CEIG’08, Barcelona, Sept. 3-5 (2008)
L. Matey and J. C. Torres (Editors)

Fast Inver se Reflector Design (FIRD)

Albert Mas, Ignacio Martin and Gustavo Patow

Institut d’Informatica i Aplicacions, Girona, Spain

Abstract

This paper presents a new method ofr a GPU-based computation of outgoing light distribution for inverse reflector
design. We propose a fast method to obtain the outgoing light distribution of a parametrized reflector, and compare
it with the desired illumination, that works completely in the GPU. We trace millions of rays using a hierarchical
height-field representation of the reflector. Multiple reflections are taken into account. The parameters that define
thereflector shape are optimized in an iterative procedurein order that the resulting light distribution isas close as
possibleto the user-provided target light distribution. \WWe show that our method can cal cul ate the reflector lighting
at least one order of magnitude faster, even with millions of rays, and complex geometries and light sources.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism, 1.3.5 [Computer Graphics]: Computational Geometry and Object Modeling - Physically
based modeling, 1.3.1 [Hardware architecture]: Graphics processors

1. Introduction

This paper presents a new method for a GPU-based com-
putation of outgoing light distribution for inverse reflector
design. The manufacturers usually need to produce a desired
illumination, but they do not know which the shape of the
reflector must be. The usual solution is an iterative process,
where a set of reflectors are manufactured and tested. This
process is usually carried out in a very empiric way by ex-
perienced users that follow a trial and error procedure. This
has a high manufacturing cost, both in materials and time.

In recent years, some research has been done in this field.
Some works propose local lighting solutions, defining a very
restricted set of possible reflectors, such as parabolic re-
flector families. Other solutions are based on global light-
ing simulation, but they demand high computational costs,
spending hours or days to compute a reflector that produces
an illumination distribution reasonably close to the desired
one. However, these algorithms are not able to work with
complex real world reflector shapes.

We propose a method that computes, from a family of pos-
sible reflectors, the best approximation to a given desired il-
lumination distribution. A very fast GPU algorithm to calcu-
late the reflected rays on the reflector is used to speed up an
optimization process. We are able to compute reflector out-

(© The Eurographics Association 2008.

going lighting distribution using millions of rays and highly
complex reflector shapes in a couple of seconds. The set of
reflectors is generated using a parameterizable basis. These
parameters are optimized in an iterative process until the best
solution is reached.

The rest of the paper is organized as follows. We dis-
cuss the previous work in Section 2. We present an overview
of our method in Section 3, we present the fast reflection
method in Section 4, and in Section 5 the optimization
method is explained. Then we show the results in Section
6 and discuss them in Section 7. Conclusions are exposed in
Section 8.

2. Previous Work

Our method is based in two main research topics: inverse
reflector design and ray tracing on the GPU.

The first problem to solve in this paper can be put in the
context of inverse illumination problems, where we know
the desired illumination, and we have to compute some of
the parameters that produce it. In this case, we have to find
the reflector shape that produces the target lighting distri-
bution. This kind of problem can be classified as an inverse
geometry problem (IGP) [PP05]. To solve the IGP numerical

delivered by
— » EUROGRAPHICS

: DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org

56 Albert Mas and Ignacio Martin and Gustavo Patow / FIRD

problems, we can use local illumination or global illumina-
tion methods. In [CKO99] is used a combination of parabolic
reflectors to compute the local illumination. Unfortunately,
this method is useful only for really simple configurations.
In [PPVO04] and [PPVO07] it is presented a method that uses
global illumination. It starts from an initial reflector mesh
and moves the mesh vertices in an iterative process, until
the generated lighting distribution is close enough to the de-
sired one. The main disadvantage of this method is the high
computational cost, that depends on the number of tested
reflectors, the reflector mesh resolution and the number of
traced rays in lighting computation. To improve the method
we need to calculate in a fast way the ray tracing of millions
of rays on a high complexity reflector shape.

There are several GPU methods for calculate the ray trac-
ing. On the one hand, we do not have a complex generic
scene, so we do not need full ray tracing engines [CHHO02],
or environment mapping techniques [UPSKO07]. On the other
hand, acceleration methods based on space partitioning are
more interesting in our case, because we can store the reflec-
tor geometry into a hierarchical subdivision structure. Sev-
eral methods have been proposed to traverse the rays on this
kind of structures. A fast algorithm is presented in [RnL0Q],
where the geometry space is subdivided into an octree. This
is a top-down parametric algorithm, where the voxel selec-
tion is done with simple comparisons with ray parameters.
However, this is a CPU based algorithm, and the implemen-
tation in GPU would imply the use of a stack for each frag-
ment.

Other GPU approaches in hierarchical structures are pre-
sented in [SKUO8]. In this case, some techniques are pre-
sented to calculate the displacement mapping, where the dis-
placement textures are transformed into hierarchical struc-
tures. Related to them, there is the Quadtree Relief Mapping
technique [SvGO06], based on Relief Mapping [POJ05]. Re-
lief mapping is a tangent space technique that tries to find
the first intersection of a ray with a height filed by walking
along the ray in linear steps, until a position is found that lies
beneath the surface. Then a binary search is used to precisely
locate the intersection point. Quadtree Relief Mapping is a
variation that takes large steps along the ray without over-
shooting the surface. This is achieved through the use of a
quadtre on a height map. This will be described in more de-
tail in Section 4.2.

3. Overview

The goal of our method is to obtain a reflector shape that
produces a minimum error between the desired and resulting
light distributions.

The method has two components. First, we present a fast
algorithm to calculate the outgoing lighting distribution from
a given reflector. Second, we optimize a set of possible re-
flectors, obtaining the one that minimizes an error metric.

The input data are the light source, the desired outgoing
lighting distribution, and a parametric reflector space. The
light source is represented by a set of rays, each composed
by an origin and a direction (rayset). The desired outgo-
ing lighting distributions used in this paper are far-field rep-
resentations, which are lighting distributions measured far
enough from the reflector. So, only directional distribution
of light matters. However, our algorithm can deal with more
complex representations (e.g. near-field) as well.

The reflector lighting calculation has several steps. The
first one transforms the reflector geometry into a hierarchical
height field, in order to efficiently trace rays in the GPU. This
structure is stored into the GPU as a mip-map floating point
texture that represents a quadtree, where each node contains
its child nodes maximum height. In the second step, the set
of rays is traced through the height field, searching for inter-
section with the reflector. Also, the algorithm considers mul-
tiple ray bounces (specular BRDF) inside the reflector. The
third step captures all reflected rays and creates a far-field
distribution that is compared with desired far-field, and an
error value is generated. Note that once the light rays leave
the light source, further collisions with it are ignored.

The overall algorithm is implemented using GPU shaders,
where each GPU fragment processes a light ray. This results
in a very fast algorithm that is able, even for millions of rays
and complex reflector geometry shapes, to calculate the re-
flector lighting in less than 3 seconds, as shown in section
6.

The optimization step searches a set of possible reflectors
in an iterative process, where each reflector parameter is op-
timized between a minimum and maximum value. Then, for
each reflector, a far-field light distribution is generated and
compared with the desired lighting distribution. After testing
all possible reflectors, the best one is choosen.

4. Reflector lighting

The calculation of reflector lighting distribution has four
steps. The first is the preprocessing of the input data. The
second one transforms the reflector geometry to a hierarchi-
cal height field representation. The third step calculates the
ray reflections over the reflector. Finally, the results are com-
pared with the desired illumination.

4.1. Preprocessing of theinput data

The user-provided data is composed by the desired far-field
illumination specification, the light source characteristics
and the reflector holder dimensions corresponding to the re-
flector parametric space. This far-field is given by an IES
specification. This specification is established as an indus-
try standard (IESNA [ANS02], EULUMDAT [bCL99]), and
assumes large distances from the sources to the lighting en-
vironment, so spatial information in the emission of the light

(© The Eurographics Association 2008.

Albert Mas and Ignacio Martin and Gustavo Patow / FIRD 57

can be neglected, considering it as a point light source with
a non-uniform directional distribution emittance model. The
provided far-field only takes into account the reflected vec-
tors from the desired reflector. The light source specification
provides the light source position and dimensions, and the
near-field emittance description. Finally, the reflector holder
is used to fit the reflector shape into a bounding box.

In this preprocessing step, a rayset is extracted from the
light source. Next, we discard the rays that we are sure that
do not intersect with the holder bounding box. The non-
discarded rays are stored into two textures, one for ray di-
rections and another one for ray origin positions.

Figure 1. The reflector mip-map height texture is con-
structed fromthe z-buffer, using a view point where all there-
flector geometry is visible. Darker texel colors mean higher
heights.

4.2. Reflector geometry transfor mation

At this step, we need to construct a hierarchical height-
field representation of the reflector. The structure used is
a quadtree represented by a mip-map height texture. Each
quadtree node contains the maximum height of its child
nodes (see Figure 1).

As is said before, the method does not depend on reflector

(© The Eurographics Association 2008.

geometry complexity. The only restriction is that the reflec-
tor must be able to be manufactured with a press-forming
process, where the reflector shape is deformed only in the
vertical direction. More precisely, the shape must satisfy cer-
tain constructive constraints that amount to requiring that the
shape of the reflector be the graph of a function defined on a
subset of the plane delimited by the reflector’s border. That
is, in our formulation, for the shape to be “build-able”, it
must be a function of type z= f(x,y).

We calculate one viewpoint to the reflector from which
all reflector geometry is visible. The view direction can be
used as the pressing direction. For our experiments, fitting
the viewport to the reflector front is good enough.

When the viewport is specified, the reflector is rendered,
and then the hardware z-buffer is read, considering the Z
component as heights. Then, a GPU shader creates the mip-
map texture, where the highest map level is a texture with
one texel that contains the reflector maximum height.

Finally, another GPU shader extracts the reflector normal
vectors, and stores them into a second texture. These nor-
mals will be used later to calculate the reflection vectors.

4.3. Reflectiorscomputation

The ray tracing on the reflector is based on Quadtree Relief
Mapping method (QRM) [SvGO06]. It is a variation of Re-
lief Mapping tangent space technique [POJO5], which takes
adaptive steps along the view rays in tangent space without
overshooting the surface, due to the use of a quadtree on the
height map. The goal is to advance a cursor position over the
ray until we reach the lowest quadtree level, thus the inter-
section point is obtained.

/ t height

Y,
h
zbormd:min(zx>ty)
Y, /
X X, 0

Top View Side View

Figure 2: Two ray steps are calculated for a quadtree node.
At left, thoung 1S the minimum displacement to quadtree node
boundsty andty. At right, theigr iSthe displacement to stored

node height h. The final selected step is the minimum be-
tween both.

The method starts at highest quadtree level, where the
root node has the maximum height. The ray cursor displace-
ment at this point is teursor, = 0. To advance the cursor, the

58 Albert Mas and Ignacio Martin and Gustavo Patow / FIRD

Downloading ray

Figure 3: Intersection search going down the quadtree hier-
archy.

ray is intersected with quadtree node bounds (see Fig. 2
left), and with the quadtree node stored height (see Fig. 2
right). There are two possible node bound intersections in
tangent space: tx and ty. From them, we only use the near-
est, called tyoung. Also, an intersection called tpeignt is ob-
tained intersecting the ray with the height value stored in
node. If thoung is greater than theigne, means that the ray inter-
sects with the current quadtree cell. So, the quadtree level is
decreased, and the process starts again with one of the four
child nodes. In this case, the cursor does not advance, so
teursor;., = teursor;- Otherwise, the cursor advances to the cell
bound, teursori;; = thound, and the process starts again with
the neighbour cell. This process stops when the minimum
quadtree level is reached, or when the cursor position is out
of texture bounds. In Figure 3 there is an example of this
algorithm.

In the QRM algorithm, the first cursor position is found
intersecting the view ray with the geometry bounding box.
In our case, the first cursor position is the light ray origin
(see Figure 3). This means that one more step is processed
in comparision with QRM, because we need to intersect the
root quadtree node in an initial step. However, we avoid the
ray-bounding box intersection calculations that QRM per-
forms.

On the other hand, QRM only process rays going down
the quadtree hierarchy, being unable to process the going up
rays. This is the case when the light source is inside reflec-
tor, or when more than one ray bounce inside the reflector is
considered. We propose an intersection search algorithm go-

Outgoing ray

Upward ray
N

»”

Figure 4: Intersection search going up the quadtree hierar-
chy.

ing up the quadtree hierarchy. The original algorithm asumes
that the cursor advances always on the opposite direction of
the height map direction. Otherwise, QRM discards the ray
because it does not intersect with the surface. To solve this
case, we start the algorithm from the highest quadtree level
using the new ray, composed by current intersection point
and reflection direction. A small offset is applied as ini-
tial cursor displacement to avoid the self-intersection, thus
teursor, = €. Then, we go down through the quadtree un-
til teursor; > theight, Which means the current cursor position
height is over current node height. Now, we are sure that
there is not any node under the current one that has a height
that intersects with the ray. Hence, we jump to the neighbour
node, SO teursori,; = thound, @nd increase the quadtree level.
If teursor, < theight then there is not any possible intersection
under current level. Thus, we decrease the current quadtree
level, and do not update tcursor;- The process stops when the
intersection is reached, or when the cursor position falls out
of texture bounds. In the second case, it is a reflected ray
with no more bounces, and it does not have to be discarded.
In Figure 4 there is an example of this algorithm.

The algorithm is implemented into a GPU fragment
shader. The rayset data is provided by previously stored ray-
set textures. The textures are mapped into a quad, so each
ray corresponds to a fragment. Each fragment runs an itera-
tive process that ends with an intersection point and a reflec-
tion vector. These values are stored into two output textures.
The first texture stores the intersection position and a bounce
counter. The second texture stores the reflected direction and

(© The Eurographics Association 2008.

Albert Mas and Ignacio Martin and Gustavo Patow / FIRD 59

a control code. This control code is used to identify when a
ray falls out of the texture bounds. In this case, if bounce
counter is 0, it means that the ray must be discarded. Oth-
erwise, the ray does not need more bounces. This shader is
executed as many times as the maximum number of allowed
bounces. The resulting textures are used as input textures for
the next excecution, thus a GPU ping-pong approach is used.

4.4, Comparision to adesired distribution

At this step we compare the obtained light distribution with
the target one. Both distributions are converted to far-fields
to be compared in the same domain (see Fig. 5). .

IES — Desired distribution

I I

Reflected rays

% Directional classification @

::j :H:i > Feror

BEeeeeeces

Difference

Figure 5: Both desired distribution and reflected rays are
classified into histograms. Next, the histograms are com-
pared using the 12 metric

To convert reflected rays to a far-field distribution, a reg-
ular grid is used to classify the ray directions. Each grid cell
represents a pair of azimuth and altitude vector directions
in horizontal coordinate system, and contains the number of
rays in this direction. The azimuth and altitude ranges are
[-m...n] and [r/2... — /2] respectively. The grid size de-
pends on the specified far-field directional space discretiza-
tion. We use two textures to store both grids, where each
texel represents a grid cell.

We classify the reflected directions calculating a 3D his-
togram, where each interval represents a grid cell. The algo-
rithm, based on [SHO7], has two steps: First, after the last
reflection step the results are stored into a vertex buffer ob-
ject. Next, this vertex buffer is rendered, and a vertex shader
classify de directions calculating the fragment coordinates
for each reflected direction. Then, the number 1 is sent to all

(© The Eurographics Association 2008.

fragments. If the hardware blending is activated, the result is
a counter for each fragment.

S

X

Figure 6: Cross section views of reflectors and their associ-
ated light sources used to test our method.

We use the same algorithm to classify the target distribu-
tion. In this case we don’t have to use a counter, because
each far-field directional component has the respective emit-
ted energy. To use the same measurement units, both the
number of reflected rays and energy (usually in candelas)
for each cell, are transformed to lumens.

The comparision between both textures is done with a
shader that calculates for each fragment the 12 error metric:

D|z (a, b) =

In addition, a reduction shader is used to calculate the sum-
mation part of the formula.

5. Optimization

To obtain a reflector shape that produces a light distribution
close to the desired one, we optimize the parameters used in
the parametric reflector shape definition. For each opmiza-
tion step, a new reflector shape is obtained, and the outgoing
light distribution is compared with the target distribution. If

60 Albert Mas and Ignacio Martin and Gustavo Patow / FIRD

Objective Result

30" 30"
-30" -30"
-25' % 25° -25" & 25
Difference
30"
-30°
-25 25
0 1

Figure 7: Results for our Model A. At top, the desired and
obtained reflectors. At middle, the desired and obtained far-
field histograms, indicating the respective angle domains. At
bottom, the histogram difference between both

difference value is under a user-specified threshold, the pro-
cess stops. If no reflector produces a light distribution close
enough to the objective, the best one is choosen.

We use a standard optimization method, where for each
parameter, a range and a constant step are specified. The al-
gorithm is an iterative process that, for each parameter it is
increased inside its range by its offset value [PPV04]. The
mip-map height texture must be regenerated at each itera-
tion, due to the reflector geometry changes. Hence, for each
iteration we have to recalculate the outgoing light distribu-
tion. However we do not have to recalculate the rayset for
each reflector, so the initial ray intersection step on the re-
flector bounding box assures us that the rayset is valid for
any reflector inside this box.

Objective Result

54" % 54" 54" lﬁ 54

Difference
45

—45’
54" 54"

0 1

Figure 8: Results for our Model B. At top, the desired and
obtained reflectors. At middle, the desired and obtained far-
field histograms, indicating the respective angle domains. At
bottom, the histogram difference between both

6. Results

We have tested our method with three cases. The first one,
called Model A, uses a cylindrical light source with a cosi-
nus emittance along his surface, except for the caps, that do
not emit light. The cylinder dimensions are 4.1mm length
and 0.65mm radius. It is placed at (0,0,0), inside a holder
bounding box located between (-30, -20, -20) and (30, 20, 0),
also in mm. The second one, called Model B, uses a spheri-
cal light source with a cosinus emittance. Its dimensions are
0.5mm of radius, and it is placed at (5, -5, -5), inside a holder
bounding box located between (-10, 0, -6) and (10, 0, 0). The
third one, called Model C, uses a spherical light source with
a cosinus emittance. Its dimensions are 1mm of radius, and
it is placed at (5, 5, 0), inside a holder bounding box located
between (0, 10, -6) and (0, 10, 0). The cross section of three
cases, and light source relative positions, are shown Figure
6. For models A and C, the light sources emit 10 millions of

(© The Eurographics Association 2008.

Albert Mas and Ignacio Martin and Gustavo Patow / FIRD 61
Model | Effective Max. Reflector lighting | Optimization Tested Optimized Best 12
rays bounces | mean time (sec.) time(hours) | Reflectors | parameters error
A 7.38x10° 1 1.3 0.63 1728 3 0.599456
B 5x10° 5 3.2 2.2 2401 4 0.975587
C 6.05x10° 6 2.7 49 6561 4 0.245821

Table 1: Results for our three configurations: From left to right, the left column is the number of traced rays, maximum
number of bounces inside the reflector, mean time of reflector lighting computation, total time of optimization, number of tested

reflectors, number of optimized parameters and resulting error

Objective Result

94’ % 94’

Difference
76’

0 1

Figure 9: Results for our Model C. At top, the desired and
obtained reflectors. At middle, the desired and obtained far-
field histograms, indicating the respective angle domains. At
bottom, the histogram difference between both

rays, and 5 millions of rays for model B. All of them have an
overall energy of 1100 lumens. Also for all cases, the mip-
map height texture resolution is 1200 x 800, thus a quadtree
is created with 9 levels of subdivision.

The optimization results for each case are shown in Fig-

(© The Eurographics Association 2008.

ures 7, 8 and 9. The desired and obtained reflectors are
shown, with the respective far-field distributions and differ-
ence images. Both far-field and difference images are repre-
sented by false-color histograms. These histograms are de-
fined like far-field textures, thus the columns of the texture
grid correspond to horizontal angles, and the rows corre-
spond to vertical angles. The directional space resolution is
1800 x 900 for horizontal and vertical angles range respec-
tively. Thererfore, each histogram cell represents an angle
range of 0.2 x 0.2 degrees. The color scale represents the
amount of energy for each histogram cell.

In table 1 there is a summary of data for the overall inverse
reflector searching process for each model. The number of
effective rays means the number of non-discarded rays from
the initial rayset. For Model B there are not any discarded
rays, because the light source is inside the reflector bounding
box, and all rays intersect the height map. The time needed
to compute the reflector lighting depends on the number of
effective rays and number of maximum allowed bounces.
Since all models have a similar number of effective rays, the
Model A has the lower reflector lighting computation time
because only one bounce is specified. The optimization time
depends on reflector lighting time and the number of tested
reflectors, and the number of tested reflectors depends on the
number of optimizable parameters and on the range and off-
sets applied in the optimization procedure,

Model | Heighmap | Intersection Error
construction search calculation
A 56 976 277
B 34 2963 278
C 86 2406 263

Table 2: Mean times (in miliseconds) broken down into the
three main algorithm sections.

In table 2 there is a summary of the broken down times for
each reflector lighting step. The height map creation times
are similar because of all models use the same mip-map
height texture resolution. The intersection search time de-
pends on the number of traced rays, on the maximum num-
ber of allowed bounces, and on the height map levels.

Albert Mas and Ignacio Martin and Gustavo Patow / FIRD

62

10158 | 3Y} pue ss300.d U ez L ido By} U1 SASSs Jo Jequunu
Wa.JIN2ay1a.te akey] ‘1019)8. yoea mojeg "D pue g ‘v jepow ‘wonog 01 dolwol- *(yb11) auo pauisap 03 ‘(Ya|) adeys reniul ue wol) ‘ssaiboid Bulyosess 101099y 0T 24nbi4

128S¥C0 P8LITV O 1EVS8Y'0 6¥€208°0 205086'0 SOTL'T 10113]

parsaq 168€ 988¢ 6S8€ Ive 9€91 0 doyg #
O [PPOIN

L8GSL6°0 686.C'T G86LC°¢C €eVeS e 80295'¢ 11009 I0LI3 2]

parsaq yAsrAA 6SP1T L9L 6c¥ 29€ 0 darg #
4 PPN

95¥6¥S0 986.06'0 §¢see’l 91006'T 611S6'T 9S¥€9°¢C 10119 |

parsaq 86¢ 81 SL 96 0c 0 daig #
VI°POIN

(© The Eurographics Association 2008.

Albert Mas and Ignacio Martin and Gustavo Patow / FIRD 63

However, the results are very similar between the mod-
els, because they have the same height map texture sizes
(thus, the same number of quadtree levels), and the num-
ber of traced rays is similar between them. The GPU par-
allel processing allows us to get a non-linear computational
cost on rayset size. Therefore, the maximum number of al-
lowed bounces is the most important factor in the intersec-
tion search procedure. Finally, the calcualtion of the error
has similar times for all cases, since the outgoing textures
have the same size.

7. Discussion

As is shown in previous section, we never obtain the desired
reflector with O error. This is because the optimization al-
gorithm tests different parametrized reflectors changing the
parameters values in a constant step size and in a floating
space. On the other hand, we can improve the results op-
timizing at very small steps, also guaranteeing conergence
to a more usable solution, but this would affect strongly the
processing times.

The most time consuming part of our method is the in-
tersection search algorithm. If we use a very refined height
map, we need more time to traverse the ray through the
quadtree. If we want to manage very complex reflector
shapes, we need height maps with high resolutions. There-
fore, we need to achieve a comprimise between time costs
and quality of results.

8. Conclusions and Future Work

We have presented a method for the inverse reflector design
problem that improves on previous approaches. From a wide
set of parametrized reflectors, the best approximation to a
given desired illumination distribution is found. The method
is based on a very fast GPU algorithm that calculates the re-
flected rays on the reflector (with one or more bounces) in
2 to 3 seconds, even using millions of rays and highly com-
plex reflector shapes. The reflector parameters are optimized
in an interative process until the generated light distribution
is close enough to the desired one.

We consider, as future work, the use of better optimiza-
tion methods to reach the solution in a non-constant step
size, thus the desired reflector can be obtained faster, e.g.
using adaptive methods. Another future research line is the
optimization based on combination of predefined complex
reflector shapes stored as texture masks.

9. Acknowledgments

This work was done under grant TIN2007-67120 from the
Spanish Government.

(© The Eurographics Association 2008.

References

[ANSO2] ANSI/IESNA: Lm-63-02. ansi approved stan-
dard file format for electronic transfer of photometric data
and related information, 2002.

[bCL99] BYHEART CONSULTANTS LIMITED:
Eulumdat file format specification, 1999.
http://www.helios32.com/Eulumdat.htm.

[CHHO02] CARR N. A., HALL J. D., HART J. C.: The
ray engine. In HWWS’02: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHI CS conference on Graphics hard-
ware (Aire-la-Ville, Switzerland, Switzerland, 2002), Eu-
rographics Association, pp. 37-46.

[CKO99] CAFFARELLI L. A., KOCHENGIN S. A,
OLIKER V. I.: On the numerical solution of the problem
of reflector design with given far-flield scattering data.
Contemporary Methematics 226 (1999).

[POJO5] PoLicArRPO F., OLIVEIRA M. M., Jo A. L.
D. C.: Real-time relief mapping on arbitrary polygonal
surfaces. ACM Trans. Graph. 24, 3 (2005), 935-935.

[PPO5] PATOW G., PUEYO X.: A survey of inverse sur-
face design from light transport behaviour specification.
Computer Graphics Forum 24, 4 (2005), 773-789.

[PPV04] PATOW G., PUEYO X., VINACUA A.: Reflector
design from radiance distributions. International Journal
of Shape Modelling 10, 2 (2004), 211-235.

[PPVO7] PaTOW G., PUEYO X., VINACUA A.: User-
guided inverse reflector design. Comput. Graph. 31, 3
(2007), 501-515.

[RNLOO] REVELLESJ., NA C. U., LASTRA M.: An effi-
cient parametric algorithm for octree traversal. In Proc.
WSCG (2000), pp. 212-219.

[SHO7] SCHEUERMANN T., HENSLEY J.: Efficient his-
togram generation using scattering on gpus. In 13D '07:
Proceedings of the 2007 symposium on Interactive 3D
graphics and games (New York, NY, USA, 2007), ACM,
pp. 33-37.

[SKU08] SzIRMAY-KALOS L., UMENHOFFER T.: Dis-
placement mapping on the GPU - State of the Art. Com-
puter Graphics Forum 27, 1 (2008).

[SvG06] ScHRODERS M. F. A., v. GULIK R.: Quadtree
relief mapping. In GH ’06: Proceedings of the 21st ACM
S GGRAPH/Eurographics symposium on Graphics hard-
ware (New York, NY, USA, 2006), ACM, pp. 61-66.

[UPSKO7] UMENHOFFER T., PATOW G., SZIRMAY-
KALOs L.: GPU Gems 3. GPU Gems 3. Addison-Wesley,
2007, ch. Robust Multiple Specular Reflections and Re-
fractions, pp. 387-407.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CurlzMT
 /DfW5Printer
 /DfW5PrinterBold
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /FelixTitlingMT
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrenchScriptMT
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /ImprintMT-Shadow
 /Kartika
 /Latha
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /MaiandraGD-Regular
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /Oc_020
 /Oc_021
 /Oc_030
 /Oc_200
 /Oc_210
 /Oc_211
 /Oc_220
 /Oc_221
 /Oc_251
 /Oc_260
 /Oc_270
 /OCRAbyBT-Regular
 /OCRAExtended
 /OCRB10PitchBT-Regular
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Pristina-Regular
 /Raavi
 /RageItalic
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /Shruti
 /SureThingDVDSymbolsII
 /SureThingSymbols
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Ucs_020
 /Ucs_021
 /Ucs_030
 /Ucs_200
 /Ucs_210
 /Ucs_211
 /Ucs_220
 /Ucs_221
 /Ucs_251
 /Ucs_260
 /Ucs_270
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.001 842.000]
>> setpagedevice

