I, S). The algorithm
proceeds through the following steps:

1. Create an initial RLE representation R of the input image
by scanning the input image in the order defined by func-
tion f (actually a Hilbert scan) and creating a unit-length
run (c, 1) for each color ¢ encountered in the image.

2. Compress R by iteratively grouping neighboring runs un-
til the compression goal is satisfied. For error-bounded
compression, grouping stops when no more run pairs can
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be collapsed within a user-provided tolerance. For fixed-
rate encoding, grouping stops when a user-defined com-
pression ratio is reached. Runs starting at a location mul-
tiple of B are not allowed to be grouped with preceding
runs, to ensure that runs from different blocks are not
grouped together (as discussed in Section 3.2).

3. Create a cumulative run-length encoding S by replacing
each run (c, i) € Rby (ck,s¢) with s = Y5 ri.

4. Quantize color data using RGB 6:6:6 quantization (op-
tional)

5. Create the index data / by traversing S and adding an in-
dex k-1 for each pair (cg,s;) with s = B. These indices
correspond to the position of the last run in each block.

6. Output C = (I, S) as a 1D virtual array.

Actual compression is performed in step 2. Our outer opti-
mization strategy of the grouping algorithm is similar to that
of greedy iterative simplification algorithms. The grouping
algorithm (step 2) can be quickly summarized as follows:

1. For each pair of neighboring runs (c; r;), (¢iy1,ri+1) in
R, compute the cost E; of collapsing that pair.

2. Insert all the pairs in a heap keyed on cost with the
minimum-cost pair at the top.

3. Iteratively extract the pair (c; r;), (ciy1,7i4+1) of least cost
from the heap, group this pair in R, and update the cost of
the adjacent pairs.

The essential aspects of the grouping algorithm are:

e How to compute the error produced by joining two runs
(ciri), (cix1,rit)-

e How to compute the color after grouping two runs.
Experimentally we have found the following simple choices
to yield very good results. The color ¢’ resulting from joining
two runs (c; r;) and (cjt1,7i41) is computed as the weighted
average ¢’ = tc; 4 (1 — )¢y 1 with t = r;/(r; +r;1). Con-
versely, the cost produced by joining two runs is defined as
E=r;-|lci—c'|| +rit1 - ||civ1 — ¢'||, where ¢’ is computed
as above, and || - || denotes color difference. Our prototype
implementation uses color difference in RGB space to fa-
cilitate the comparison with competing compressed formats
(see Section 4.1), although other color spaces such as CIE
Luv might be more appropriate for measuring perceptual
color distance.

4. Results and discussion

We have implemented the compression and decompression
algorithms described above and tested them on a large class
of RGB textures. Unless otherwise stated, all compressed
textures were created using the Hilbert scan, RGB 6:6:6
quantization and block size B = 64.

4.1. Image quality and compression ratio

Figure 3 shows several textures compressed using our
scheme with rates varying from 6:1 up to 24:1. RMS and
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Figura 3: Compressed textures with rates varying from 6:1 to 24:1. From left to right: input image, reconstruction from our
compressed representation, close-up views, and image difference amplified 10x.

PSNR values are shown in Table 2. Note the high visual
quality of resulting images, which preserve highly-detailed
features. The last column shows the image difference in
RGB space amplified 10x, computed as 10- (|r — /| +|g —
g'| +|b—b'|) and coded in a color temperature scale. The
error appears to be distributed evenly across the image, with
the only exception of Maggie, which exhibits highly spa-
tial coherence and hence the errors are restricted to detailed
parts. Resulting PSNR values were all above 31.5 dB (Ta-
ble 2).

Figure 4 illustrates the ability of our scheme to segment
coherent regions from detailed parts. The presence of fea-
tures in otherwise coherent areas does not produce overseg-
mentation (the white background of the input image shown
in Figure 4 is not completely uniform, exhibiting a slight gra-

Image Size Compression ~ RMS PSNR(dB)
Quadrics 10242 6:1 0.0164 35.71
Buck Bunny 5122 6:1 0.0256 31.83
Watch 10242 12:1 0.0231 32.71
Grape 5122 12:1 0.0262 31.64
Maggie 5122 24:1 0.0229 32.81

Tabla 2: Compression results on several test images

dient and soft shadows). Relative frequencies of run-lengths
for two sample images are shown on the left of Figure 5. In
all cases the average run length matches the compression ra-
tio, but the distribution of relative frequencies varies. Short-
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Figura 4: Close-up views showing the ability of our scheme
to perform adaptive compression. Input image (left), color-
coded runs (middle), and reconstruction from the com-
pressed texture (right).

length runs clearly predominate (around 30-40% of the runs
are unit-length), allowing the preservation of detail on high-
frequency regions, followed by runs with the maximum al-
lowed length B = 64, with relative frequency varying from
2% to 30%, depending on the compression ratio, which in
turn reflects the degree of spatial coherence of the image.
Figure 5-right shows the number of input texels represented
by each run, grouped by run length. Since longer runs repre-
sent a higher number of texels, around 20%-60% of the input
texels, depending on the compression factor, are encoded in
maximum-length runs. This has an important consequence
for decoding speed, as texels belonging to such runs can
be decoded with a single texture lookup (the corresponding
block contains a single run), thus reducing significantly av-
erage decoding times.

40%

Frequency
D oW
Input texels per run

o Ml ; oo b ] [
18 16 24 32 40 48 56 64 18 16 24 32 40 48 56 64
Run lenght Run lenght ( a)

Quadrics (6:1)

40%

Frequency
N @
Input texels per run

10% {
0% - %
18 16 24 32 40 48 56 64 18 16 24 32 40 48 56 64

Run lenght Run lenght (b)

Watch (12:1)

Figura 5: Relative frequencies of run-lengths (left) and per-
centage of input texels per run (right).

We have extensively compared our scheme with readily-
available compressed texture formats. Figure 8 compares our
approach with three alternative approaches: 4:1 image sub-
sampling (using bilinear filtering), 256-indexed color (com-
puted using the Median-Cut algorithm) and DXT1 compres-
sion (using a high-quality software coder). Images appear
roughly sorted by increasing degree of spatial coherence.
Image subsampling (third column) has been included only as

(© The Eurographics Association 2009.

areference, as it blurs the image and causes detail loss every-
where. Indexed color (fourth column) is good at preserving
detail on images with a limited number of colors, but nothing
else. In particular, color gradients are poorly supported by in-
dexed color schemes (see e.g. the molecule image in last row
of Figure 8). Here we focus on the comparison of DXT1 with
our scheme configured to yield the same compression ratio
(last two columns of Figure 8). Resulting RMS, PSNR and
maximum error values are reported in Table 3. DXT1 pro-
duces higher RMS errors and poorer PSNR values in all the
test images. Visually, DXT1 produced a quality loss every-
where, which is particularly noticeable around sharp edges
and regions with a high chrominance and/or luminance vari-
ance (recall that DXT1 decodes sixteen input pixels using
only four colors). See for example the artifacts around sharp
edges in the DXT1 molecule image and those around the
text in the topographic map. In some regions the 4 x4 blocks
used by DXT1 are clearly distinguishable. Maximum error
values also reveal the poor behavior of DXT1 in images with
blocks with high variance (Table 3). Our approach produced
more visually pleasant images with better PSNR values and
much lower maximum error. We would like to remark that
the test images in Figure 8 contain a number of distinct col-
ors much higher than most people would guess. For instance,
the original molecule image contains 525,023 distinct col-
ors (see Table 3). It is also important to notice that the in-
put topographic map was stored in JPEG format and already
contained some color artifacts, which in some extent did not
disappear after compression.

(a) DXT1 (b) Ours

(c) DXT1

(d) Ours

Figura 6: Image difference amplified 10x for DXTI and
our approach for the quadrics (a-b) and watch (c-d) images.
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Image Size Colors S3TC DXT1 (6:1) Our approach (6:1)
RMS PSNR Max RMS PSNR  Max
Castle 5122 102,869  0.046 26.5 0.281  0.036 28.7 0.254
Still life 5122 93,338  0.042 27.3 0.737  0.027 313 0.174
Clock 5122 107,352 0.047 26.4 0.562  0.034 29.6 0.285
Quadrics 1024% 192,164  0.024 322 0.445 0.016 35.7 0.083
Topography 20482 238 0.047 26.3 0317  0.027 313 0.147
Molecule 2048% 525,023  0.055 25.1 0.881  0.017 35.2 0.073

Tabla 3: RMS, PSNR and maximum error for DXTI1 and our approach with 6:1 compression.

We also analyzed our approach in terms of the error dis-
tribution. Figure 6 compares the error distribution of DXT1
compression with ours. Note that DXT1 errors are accumu-
lated in high-variance regions around hard edges, whereas
our approach produces a more evenly distribution of the
error, which at the end is the ultimate goal of adaptive
compression. It can be observed, though, that our approach
slightly tends to produce locally coherent error due to large
coherent parts represented with a single color. However, re-
sulting artifacts are hard to notice at moderate compression
rates (see Figure 7).

Figura 7: Compressed textures with 6:1, 12:1, 24:1 and
48:1 compression rates.

4.2. Decompression speed

Our scheme can be easily integrated into the rasterization
pipeline of current programmable graphics hardware allow-
ing GPU decompression. Table 4 shows rendering times of
our prototype shader running on NVidia GTX 280 hard-
ware with OpenGL 2.1. Higher compression rates result in

Ratio  Lookups(avg)  Mtexels/s Fps
10242 5122
6:1 3.51 392 374 1320
12:1 3.05 438 418 1518
18:1 2.76 507 484 1716
24:1 2.57 553 528 1870

Tabla 4: Decompression performance

less runs per block and thus less texture fetches during the
binary search step. Note that for typical 6:1 compression,
only about 3.51 texture fetches are required, on average.
This number of texture lookups is quite reasonable com-
pared with the number of fetches required by popular tech-
niques such as parallax occlusion mapping and relief map-
ping. Our decompression rates are about one order of magni-
tude slower than DXT1. But of course, DXT1 benefits from
specialized hardware in the GPU, and texture caching and
filtering strategies have been optimized for their use. Even
without assistance from specialized hardware, our scheme
allows real-time rendering at high rates.

4.3. Compression speed

Texture compression is somewhat asymmetric since decod-
ing speed is essential while encoding speed is useful but not
necessary. Nevertheless, our compression algorithm is able
to compress large textures in a few seconds. Table 5 shows
compression times for varying texture sizes and compression
goals. Higher compression rates slightly increase compres-
sion times as more run pairs need to be collapsed. All times
were measured on an Intel Core2 Quad Q9550 at 2.83GHz.
Compression times are dominated by heap updates. There-
fore compression times can be further reduced by using a
lazy queuing algorithm for ordering grouping operations.
Moreover, since each of the B runs of each block are grouped
independently, the compressor is amenable to GPU imple-
mentation, although we did not try this option.

(© The Eurographics Association 2009.
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Texture size # texels Compression time (s)
6:1 12:1 18:1  24:1
256x256 65,536 04 0.4 0.4 04
512x512 262,144 0.6 0.6 0.6 0.7
1024x1024 1,048,576 35 3.8 4.0 4.1
2048x2048 4,194,304 162 16.6 16.8 17

Tabla 5: Compression performance

4.4. Filtering and caching

One concern with our approach is that it may increase mem-
ory bandwidth since each query involves several texture
lookups. Although we did not analyze this topic in detail,
access patterns created by a Hilbert scan are very coherent,
so most memory reads should be intercepted by memory
caches. The same applies for the binary search, as the ini-
tial search bounds are the same for all texels belonging to a
given block.

5. Conclusions and future work

In this paper we have presented a locally-adaptive texture
compression scheme suitable for GPU decoding. Our ap-
proach achieves a good balance between compression of
coherent regions and preservation of high-frequency de-
tails. Novel elements include the use of locality-exploiting
scans, efficient encoding of homogeneous regions through
arbitrarily-sized runs, and cumulative run-length encoding
allowing fast random-access. Texel decoding relies on a bi-
nary search requiring less than 3.5 texture lookups on aver-
age. Several rendering techniques such as relief mapping and
parallax occlusion mapping significantly exceed this num-
ber of texture fetches while retaining real-time speed. We
have also presented a simple compression algorithm driven
by a heap keyed on a data different metric. The algorithm
is suitable for both loss-less and lossy with bounded er-
ror. Our scheme outperforms the visual quality of compet-
ing approaches such as DXT1 on a large class of images.
Best results are obtained with images exhibiting some de-
gree of spatial coherence. Unlike other proprietary formats,
our scheme is suitable for compression of any graphics data
and can be easily extended to support multidimensional tex-
tures. Decoding speed is slower than hardware-supported
compressed formats, but still provides excellent frame rates
on current consumer hardware.

There are several directions in which this work may be
extended. The compression algorithm can be extended to
find the optimal block size; images with large coherent re-
gions would benefit from higher block sizes, whereas im-
ages with high-frequency detail everywhere will be more ef-
ficiently encoded with smaller block sizes. Our current im-
plementation uses 6 bits to encode run lengths which vary
from 1 to 64. It might be useful to use a non-uniform quan-

(© The Eurographics Association 2009.

tization of the run lengths, allowing e.g. run lengths from 1
to 59, and 64, 128, 256, 512, 1024. An in-depth analysis of
cache efficiency is required. In particular, it would be use-
ful to optimize trilinear interpolation taking into account the
locality-preserving features of the decoding algorithm. Fi-
nally, we plan to analyze the application of our scheme for
compressing volume data; volume data often exhibits high
voxel correlation and can potentially benefit from our adap-
tive encoding.
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Figura 8: Comparison of our approach with several compressed alternatives.
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