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Abstract

Volumes acquired for medical purposes are continuously increasing in size, faster than graphic cards memory
capacity. Large volumetric datasets do not fit into GPU memory and therefore direct rendering is not possible.
Even large volumes that still fit into GPU memory make frame rates decay. In order to reduce the size of large
volumetric models, we present a new compression scheme.
In this paper we present S3Dc, a lossy volume compression algorithm suitable for scalar values. It is inspired in
hardware-accelerated 3Dc normal compression technique. S3Dc allows us to compress the volume in CPU up to a
4:1 or 8:1 ratio, while still yielding good quality results. We provide details on the compression scheme and show
how to render directly from a S3Dc compressed texture. Furthermore, we analyze the image quality theoretical
error and the average error with several images in order to assess the results.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Graphics data structures
and data types

1. Introduction

With the improvement of capture devices and techniques,
volume models have grown continuously during the last
years. The amount of memory modern GPUs ship with is
also growing. Unfortunately, the sizes of volumetric datasets
easily surpass the memory capacities of most modern GPUs.
Although techniques like bricking, multiresolution, or com-
pression, have been proposed, the efficient rendering of large
volumes is still challenging. On the other side, modern GPUs
also support some formats of texture which are compressed
and decompressed by hardware. However, none of the pro-
vided formats is adequate for the scalar data contained in
volumetric models.

In this paper we propose a block volume compression
technique, dubbed S3Dc (from Scalar 3Dc), inspired by 3Dc
method, a lossy compression algorithm which is used to
compress 2D normal maps. A given scalar volume, repre-
sented as a voxel model, is compressed in CPU by the al-
gorithm presented in Section 3. The result is a set of two
volumes of lower size. In order to load them into GPU, this
compressed volumes are stored in two 3D textures. In Sec-
tion 4, a GPU-based S3Dc decompression algorithm is pro-
posed. We will see that both the error due to the lossy com-
pression and the compression ratio depend on the configu-

ration parameters. In Section 5 we will show that a good
election of those yields good quality results.

Our main contributions are:

• A compression scheme, dubbed S3Dc (from Scalar 3Dc),
suitable for 3D scalar volumetric datasets, that allows for
random access.

• A GPU-friendly storage method that allows us to com-
pactly store the compressed information to be passed to
the GPU.

• A GPU-based decompression algorithm suitable for di-
rectly rendering S3Dc-compressed 3D textures.

Furthermore, we analyze the theoretical, the average, and
the visual error of our lossy scheme, and show that the re-
sults are satisfactory in terms of compression ratio and de-
compression speed for a compression of up to 8:1.

The remainder of this paper is organized as follows. In
Section 2 we review related work. The overview of our com-
pression scheme is the subject of Section 3. In Section 4 we
describe required algorithm modifications to adapt the de-
compression process to GPU. In Section 5 we show further
results of our approach applied to real data sets. We conclude
the paper with a detailed discussion and future work.
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2. Related Work

There are three kinds of methods taylored to reduce the
amount of information sent to the GPU for volume rendering
of large volumes: bricking, multiresolution, and compres-
sion.

Bricking [Gri05, Bru04, KBKG07] techniques subdivide
the large volume into several blocks, named bricks, in such
a way each block fits into GPU. Bricks are stored in main
memory, then they are sorted either front-to-back or back-
to-front order respect to the camera position, depending on
the rendering algorithm. In order to avoid discontinuities on
brick boundaries when using trilinear interpolation, for com-
puting new values inside the volume, bricks must overlap
by one voxel (two if we want to compute gradients on-the-
fly). The main drawback of bricking strategies are the high
amount of texture transfers required as each brick is sent
once per frame. A second problem is the difficulty in deter-
mining the adequate size of blocks for obtaining an optimal
frame rate, which may vary substantially from one graphics
card to another.

The second approach is multiresolution model [LHJ99,
ZWE∗00, BNS00, RV06], originally presented by LaMar et
al. [LHJ99]. The idea is to render at high resolution only
the region of interest and using progressively low resolu-
tion when moving away from that region. Their algorithm is
based on an octree hierarchy where the leaves of the tree rep-
resent the original data and the internal nodes define lower-
resolution versions. This technique allows memory savings
for empty or uniform portions of the volume data by omitting
sub-trees of the hierarchy. Furthermore, rendering perfor-
mance may increase due to lower sampling rates for certain
blocks or omitting of empty blocks. Boada et al. [BNS00]
propose a new texture memory representation and a manage-
ment policy that substitute the classical one-texel per voxel
approach for a hierarchical approach. Unfortunately, mul-
tiresolution data structures have been built for CPU purposes
and its translation to GPU’s is not straightforward due to the
high number of texture accesses that would require.

The last method is data compression. Compression tech-
niques consist on decreasing the size of volumetric data ap-
plying an specific encoding algorithm. This has been faced
using wavelets [Gla95, KS99], or compressed texture for-
mats [Bro00, Cra04, ATI05]. Wavelets transforms offer con-
siderable compression ratios in homogeneous regions of
an image while they conserve the detail in the non uni-
form zones. However, wavelets approaches usually require
a costly compression preprocess. Moreover, current imple-
mentations are CPU-based, thus, interactive frame rates are
difficult to obtain. A GPU-decompression of a wavelet-
transformed data is not efficient due to the number of tex-
ture fetches required. Recently, modern GPU’s have been
equipped with hardware that natively supports rendering
compressed textures, such as DXT [Bro00] for 2D textures
or VTC [Cra04] for 3D textures. The advantage of hardware-

based techniques is that they decode and render much faster
than software versions. Although the compression they pro-
vide is at maximum 8:1, they do not support scalar volume
data but only RGB(A) color format. As a consequence, if
we try to code scalar values in a RGB(A) format, we will
observe block artifacts for non-smooth data.

2.1. 3Dc Compression

Another compressed texture format supported by GPU’s is
3Dc [ATI05]. 3Dc provides an algorithm for 2D normal
maps compression and it proceeds as follows: first, each nor-
mal vector is normalized and only x and y components are
stored in two channels of the same texture (ATI2N texture
format). Then, for each channel and independently, texture
map is broken up into blocks containing 4× 4 texels each.
The maximum and the minimum values are determined for
each block, and these are stored as 8-bit values. A set of six
intermediate values are then calculated, equally spaced be-
tween the minimum and the maximum. Each component is
assigned a 3-bit index corresponding to whichever of these
values is closest to its original value. This process is depicted
in Figure 1. Thus, the resulting compressed blocks consist
of four 8-bit values (the minimum and the maximum for x
and y channel), and thirty-two 3-bit values (16 indices for
each channel), for a total of 128 bits per block. Since the
original blocks consisted of sixteen 32-bit values, for a total
of 512 bits, this represents a compression ratio of 4:1. This
technique yields good results for 2D normal maps represen-
tations but there are not extensions to compression of scalar
volume data.

Figure 1: 3Dc compression scheme, taken from [ATI05].

3. S3Dc Overview

S3Dc (from Scalar 3Dc) is a new GPU-based scalar volume
data compression, inspired by 3Dc [ATI05] 2D normal map
compression algorithm. We adapt the way 3Dc separately
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Figure 2: Overview of our algorithm in 2D.

compresses each component of a normal vector, using only
one component (the scalar value of the volume model).

From an original volume (OV), we will represent its com-
pressed volume (CV) with two new volumes called MinMax
Volume (MMV), and Index Volume (IV). Thus, S3Dc vol-
ume compression algorithm is a two-step process:

• First, a virtual block subdivision of the volume is per-
formed, obtaining for each block its minimum and max-
imum sample values. These values will be stored in
MMV.

• Next, every sample of OV is processed and the block
where the sample belongs is identified. Then the mini-
mum and the maximum values from this block are ob-
tained and from the position where the sample value lies
and between these minimum and maximum values, an in-
dex is computed. These indices are stored as IV.

The compression resides in the fact these indices require less
bits than the original sample values. A 2D version of S3Dc
compression scheme is depicted in Figure 2.

In order to determine if any lossy compression technique
is useful, we also have to analyze the theoretical maximum
error, and, more importantly, the average error as obtained
with real models. Those are analyzed in Sections 3.4 and 4.4,
respectively.

3.1. Compression

Originally we have an original volume (OV), composed of
vx×vy×vz samples. First, a virtual block subdivision of the
original volume is performed, obtaining for each block its
minimum and maximum sample values. Then, these mini-
mum and maximum values per block are stored in MMV.
The dimensions of the virtual blocks, bx, bx, and bz , deter-
mine how many samples lie in every block and they are an
input parameter. This process of MMV construction is de-
picted in Figure 4.

Another input parameter is the number of bits used to rep-
resent the index values (ibits), which will determine the pos-

Figure 3: Example of index computation with ibits = 2.

sible index values. For example, taking ibits equal to 2, we
will have a set of indices equal to {0,3}. Once we have de-
termined the value of ibits, for each sample from OV we iden-
tify the block where it lies, and we take from MMV the min-
imum and the maximum values corresponding to this block.
Next, the index for this sample is computed as:

index = bvalue−min
max−min

(2ibits −1)+
1
2
c (1)

3.2. Decompression

In order to obtain the decompressed value from a determined
sample, we first obtain its correspondent index from the IV.
Then, the block where the sample lies is identified, and we
take from the MMV the minimum and the maximum values
corresponding to this block. Finally, the decompressed value
is computed as:

dv = min+(max−min) · index
2ibits −1

(2)

3.3. Compression Ratio

The input parameters of S3Dc determine the compression
ratio achieved and the theoretical maximum error that S3Dc
is doing.

In order to compute the compression ratio, first we must
compute the size of OV, MMV, and IV. Each sample of
MMV contains two values (see Figure 4), the minimum and
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Figure 4: Overview of MinMax Volume construction.

the maximum values computed for the block correspond-
ing to this MMV sample. Taking account that vx, vy, and
vz are the OV dimensions, that sbits are the bits used to rep-
resent original values, and that bx, by, and bz are the chosen
block dimensions (we assume block dimensions are divisors
of original volume dimensions), the size of MMV relatively
to OV is:

MMVsize

OVsize
=
d vx

bx
e · d vy

by
e · d vz

bz
e · sbits ·2

vx · vy · vz · sbits
=

2
bx ·by ·bz

(3)

IV has the same dimensions of OV and less bits (ibits) per
sample. Then, the size of IV relatively to OV is:

IVsize

OVsize
=

vx · vy · vz · ibits
vx · vy · vz · sbits

=
ibits
sbits

(4)

Thus, the compression ratio (CR) is the sum of the rela-
tive size of MMV and IV relatively to OV:

CR =
OVsize

MMVsize + IVsize
= (

ibits
sbits

+
2

bx ·by ·bz
)−1 (5)

The main summand of compression ratio is the ratio be-
tween the number of bits used to represent an index in IV
and the bits used to represent a sample value from OV. The
other term, the inverse of the block dimensions product is
not so significative, if block size is larger than 43, then, this
factor has a value of 1

64 . That is, the larger the block size the
higher the compression ratio, although this is not a linear re-
lationship, as can be seen in Figure 5. For instance, an OV
with 5123 samples and sbits = 8, will require 5123· 8 = 128
MBytes. If we choose blocks composed by 323 samples and
sbits = 2 , the compression ratio will be ( 2

8 + 2
323 )−1 ' 4.

3.4. Error Analysis

In order to determine if a certain lossy compression tech-
nique is useful, we also have to analyze the theoretical max-
imum error, and, more importantly, the average error as ob-
tained with real models.
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Figure 5: Graphic showing the compression ratio for differ-
ent configurations. Configurations are determined by ibits
and block sizes.

The theoretical maximum error is the maximum dis-
tance between the original sample value and the corre-
sponding uncompressed value computed from IV and MMV
(Equation 2).

For each sample from MMV we may build a segment
comprised between min and max. We subdivide each seg-
ment in 2ibits − 1 intervals in order to assign values to each
index. The interval borders represent each index (Figure 6).
The worst case will be when min = 0 and max = 2sbits − 1.
Then, when an original sample value is in the middle of this
interval, the distance with the uncompressed value will be
maximum. Thus, theoretical maximum error (emax) is com-
puted as:

emax = d1
2
·∆Intervale= d1

2
· 2

sbits −1
2ibits −1

e (6)

With the example configuration, we have a theoretical
maximum error of d 1

2 ·
255
3 e = d42.5e = 43, where 255 is

the maximum possible value. Then theoretical maximum er-
ror is around 20%.

Usual sample value bits are 8 and 16, and we can repre-
sent indices with 1 to 8 bits. For example, if we have 16-bit
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Figure 6: Theoretical maximum error computation.

sample values, and 2-bit index, this means 4 possible indices
between 0 and 3, the compression ratio will be some value
around 8 if the block size is big enough. From the maximum
error we can conclude main factor is the number of bits used
to represent index values. Obviously, in most cases we will
not have the worst scenario, as this depends on the volume
data distribution.

In the following sections we propose a couple of configu-
rations that we believe are a good balance between compres-
sion ratio, quality, and rendering speed.

4. GPU-Based Decompression and Rendering

S3Dc
Compression

CPU GPU

S3Dc
Decompression

Send To GPU

Figure 7: Step process overview.

Our purpose is to reduce the amount of GPU memory re-
quired for volumetric models. Therefore, we will apply our
compression scheme and render the data directly from the
compressed volume. This means that we will need to obtain
the decompressed values for each sample in the GPU. These
accesses to the compressed volume will be performed in the
fragment shader.

With this aim, we compress OV in CPU with our algo-
rithm. MMV and IV are generated and stored in 3D textures.
Transferring a less amount of data to the GPU we are re-
ducing the CPU-GPU transfer data bottleneck, as shown as
Figure 7.

4.1. Algorithm Equivalence CPU-GPU

We want to notice that in terms of compression ratio and the-
oretical maximum error, CPU algorithm and GPU algorithm
are equivalent. We are not increasing theoretical maximum
error because decompressing in GPU and not in CPU. We
are representing the exactly same values in MMV, and in
IV we are not losing precision with the merge/split process
when we work with index values.

4.2. GPU Codification

As texture formats are limited, we have to adapt our com-
pression scheme in order to fit into any of the supported for-
mats.

GPU MMV texture will consist in a 3D-texture with in-
ternal format Luminance16Alpha16. We assume that sample
values are represented with 16 bits. Then, we store in each
element two values, luminance channel contains the mini-
mum value and alpha channel contains the maximum value.
Using this 3D texture we guarantee we are not losing preci-
sion with MMV values because we are using the same num-
ber of bits to represent each integer value in CPU than in
GPU.

One of the main problems we face when compressing for
GPU rendering is that we must keep the number of texture
accesses low, otherwise, we will not obtain interactive frame
rates. The way we have chosen to solve this problem is to
merge the index values by taking a set of correlative index
in x-direction and manipulate them to finally store them in
one element of 3D texture GPU IV. The internal format used
is Alpha16. The merge and split processes are depicted in
Figure 8. We will split index values in the decompression
process in GPU.

There are more choices in order to solve the problem of
limited internal formats, for example we can use RGB(A)
format or merge the values in other dimensions at the same
time, not only in x. We have chosen to merge only in x direc-
tion because it is the easiest to implement.

We do not want to waste texture space, thus, the possible
index bits values are 1, 2, 4 or 8, because they are factors of
16, the internal format chosen. In Figure 7 we can see how
each sample of GPU IV is obtained by merging index values
from CPU IV.

Older GPU’s do not support non-power-of-two textures.
We may adapt our algorithm to these by adding blank val-
ues to our 3D textures until their dimensions will be power
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Figure 8: Overview of merge process.

of two. As a consequence, the compression ratio obviously
reduces, but we still get an improvement over the non-
compressed version.

Notice that in terms of compression ratio and theoretical
maximum error, CPU and GPU algorithms are equivalent.
We are not increasing theoretical maximum error. We are
representing the exactly same values in MMV, and in IV we
are not losing precision with the merge/split process (Figure
8) when we work with index values.

4.3. Volume Rendering from S3Dc Compressed
Textures

In order to visualize compressed volumes, we have two pos-
sibilities, texture slicing, or ray-casting. Although our com-
pression scheme is suitable for both, we present here the
approach for texture slicing. In the standard approach, a
3D texture is created from the volume data, then, it is sent
to GPU and it is visualized via rendering a stack of view
aligned proxy quads. When each quad is rendered, GPU ac-
cess to each rasterized fragment and in each of these frag-
ments the sample value lying in it is computed.

From a given point (x,y,z) of the space, the correspond-
ing texture coordinates in the original volume are computed
automatically by the standard visualization algorithm. The
texture coordinates of MMV and IV are computed by apply-
ing some linear transformations to the texture coordinates of
OV. Next, from these texture coordinates, the need values
to compute the decompressed value (block’s minimum and
maximum values, and index value) are obtained by texture
fetching.

Furthermore, for volume rendering, we may also use in-
terpolation between the sample values since not all the points

inside the volume are represented in it. Two kinds of interpo-
lations are supported by GPU’s, Nearest and Linear. Nearest
access assigns to non represented points the closest sample
value and it requires 2 texture fetches, and Linear access
as it computes an eight-neighborhood interpolated value, re-
quires 16 texture fetches, Linear interpolation yields better
results, but is computationally more expensive. In case we
want to compute gradient on the fly, the number of texture
fetches will be increased by a factor of six because we need
to access to the six face-neighbors. We are able to acceler-
ate linear calculation by reusing texture fetches needed for
interpolating the neighbor samples.

4.4. Image quality metrics

Although we already analyzed the maximum theoretic er-
ror generated by our lossy scheme, it is more important to
compare the results with real-world examples. In this sense,
we will use different image comparison metrics as well as a
perception-based one, the Structural Similarity. The quality
metrics analyzed are:

• Mean square error: We measure, for each pixel of the re-
sulting images and every channel on this pixel, red, green,
blue, the squared difference between them. We accumu-
late these values and then the resultant value is normalized
by the number of total pixels.

• Peak signal-to-noise ratio: It is the ratio between the
maximum possible power of a signal and the power of
corrupting noise that affects the fidelity of its representa-
tion. It is computed as

PSNR = 10∗ log10(
MAXi2

MSE
)

where MAXi is the maximum possible pixel value of
the image. Typical values for the PSNR in lossy image
and video compression are between 30 and 50 dB, where
higher is better.

• Structural Similarity: The Structural SIMilar-
ity [WBSS04] (SSIM) index is a method for measuring
the similarity between two images. SSIM is designed to
improve on traditional methods like PSNR and MSE,
which have proved to be inconsistent with human eye
perception. The SSIM index is a real value between 0
and 1. A value of 0 would mean zero correlation with the
original image, and 1 means the exact same image. 0.95
SSIM, for example, would imply half as much variation
from the original image as 0.90 SSIM.

5. Results

We have implemented the proposed method in a 2.6MHz
Quad Core PC equipped with 8GB of RAM memory and a
GeForce 8800 GTX graphics card with 768MB of memory.

In order to compare the quality of the compressed vol-
ume rendering, we tested several models. For the mumer-
ical results appearing later, we used a volume model of
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512× 512× 486 samples and 16 sbits, rendered in a stan-
dard 3D textures way and with different configurations of
our algorithm. We have compared the original volume ren-
dering using linear interpolation with the compressed vol-
ume rendering with nearest texture access, linear interpola-
tion and optimized linear interpolation. We are mainly con-
cerned with the qualitative results, that is, the relationship
between image quality and compression ratio, presented in
Section 4.4 , but we also measured the efficiency of the pro-
posed approach (Sect. 5.1).

5.1. Algorithm analysis

The quality parameters we have computed are the average
frame rate obtained, see Figure 9, the average PSNR of the
compared image and the average SSIM of this same com-
pared image.

In Table 1 the results obtained with our method are shown.
We can observe S3Dc Nearest is the best configuration in
terms of frame rate. That is because standard algorithm
frame rates are taken from linear access also. We obtain in-
teractive frame rates for S3Dc Nearest access and good im-
age quality results. With S3Dc Linear the image quality re-
sults are better, mainly in terms of SSIM, and we have frame
rates enough to let interactivity. We can observe that block
size has a more important influence in image quality when
ibits value is low. Furthermore PSNR and SSIM metrics have
a similar response to the variation of algorithm configura-
tion. They yield better results when the ibits value is the
largest one and the block size is the lowest possible, but this
configuration is also the one with worse compression ratio.
As a result, taking account frame rates, image quality met-
rics, and compression ratio, the algorithm configuration with
ibits = 4 and block size = 163 is the one with better overall
results.
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Figure 9: Frame rate comparison.

In Figure 12 we can visually compare different algorithm
configurations with respect to the image generated with the
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Figure 10: SSIM comparison.
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Figure 11: PSNR comparison.

standard volume rendering. Top left image shows a render-
ing without volume compression. Top right shows the image
obtained with our empirically determined best configuration:
block size = 163 and 4-bits index. The middle row contains
images resulting from ibits = 2 configurations, with block
sizes of 23 (left) and 643 (right), respectively. Although 2
bits is supposed to be the configuration that yields the poorer
quality, middle right image shows that results may still be
acceptable when the block size is small enough. On the left
image we can see an artifact on skull mouth caused because
the block is too big to let high range variation, and we only
have 4 indices. Finally, bottom row shows two images that
encode the difference from this last configuration for near-
est texture access, on the left, and for linear interpolation,
on the right. We can observe the compared image between
standard volume rendering and our nearest/linear interpola-
tion compressed method. The blue pixels represent an error
lower of 5%, the green ones and error between 5-10%, and
if they are yellow or red the error is bigger than 15%. We
can infer from these results that the error usually concen-
trates in blocks containing the highest gradients in terms of
magnitude. On the other hand, uniform blocks usually show
low error. On the left image there are more yellow-red pixels
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Configuration Compression Ratio Frame rate PSNR SSIM
index bits block size Nearest Linear Nearest Linear Nearest Linear

2 23 2,667 16,095 fps 4,57 fps 38,76 40,9 95,75 97,88
2 43 6,395 16,65 fps 4,57 fps 34,95 34,23 95,44 96,44
2 83 7,757 16,53 fps 4,85 fps 31,52 30,27 95,42 95,76
2 163 7,968 16,30 fps 5,05 fps 29,18 28,30 94,86 95,04
2 323 7,996 16,07 fps 5,01 fps 28,32 27,49 94,77 94,82
2 643 7,999 15,73 fps 4,66 fps 28,20 27,31 94,79 94,83
2 1283 8,000 14,91 fps 4,12 fps 28,21 27,33 94,72 94,79
4 23 2,000 16,07 fps 4,41 fps 39,48 46,19 96,13 99,25
4 43 3,554 16,52 fps 4,38 fps 39,61 44,08 96,34 99,11
4 83 3,938 16,44 fps 4,72 fps 39,48 41,04 96,36 98,92
4 163 3,992 16,15 fps 4,87 fps 38,62 38,77 96,33 98,68
4 323 3,999 15,90 fps 4,77 fps 37,77 37,32 96,30 98,51
4 643 4,000 15,60 fps 4,49 fps 37,30 36,67 96,21 98,36
4 1283 4,000 15,03 fps 3,95 fps 36,93 36,35 96,10 98,22

Table 1: Configuration comparison: In column Configuration shows the different configurations we tested for comparison pur-
poses. All images were rendered on a 768×768 viewport. Note that the best frame rates are obtained with nearest interpolation
method, although the ones obtained with the linear are still enough to provide good interactivity. PSNR and SSIM columns
show the similarity measures we tested. Note that a value of 35 in PSNR column means we still have a good similarity. SSIM
measures percentage of similarity, so values of up to 95% are usually good enough.

than on the right image, and on the right image dark blue and
green pixels predominate. This means the accumulate error
is bigger on the Nearest image. All the examples in the paper
were rendered in a viewport of 768×768 resolution.

In all the presented images, we have compared with a
standard volume rendered view. This is our worst case in the
sense that we have to interpolate, but for other uses of com-
pressed textures (such as for texturing far models or simply
to compress any kind of scalar data), the frame rates obtained
would be the ones of the nearest approach.

5.2. Discussion

As we mentioned earlier in the previous work, there are some
other algorithms for data compression in volumetric models.
We provide here further details on the advantages and dis-
advantages of S3Dc with respect to the previously presented
ones.

Wavelets are a very powerful compression technique.
However, the decompression algorithm requires a very high
number of texture accesses in order to obtain a single value.
If we also require linear interpolation the cost boosts. More-
over, the nature of wavelet decomposition makes that the
information required to reconstruct the signal value, must
be gathered from different locations. Therefore, using them
for other manipulation techniques that require the access to
neighbors seem difficult to implement efficiently.

Vector quantization-based algorithms obtain a very high

compression ratio, but image quality may greatly vary ac-
cording to the distribution of data. We may not easily im-
pose a maximum error, and therefore the results may change
unexpectedly from model to model. In our case, the max-
imum error is bounded and the average error we obtain is
relatively low. Like with wavelets, manipulation operations
such as segmentation are not straightforward. Moreover, it
requires a sensitively costly preprocess.

Concerning hardware-based methods, as already men-
tioned, they do not support scalar values but normals or RGB
or RGBA as base units. Moreover, some parameters is also
fixed in the specification and we may not vary (such as num-
ber of bits and so on) in order to adapt to our datasets.

There is another possibility with the use of multiresolu-
tion techniques, although these are not currently adapted to
GPUs and present an overhead in texture access due to the
hierarchical representation. However, these techniques are
somehow orthogonal to ours and would combine softly.

Finally, S3Dc is at least as efficient as the previous tech-
niques for volume compression and the image quality was
assessed with different measurements. It might be combined
easily with other techniques such as bricking or multireso-
lution and further treatment of data may be straightforward.
For instance, in segmentation we require the comparison of
sampled values and in most cases the minimum-maximum
may be used to quickly discard regions of non interest.
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Figure 12: Image comparison with the rendered volume (top
left) and three different configurations. Top right shows the
result of the best configuration in terms of image quality vs
compression ratio. Note that it is quite difficult to distinguish
the original one (top left) with the best quality one (top right)
where we obtained a compression ratio of 4:1. Middle row
shows the result from 2-bits index and big block size (on the
left) or small block size (on the right). An artifact on skull
mouth appears on the left image because the block size is
too big for only 4 index representation.

6. Conclusions and Future Work

In this paper we have presented a new compression scheme
based on 3Dc tailored to deal with scalar datasets. The stor-
age strategy and the rendering algorithm has also been pre-
sented.

In future, we want to address two different issues: lower
compression error, and faster decompression for interpola-
tion.

We expect to reduce the compression errors by perform-
ing a previous analysis of the dataset and use a non linear
distribution of weighs.

Figure 13: Result image comparison for the best overall
configuration. Top right shows Nearest access and top left
shows Linear access. Bottom row shows comparison images.
On Nearest comparison, bottom left, there are more yellow-
red pixels. On Linear comparison image predominates dark
blue-green pixels.

Concerning the efficiency, although rendering volume
datasets using linear interpolation has a strong impact in
the frame rate, we still have acceptable values (around 5fps)
for large viewport sizes (such as 768× 768). However, we
strongly believe we may improve efficiency by changing the
merge/split algorithm and the index internal format.
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