

A Framework for Rendering, Simulation and

Animation of Crowds

N. Pelechano, B. Spanlang, A. Beacco
Universitat Politècnica de Catalunya, Barcelona, Spain

delivered by

EUROGRAPHICSEUROGRAPHICS

D LIGITAL IBRARYD LIGITAL IBRARY
www.eg.org diglib.eg.org

Abstract

Real-time crowd simulation for virtual environment applications requires not only navigation and locomotion in

large environments while avoiding obstacles and agents, but also rendering high quality 3D fully articulated fig-

ures to enhance realism. In this paper, we present a framework for real-time simulation of crowds. The framework

is composed of a Hardware Accelerated Character Animation Library (HALCA), a crowd simulation system that

can handle large crowds with high densities (HiDAC), and an Animation Planning Mediator (APM) that bridges

the gap between the global position of the agents given by HiDAC and the correct skeletal state so that each agent

is rendered with natural locomotion in real-time.

The main goal of this framework is to allow high quality visualization and animation of several hundred realistic

looking characters (about 5000 polygons each) navigating virtual environments on a single display PC, a HMD

(Head Mounted Display), or a CAVE system. Results of several applications on a number of platforms are pre-

sented.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism – Animation; I.6.8 [Simulation and Modeling]: Types of Simulation – Animation.

1. Introduction

Natural looking crowd simulation is necessary for appli-

cations such as video games and training simulators. Natu-

ral looking animations become even more important in

immersive applications where a real participant can interact

in real-time with characters in a virtual environment. If our

goal is to be able to interact with relatively large number of

agents, it is necessary that those agents perform natural

path planning and animations, making sure that there is

consistency between what we would expect in the virtual

world from our experiences in the real world.

In order to achieve visually appealing results it is neces-

sary to integrate motion planners with motion synthesizers.

Most crowd simulation systems focus on the path planning

and local motion details of the agents while using a charac-

ter animation library to render 3D fully articulated charac-

ters playing a small set of animation clips. The main prob-

lem that can be easily observed is that the characters have a

very limited number of movements available and that con-

straints such as ground contact points are not respected.

Generating empathetic characters with realistic move-

ments and responses to other virtual agents and obstacles in

the environment can be very tedious work, since they usu-

ally require large number of animation clips to be able to

exhibit a large variety of movements. Being able to gener-

ate synthesized motions from small sets of animation clips

is thus of extreme relevance especially if we want to exhibit

variety while following the requirements given by a crowd

simulation module dealing with path planning and local

motion.

In this paper we present a framework for real-time crowd

simulation which integrates a crowd simulation module

that determines the position, velocity and orientation of

each agent at every frame with a motion synthesizer that

will guarantee smooth and natural looking animation for

every agent.

In order to integrate both modules we developed an

Animation Planning Mediator which with the information

CEIG’09, San Sebastián, Sept. 9-11 (2009)
C. Andújar and J. Lluch (Editors)

c© The Eurographics Association 2009.

DOI: 10.2312/LocalChapterEvents/CEIG/CEIG09/001-010

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/LocalChapterEvents/CEIG/CEIG09/001-010

C. Andújar and J. Lluch / A Framework for Rendering, Simulation and Animation of Crowds

Figure 1. Crowd Simulation, Animation and Rendering.

provided by the crowd simulation module selects the best

parameters to feed the motion synthesizer at the same time

that it feeds back to the crowd simulation module with the

required updates to guarantee consistency.

Figure 1 shows an example of the type of crowd simula-

tion achieved with the framework presented in this paper.

2. Related Work

Probably the most well known approach for crowd simu-

lation is based on Reynolds’ work where agent behavior is

simulated through a local rules model [Rey87], Brogan and

Hodgins [BH97] used particle systems and dynamics for

modeling the motion of groups with significant physics in

combination with a rule-based model.

Social forces have also been widely employed for crowd

simulation [HFV00]. Other approaches are based on flows

[Che04]. Hybrid approaches have been presented combin-

ing forces with rules based on psychological and ge-

ometriacal features of the environment to achieve a wider

range of heterogeneous behaviors [PAB07]. Shao and Ter-

zopoulos introduced cognitive models to simulate pedestri-

ans navigating in a train station [ST05].

To achieve a real-time simulation of very large crowds,

Treuille et al. [TCP06] used a dynamic potential field to

integrate global navigation with moving obstacles and peo-

ple. This approach is not agent based, which means that we

cannot have individual goals for each pedestrian; instead,

goals are common to all the crowd members.

Lerner et al. [LCL07] introduced a novel approach for

rule-based simulation based on examples, in which track-

ing data from real crowds is used to create a database of

examples that is subsequently used to drive the simulated

agents’ behavior.

Hierarchical schemes have been proposed to address

scalability. In particular, Musse and Thalmann [MT01]

provide crowds with different levels of autonomy for hier-

archical crowd behaviors.

To navigate a complex environment, some semantically

meaningful geometric representation of the environment is

essential. Among the most popular techniques for crowd

navigation are cell and portal graphs (CPGs)

[LCC06][PB06], potential fields [Che04], and roadmaps

[SGA*07].

Lau and Kuffner [LK06] introduced precomputed search

trees for planning interactive goal-driven animation. The

method consisted of a finite state machine composed of a

small set of animation clips (jog forward, left, right, stop,

crawl, and jump). Their algorithm creates a tree of all the

possible animations run from a starting point and selects

the path within the tree that takes them closer to the goal in

the environment.

Through interpolation and concatenation of motion clips,

new natural looking animations can be created [WP95].

Kovar et. al. introduced motion graphs to create new an-

imations by following a path within the graph of motions

clips where transitions between similar frames in those

clips were available [KGP02]. Zhao and Safanova ex-

tended motion graphs to improve both connectivity and

smooth transitions [ZS07]. Such techniques can achieve

natural animations, but they require a large database of

motion capture data to allow for interactive changes of

walking speed and orientation. Furthermore, these algo-

rithms require searches in complex graphs and thus are not

appropriate for interactive control of crowds. In our

framework we only need a small set of animations clips to

synthesize new motions.

Since rendering large numbers of agents can become a

bottleneck as the numbers of polygons increase, a solution

can be to apply Level Of Detail for the characters depend-

ing on their distance to the camera [UHT04]. Another op-

tion to improve the performance of rendering is to use im-

postors. Aubel et al [ABT00] described their impostors as

“a simple textured plane that rotates to continuously face

the viewer” a snapshot of the virtual human is textured

onto the plane. The snapshots are produced at run-time.

c© The Eurographics Association 2009.

2

C. Andújar and J. Lluch / A Framework for Rendering, Simulation and Animation of Crowds

Pre-generated impostors with improved shading have also

been used [TLC02]. Impostors can achieve rendering of

large crowds (10th of thousands), but their main disad-

vantge appears when the viewer gets too close to an agent,

since then the character will appear pixelized.

Dobbyn et. al. [DHC*05] introduced the first hybrid sys-

tem that was presented by using impostors on top of a full,

geometry-based human animation system, and switching

between the two representations with minimal popping

artifacts. In order to reduce the memory requirements of

impostors, while keeping a high level rendering efficiency,

2D polygonal impostors have been used [KDC*08].

De Heras Ciechomski et al. [HUCT04] avoid computing

the deformation of a character’s mesh by storing pre-

computed deformed meshes for each key-frame of anima-

tion, and then sorting these meshes to take cache coherency

into account.

Owing to the programmability and performance of recent

graphics hardware [Ros06] different Skinning techniques

have been introduced recently [KCZO07]. In Skinning the

segments of a character’s skeleton are associated with the

mesh that describes the character by vertex weights. Skin-

ning methods blend between skeletal segment transforma-

tions in order to create smooth mesh deformations in joint

areas, for example between the upper and the lower arm of

an avatar. These techniques are used by our animation

library described in section 3.3 of this paper.

It is also important to note that variety in the animation

clips has an impact on how we perceive crowd variety, as

shown in recent work by McDonnell et al. [MLD*08].

With the framework presented in this paper we are able

to control and visualise avatars on a high and on a low

level. The high level control deals with navigation of

agents in informed cell and portal graphs [PB06] where

local motion is carried out through psychological, physio-

logical and geometrical rules combined with physical

forces [PAB07]. In order to animate the skeletal segments

of the individuals in the crowd we are using HALCA

[Spa09] that employs motion blending techniques

to achieve a large variety of animations from a small set of

recorded motions. HALCA performs the skeletal skin and

clothing deformations of the avatars using GLSL shaders

on the GPU in addition to texture and bump mapping

techniques to visualise fairly realistic looking avatars in a

very efficient way.

3. Crowds Framework

The framework presented in this paper performs a feed-

back loop where the Animation Planning Mediator acts as

the communication channel between the crowd simulation

module and the animation module. The outline of this

framework is shown in Figure 2.

For each frame, the crowd simulation module calculates

the position p, velocity v, and desired orientation of the

torso θ. This information is then passed to the Animation

Planning Mediator in order to select the parameters to be

sent to the animation module. These parameters are the

appropriate animation clip, the level of blending required

and a description of skeletal segment adaptation as de-

scribed in section 3.2.

The Animation Planning Mediator may need to slightly

modify any of the parameters given by the crowd simula-

tion module in order to guarantee that the animations ren-

dered are smooth and continuous, since breaking those

restrictions will result in unnatural crowd behavior.

It is thus essential that the crowd simulation model em-

ployed works in continuous space and allows for updates

of the position, velocity or orientation of each agent at any

given time in order to guarantee consistency with the re-

quirements dictated by the animation module.

Our animation module, HALCA, contains a motion syn-

thesizer which can provide a large variety of continuous

motion from a small set of animations by allowing direct

manipulation of the skeleton configuration during the an-

imations.

It is very important that the information coming from the

crowd simulation module is well processed and that noise

is properly filtered out, otherwise it could result in unnatu-

ral character animation. At the same time, it is important

that the feedback the crowd simulation module receives

still allows for enough flexibility in the type of continuous

movement available, otherwise we could have the anima-

tion module limiting freedom of movement and also affect-

ing reaction times of the agents.

As in other crowd simulation architectures, characters

can be created either by a modeling tool such as 3D studio

max, Maya or Blender, or by employing 3D whole body

scanners. For body scans during a pre-processing phase

holes from the mesh are removed, the mesh has to be

smoothed and skeletal bone weights have to be associated.

To create the library of animations, we decided to use

hand created animations instead of motion captured data.

Figure 2: Framework

c© The Eurographics Association 2009.

3

C. Andújar and J. Lluch / A Framework for Rendering, Simulation and Animation of Crowds

3.1 HiDAC – Crowd Simulation Module

For this work the crowd simulation model HiDAC has

been used, although we could have used other real-time

models such as social forces, rule-based or cellular auto-

mata. The key limitation imposed by our framework to

guarantee smooth and natural looking animation is that the

crowd simulation model utilized works in continuous

space.

HiDAC provides as an output the position, velocity and

orientation for each agent at each frame. The position in-

dicates where the character should be rendered in the vir-

tual environment, the velocity vector indicates the direction

of movement and the orientation indicates the desired torso

orientation of the fully articulated 3D figure for rendering

purposes.

The torso orientation is given by the velocity vector but

after applying a filter so that it will not be unnaturally af-

fected by abrupt changes. This is done as we want the posi-

tion of the character to be able to react quickly to changes

in the environment such as moving agents and obstacles,

but we need the torso to exhibit only smooth changes, as

without this the result will be unnatural animations where

the rendered characters appear to twist constantly.

Through filtering we can simulate, for example, an agent

that moves with a slight zig-zag effect, while the torso of

the rendered character faces a constant forward direction

3.1.1 HiDAC model description

HiDAC addresses the problem of simulating high-

density crowds of autonomous agents moving in a natural

manner in dynamically changing virtual environments. To

address the problem of realistically simulating local motion

under different situations and agent personalities, it uses

psychological, physiological and geometrical rules com-

bined with physical forces. Since applying the same rules

to all agents leads to homogeneous behavior, agents are

given different psychological (e.g., impatience, panic, per-

sonality attributes) and physiological (e.g., locomotion,

energy level) traits that trigger heterogeneous behaviors.

Each agent is also endowed with perception and reacts to

static and dynamic objects and other agents within the

nearby space.

Agent behaviors are computed at two levels:

• High-level behavior: navigation, learning, communica-

tion between agents, and decision-making. [PB06]

• Low-level motion: perception and a set of reactive be-

haviors for collision avoidance, detection and response in

order to move within a bounded space [PAB07].

Local agent motion is based on a combination of geo-

metrical information and psychological rules with a forces

model to enable a wide variety of behaviors resembling

those of real people. HiDAC uses psychological attributes

(panic, impatience) and geometrical rules (distance, areas

of influence, relative angles) to eliminate unrealistic arti-

facts and to allow new behaviors:

• Preventing agents from appearing to vibrate

• Creating natural bi-directional flow rates

• Queuing and other organized behavior

• Pushing through a crowd

• Agents falling and becoming obstacles

• Propagating panic

• Exhibiting impatience

• Reacting in real time to changes in the environment

HiDAC will provide natural trajectories for each agent

within a dynamic virtual environment even under high

densities. The output of the system will be a position, ve-

locity and torso orientation for each agent.

3.2 Animation Planning Mediator

To achieve realistic animation for large crowds from a

small set of animation clips, we need to synthesize new

motions.

The Animation Planning Mediator (APM) is used to find

the best animation available while satisfying a set of con-

straints. On the one hand it needs to guarantee that the next

animation frame will reflect as closely as possible the pa-

rameters given by the crowd simulation module (p, v, θ),

and on the other hand it needs to guarantee smooth and

continuous animations. Therefore, the selection of the next

best frame needs to take into account the current skeletal

state, the available transitions in the graph of animations,

the maximum rotation physically possible for the upper

body of a human that will look natural, and if there are any

contact points to respect between the limbs of the skeleton

and the environment (for example, contact between a foot

and the floor). Once the APM determines the best next

frame and passes this information on to HALCA for anima-

tion and rendering, it will also have to provide feedback to

the crowd simulation module in the cases where the pa-

rameters sent needed to be slightly modified to guarantee

natural looking animations with the resources available

(i.e. with the set of animation clips and transitions).

The APM will pre-process the set of animation clips

available in order to extract relevant information that is

necessary to classify the animations and store it so that it

can be accessed in real time during the simulation. For

each animation clip available, the APM will calculate its

velocity v in m/s by computing the total distance traveled

by the character through the animation clip divided by the

total time of the animation clip, as well as the angle α be-

tween the orientation of the torso and the velocity vector v.

Figure 3 shows the communication between HALCA

and the APM during this pre-processing. In order to calcu-

late the required information, the APM needs to obtain one

after another the consecutive skeletal states for each anima-

tion. HALCA offers skeletal configurations through a

c© The Eurographics Association 2009.

4

C. Andújar and J. Lluch / A Framework for Rendering, Simulation and Animation of Crowds

morphing value m in the interval [0,1], where 0 corre-

sponds to the first key frame, and 1 corresponds to the last

key frame. The APM thus sends the animation identifier,

Ai, and the morphing value, m, and will receive back the

corresponding skeletal state, sk(m).

Figure 3: Pre-processing information regarding the an-

imations.

3.2.1 Animation Clip Selection

Instead of achieving different walking speeds by having

tens of different walking animations, the APM employs

one animation clip that can be played at different speeds by

modifying the number of frames per animation clip used in

real time. When using Cal3D for animation we can have an

animation of, for example, 60 frames per second which by

varying the differential of time within frames rendered

allows for a large variety of speeds for each given anima-

tion clip.

For this paper we use only four walking forward anima-

tions (very slow, slow, normal and fast, each with corre-

sponding variations in step length) to allow an agent to

move in a range of speeds from 0m/s to 1.57m/s. Each

animation clip covers a subset of speeds going from the

minimum speed when dt is very small, to the original speed

of the animation clip when dt is 1. For a dt of value 0 the

animation will appear to stop, since it will return the same

frame twice.

An animation clip of walking forward can also be used

to have the agent turn, as we can slightly rotate the figure

within given contact constraints. This works very well for

high walking velocities, but for slower animations it is

worth having several turning animation clips and blending

between them.

If we consider α to be the angle between the direction of

movement v and the torso orientation θ we can classify

animations based on α. For example an animation of walk-

ing sideways will have α = 90 degrees. In addition to 0 and

90 degrees, we use animations of α = 12 and α = 55 de-

grees in our examples.

Our ten animation library with four walking forward an-

imations, two side-step animations and four walking on an

angle animations is thus defined in Table 1. Each of these

animations could also be run with a negative dt in order to

obtain the opposite animation (i.e. walking forwards with a

negative dt will result in walking backwards) This doubles

the number of animation clips available in our library.

Anim.

Id

v (m/s) α Anim descrip

0 0.3444 0 Walk Forwards Very Slow

1 0.5899 0 Walk Forwards Slow

2 1.0668 0 Walk Forwards Normal

3 1.5752 0 Walk Forwards Fast

4 0.3444 90 Walk Sideways Normal

5 0.0960 90 Walk Sideways Slow

6 0.8895 -12 Walk with small angle Left

7 0.8895 12 Walk with small angle Right

8 0.0960 -55 Walk with big angle Left

9 0.0960 55 Walk with big angle Right

Table 1. Animation Clip Library

During run time, the Animation Planning Mediator will

select the best animation based on the current velocity, v,

of the agent, and the angle, α, between the velocity and the

torso orientation, θ, provided by the crowd simulation

module.

3.2.2 Animation Speed

As explained in the previous section, each animation is

defined by a set of key frames. When playing an animation

clip at its original frame speed, that is when dt is 1, we can

calculate the real velocity of the agent in m/s by computing

the displacement of the root during the animation divided

by the total time of the animation clip.

The calculated velocity determines the real velocity of

the animation when we run it in the global coordinate sys-

tem of the virtual environment with dt=1. We can easily

run the same animation at lower velocities by interpolating

intermediate frames.

The Animation Planning Mediator can thus calculate the

speed at which the next frame should be calculated so that

it best matches the velocity of the agent given by the crowd

simulation system.

If the crowd simulation module gives the same global

position for an agent during two consecutive frames, then

the APM can determine not to calculate a new frame by

passing dt=0 to the animation module.

c© The Eurographics Association 2009.

5

C. Andújar and J. Lluch / A Framework for Rendering, Simulation and Animation of Crowds

3.2.3 Closing the loop

With the information calculated by the APM, we need on

the one hand to pass it to HALCA to carry out the anima-

tion and rendering of the agents, and on the other hand to

feed back information to HiDAC in the case that any of the

parameters provided (p, v, θ) needed to be replaced by the

slightly adjusted version (p’, v’, θ’) to guarantee continu-

ous and smooth animations (see Figure 4). This step is

important to guarantee consistency between what we are

observing in the rendered crowd and all the computations

that HiDAC carries out regarding collision detection,

avoidance and path planning.

Figure 4: Communication between HiDAC and the APM

HALCA will proceed to render an agent in the position

calculated by the displacement between the previous frame

and the new frame given by the differential of time, dt, and

the animation identifier, Ai. If Ai was different from the

previous one, then HALCA will blend between the two

animations with the blending value, b, to achieve a natural

looking next frame that maintains continuity and smooth-

ness in the locomotion. The blending value, b, is given by

the APM to determine how the previous animations clip

will fade out and the new one will fade in. The APM also

needs to send to HALCA the correct orientation (θ) and

velocity (v) of the character in the virtual environment,

which was provided by HiDAC. If necessary, the APM

can determine which joints along the upper body of the

character should be re-oriented in order to satisfy the given

constraints. Therefore the APM will also feed HALCA

with a vector of rotations, sk=(α1, α2, α3, …, αn) that are

required to adapt some skeletal segments such as the spine

and head rotations after the blending of animation clips

was applied [PSB09]. HALCA will then calculate the re-

sulting skeletal configuration for the given parameters.

Figure 5 shows the exchange of parameters between

HALCA and the APM.

Figure 5: Parameters from APM to HALCA in order to

carry out animation (Ai, dt, sk) and rendering (p, θ)

3.3 HALCA – Character Animation Module

For the animation and visualisation of avatars we are us-

ing the Hardware Accelerated Library for Character Ani-

mation (HALCA) [Spa09]. HALCA uses the Cal3D XML

file format [Cal3D06] to describe skeleton weighted

meshes, animations, and materials. The core of HALCA

consists of a motion mixer and an avatar visualisation en-

gine.

The main goal of this hardware accelerated library is to

allow the user to animate and visualise several hundred

realistic looking characters on single display PCs, in HMD

(head mounted displays) and CAVE like systems. HALCA

is closely related to Cal3D, extends Cal3D's animation and

visualisation functionalities and allows the user to script it

from VR applications.

3.3.1 Visualisation Engine

HALCA can be run in different rendering modes. In its

simplest mode it uses basic OpenGL and can therefore run

on any graphics card that supports OpenGL.

If HALCA is run in shader mode then it can either load

and activate GLSL shader programs [Ros06] from a text

file or it assumes that a shader program of the OpenGL

context was activated by the hosting application.

In addition to the usual shading in HALCA, shaders are

used to perform the deformation of an avatar’s skin accord-

ing to the skeleton state of the avatar. Owing to the highly

parallel nature of this problem, current graphics hardware

can carry out the required computations much more effi-

ciently than the CPU. In addition, much less data is trans-

ferred between the CPU and the GPU. This is a very im-

portant feature when it comes to visualising large crowds

of realistic looking avatars. This is even more important if

the display system consists of multiple projectors that are

driven by a networked render cluster [MTB07].

During the initialisation when avatars are loaded, the

mesh information along with morph target information is

loaded into OpenGL Vertex Buffer Objects (VBO)s on the

GPU. HALCA has functionality to reuse vertex and image

map data as much as possible. For example if two avatars

c© The Eurographics Association 2009.

6

C. Andújar and J. Lluch / A Framework for Rendering, Simulation and Animation of Crowds

share the same mesh but have different textures, then the

same VBO is used for both characters with the correspond-

ing texture maps. This functionality is very useful in crowd

simulation in order to keep the amount of data required low

but to allow for variety in the appearance of avatars.

For animation in shader mode HALCA only needs to

transfer the skeletal joint transformations to the GPU either

as transformation matrices or as dual quaternions

[KCZO07].

Two basic GLSL shader programs that can handle linear

blend skinning (LBS) or dual quaternion skinning (DQS)

to deform the mesh of a character according to the pose of

the character’s skeleton are provided. These basic shaders

can easily be extended to create effects that are required in

an application, such as illumination effects or more elabo-

rate skin rendering techniques. For example, complex

global illumination effects such as those created in a Vir-

tual Light Field (VLF) were used in combination with

HALCA [MYK*08].

In HALCA multiple image map files can be defined in

the material files of a character in order to simulate per

pixel diffuse, opacity, gloss or bump properties of an ava-

tar’s skin and clothing. For example, bump maps are used

to visualise wrinkles on a character’s skin. Such maps can

also be used to interactively deform the character’s skin by

using them as displacement maps in the vertex shader by

GPUs that support VTF (Vertex Texture Fetch). These

techniques can be used to increase the realism of the indi-

vidual avatars in the crowd.

3.3.2 Animation Mixer

HALCA gives access to properties such as the duration,

frame rate, and the skeletal states of an animation to the

hosting application. Such information can be useful to

compute, for example, the actual walking speed of a char-

acter when animated as described in section 3.2.2.

For avatar animation HALCA extends Cal3D's abstract

mixer class and adds the following functionalities:

• play and blend animations of different avatars at different

speeds.

• play and blend temporal parts of an animation.

• play or morph an animation only on specified body parts.

• go through an animation not by time but by an external

value. We call such animations morph animations not to

be confused with morph targets.

• directly access and manipulate joint rotations and transla-

tions on top of blend and morph animations.

• efficiently access and manipulate the whole skeletal state

(one function call is required to access the skeleton or to

set it to a particular pose by passing the skeletal state vec-

tor of an avatar to or from HALCA). This is useful for

the integration with a real time whole body motion cap-

ture system or other systems that require changes to the

skeletal state of the whole body. Efficient access to the

skeletal state is useful, for example, for a physics engine

to check and respond to collisions between avatars or

limbs of an avatar.

Blending of animations, temporal or between multiple

animations is achieved by using spherical linear interpola-

tion (Slerps).

Blending motions does not always create natural looking

movements. In order to be blendable, animations have to

be pre-processed to be time aligned by a Dynamic Time

Warping (DTW) method.

Owing to the simple access to skeletal state of the char-

acter, several Inverse Kinematics algorithms have been

created for HALCA in the S3D scripting language and in

C++ [Spa09][MYK*08].

3.3.3 Animation Blending

In our system, animation clips are represented by frames

of character poses. Each frame is described by a state vec-

tor that describes all joint rotations of the character’s skele-

ton as quaternions and the character’s root translation by a

3D vector. We use two types of blendings as illustrated in

Figure 6. The first type of blending occurs between frames

of the same animation clip. In order to smoothly play back

an animation clip, a frame is created at each time t by com-

puting the spherical linear interpolation of the two quater-

nions that represent the same skeletal joint rotation in the

two nearest key frames. This type of blending allows us to

play back animation clips at any required speed.

Figure 6: Animation blending.

The second type of blending is between frames of differ-

ent animation clips, for example blending between an ani-

mation clip of a character walking slow and a character

walking fast. Again, spherical linear interpolation of the

joint rotations and linear interpolation for the root transla-

tion is used.

c© The Eurographics Association 2009.

7

C. Andújar and J. Lluch / A Framework for Rendering, Simulation and Animation of Crowds

Our animation system allows us to specify the weight

and delay required to blend in and out animation clips. The

weight and delay are used for the interpolation calculation.

Not all animation clips are suitable for blending. For ex-

ample, if we blend between a walking slow and a walking

fast animation we have to make sure that the same foot is

on the ground at the same time in both animations clips.

This restriction has to be taken into account when manually

creating key frame based animations. If motion capture

data is used then the animation clips have to be pre-

processed by a dynamic time warping technique such as the

one presented by Kovar and Gleicher [KGP02] to ensure

that the clips can be blended.

4. Results and Future Work

We have presented a framework that integrates a crowd

simulation controller with a motion synthesizer. Our tech-

nique allows us to perform crowd simulation in continuous

space, while generating the appropriate animations at every

frame to guarantee quality of locomotion. This is of ex-

treme importance for virtual reality applications, since no

matter how good the crowd simulation method is, the real-

ism experience is degraded if inadequate animations are

played.

The framework presented has been tested with two vir-

tual reality applications. We are currently using the system

to simulate virtual humans on a 64 bit platform with visu-

alization software based on OpenGL. This first application

is for an interactive virtual game for educational purposes.

We are also using the framework on a 32 bit platform with

the system XVR (eXtreme Virtual Reality) [XVR08]. XVR

also works with OpenGL and allows for fast development

of interactive virtual environments. Currently we can simu-

late, animate and render up to 200 agents at 25 frames per

second on a typical laptop. Our system renders the full

geometry of each agent, which consists of 5000 polygons

on average.

Our framework has been integrated with XVR

[CTB*05][XVR08] and therefore the avatars can be

displayed in a web browser on a PC, and on immersive

virtual reality display devices, such as a CAVE or a head

mounted display (HMD) without any additional

programming work.

Currently we can simulate on a laptop with GPU in real

time approximately 200 fully articulated figures with

approximately 5000 polygons each, as shown in Figure 1 at

over 30 frames per second.

Our framework shows visually convincing results in

terms of the animations achieved by synthesizing new mo-

tions from a small set of animation clips, while conforming

to the constraints imposed by the crowd simulation model.

One of the main limitations of our system is that it re-

quires hand-created animations. It would be interesting to

use motion capture data, and we are planning to do so in

the future, but it will require us to implement motion

graphs, or create blendable animations, that is, animations

need to be pre-processed to be time aligned.

At present we are using a set of animations that corre-

spond to walking with different velocities in combination

with the velocity vector and the torso orientation. In the

future we would like to include more animations such as

running, jumping, or performing idle behaviors when the

agents are not advancing. At present when an agent per-

forms small steps and then the crowd simulation module

sends the same position for several frames, the Animator

Planning Mediator sends the value of dt=0 to HALCA

which implies that the same frame will be rendered. This

gives natural results when the crowd controller repeats the

same position for a small period of time, but in cases where

we have big lines of people waiting, it will look more natu-

ral if the agents will slightly change the skeletal state

(move body weight from one foot to the other, scratch their

heads, look at their watch, etc).

The main issue when it comes to including idle behav-

iors in our current framework is that the Animation Plan-

ning Mediator would need to know the future positions that

the crowd simulation module will send for a specific num-

ber of frames. This is not currently possible, since the sys-

tem works interactively in real-time, so the Animation

Planning Mediator can only decide based on the current

and previous frames without including any future informa-

tion.

Finally it would also be interesting to run perceptual

studies to evaluate the naturalness of crowd appearance,

behavior and locomotion.

5. Acknowledgments

This research has been funded by the Spanish Govern-

ment grant TIN2007-67982-C02-01 and the Integrated

Project PRESENCCIA (6th Framework FET, Contract

Number 27731)

References

[ABT00] AUBEL A., BOULIC R., THALMANN D.:

Realtime display of virtual humans: Levels

of detail and impostors. IEEE Transac-

tions on Circuits and Systems for Video

Technology 10, 2 (2000), 207–217.

[BH97] BROGAN D., HODGINS, J.: Group Behaviors

for Systems with Significant Dynamics.

Autonomous Robots, 4. (1997), 137-153.

[CTB*05] CARROZZINO M., TECCHIA F., BACINELLI

S., CAPPELLETTI C., BERGAMASCO M.:

Lowering the development time of

multimodal interactive application: the

real-life experience of the xvr project.

Proc. of the 2005 ACM SIGCHI

International Conference on Advances in

computer entertainment technology,

c© The Eurographics Association 2009.

8

C. Andújar and J. Lluch / A Framework for Rendering, Simulation and Animation of Crowds

(2005) 270–273.

[Che04] CHENNEY S.: Flow Tiles. ACM

SIGGRAPH/Eurographics Symposium on

Computer Animation, (Grenoble, France,

2004), 233-242.

[DHC*05] DOBBYN, S., HAMILL, J., O'CONOR, K.

O'SULLIVAN, C.: Geopostors: A Real-Time

Geometry/Impostor Crowd Rendering

System, ACM Transactions on Graphics,

24, 3 (2005), 933 - 933.

[Hei06] HEIDELBERGER B.: Character Animation

Library Cal3D. (2006).

[HFV00] HELBING D., FARKAS I., VICSEK T.: Simu-

lating Dynamical Features of Escape

Panic. Nature 407 (2000), 487–490.

[HUCT04] DE HERAS CIECHOMSKI P., ULICNY B.,

CETRE R., THALMANN D.: A case study of a

virtual audience in a reconstruction of an

ancient roman odeon in aphrodisias. VAST

’04: The 5th International Symposium on

Virtual Reality, Archaeology and Cultural

Heirtage (2004), 9–17.

[KCZO07]

KAVAN L., COLLINS L., ZARA J.,

O’SULLIVAN C.: Skinning with Dual Qua-

ternions. ACM SIGGRAPH Symposium on

Interactive 3D Graphics and Games.

(2007), 39-46

[KDC*08] KAVAN L., DOBBYN S., COLLINS S., ZARA

J., O'SULLIVAN C.: Polypostors: 2D po-

lygonal impostors for 3D crowds. Sympo-

sium on Interactive 3D Graphics and

Games, (2008), 149-155

[KGP02] KOVAR L., GLEICHER M., PIGHIN F.: Mo-

tion Graphs. ACM Transactions on

Graphics 21, 3, (2002), 473-482.

[LCC06] LERNER, A., CHRYSANTHOU, Y. COHEN-OR,

D.: Efficient Cells-and-Portals Partition-

ing. Computer Animation & Virtual

Worlds. Wiley, 17 (1). (2006) 21-40.

[LCL07] LERNER A., CHRYSANTHOU Y., LISCHINSKI,

D.: Crowds by Example, Computer

Graphics Forum, (2007), 655-664.

[LK06] LAU M., KUFFNER J.: Precomputed Search

Tree: Planning for Interactive Goal-Driven

Animation, ACM SIGGRAPH / Euro-

graphics Symp. on Computer Animation

(SCA). (2006)

[MLD*08] MCDONNELL, R., LARKIN, M., DOBBYN, S.,

COLLINS, S. AND O'SULLIVAN, C.: Clone

Attack! Perception of Crowd Variety.
ACM Transactions on Graphics

(SIGGRAPH) 2008, 27 (3).

[MTB07] MARINO G., TECCHIA F., BERGAMASCO

M.: Cluster-based rendering of complex

Virtual Environments. The 4th Interna-

tional INTUITION Conference on Virtual

Reality and Virtual Environments. (2007)

[MT01] MUSSE S.R., THALMANN, D.: Hierarchical

Model for Real Time Simulation of Vir-

tual Human Crowds. IEEE Transaction on

Visualization and Computer Graphics

7(2). (2001) 152-164.

[MYK*08] MORTENSEN J., YU I., KHANNA P., TECCHIA

F., SPANLANG B., MARINO G, SLATER M.:

Real-Time Global Illumination for VR

Applications. IEEE Computer Graphics

and Applications. (2008), 56-64

[Spa09] SPANLANG B.: HALCA: a library for Pres-

ence Research. Technical Report, Event-

Lab. Universitat de Barcelona, (2009)

[PAB07] PELECHANO N., ALLBECK, J., BADLER N.

I.: Controlling Individual Agents in High-

Density Crowd Simulation ACM

SIGGRAPH / Eurographics Symposium

on Computer Animation (SCA), (August

2007), 99–108.

[PB06] PELECHANO N., BADLER N. I.: Modeling

Crowd and Trained Leader Behavior dur-

ing Building Evacuation. IEEE Computer

Graphics and Applications, 26 (6). (2006)

80-86.

[PSB09] PELECHANO N., SPANLANG, B., BEACCO.

A.: Efficient Foot-Sliding Avoidance for

Crowd Simulation. Submitted for publica-

tion, (2009)

[Rey87] REYNOLDS, C. Flocks, Herds, and

Schools: A Distributed Behavior Model.

Proceedings of ACM SIGGRAPH, (1987).

[Ran06] ROST. R. OpenGL(R) Shading Language

(2nd Edition) (OpenGL) Addison-Wesley

Professional, (2006)

[SGA*07] SUD, A., GAYLE, R., ANDERSEN, E., GUY, S.,

LIN, M. MANOCHA, D.: Real-time Naviga-

tion of Independent Agents Using Adap-

tive Roadmaps. ACM Symposium on Vir-

tual Reality Software and Technology,

(2007), 99-106.

[ST05] SHAO W., TERZOPOULOS D.: Autonomous

Pedestrians. ACM SIGGRAPH/ Euro-

graphics Symposium on Computer Anima-

tion, (2005), 19-28.

[TLC02] TECCHIA F., LOSCOS C., CHRYSANTHOU

Y.: Image-based crowd rendering. IEEE

Computer Graphics and Applications 22,

2 (2002), 36–43.

[TCP06] TREUILLE A., COOPER S., POPOVIC Z.: Con-

tinuum Crowds. ACM Transactions on

Graphics (SIGGRAPH), (2006), 1160-

1168.

[UHT04] ULICNY B., DE HERAS CIECHOMSKI P.,

THALMANN D.: Crowdbrush: Interactive

authoring of real-time crowd scenes. SCA

c© The Eurographics Association 2009.

9

C. Andújar and J. Lluch / A Framework for Rendering, Simulation and Animation of Crowds

’04: Proceedings of the 2004 ACM

SIGGRAPH/EUROGRAPHICS Sympo-

sium on Computer Animation, (2004),

243–252.

[WP95] WITKIN A., POPOVIĆ Z.: Motion Warp-

ing, SIGGRAPH’95. (1995), 105-108.
[XVR08] XVR (eXtreme Virtual Reality).

http://www.vrmedia.it/.
[ZS07] ZHAO L., SAFANOVA A.: Achieving

Good Connectivity in Motion Graphs,

ACM SIGGRAPH / Eurographics

Proc. Symp. on Computer Animation

(SCA). (2007).

c© The Eurographics Association 2009.

10

